1
|
Patel YD, Brown AJ, Zhu J, Rosignoli G, Gibson SJ, Hatton D, James DC. Control of Multigene Expression Stoichiometry in Mammalian Cells Using Synthetic Promoters. ACS Synth Biol 2021; 10:1155-1165. [PMID: 33939428 PMCID: PMC8296667 DOI: 10.1021/acssynbio.0c00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/22/2023]
Abstract
To successfully engineer mammalian cells for a desired purpose, multiple recombinant genes are required to be coexpressed at a specific and optimal ratio. In this study, we hypothesized that synthetic promoters varying in transcriptional activity could be used to create single multigene expression vectors coexpressing recombinant genes at a predictable relative stoichiometry. A library of 27 multigene constructs was created comprising three discrete fluorescent reporter gene transcriptional units in fixed series, each under the control of either a relatively low, medium, or high transcriptional strength synthetic promoter in every possible combination. Expression of each reporter gene was determined by absolute quantitation qRT-PCR in CHO cells. The synthetic promoters did generally function as designed within a multigene vector context; however, significant divergences from predicted promoter-mediated transcriptional activity were observed. First, expression of all three genes within a multigene vector was repressed at varying levels relative to coexpression of identical reporter genes on separate single gene vectors at equivalent gene copies. Second, gene positional effects were evident across all constructs where expression of the reporter genes in positions 2 and 3 was generally reduced relative to position 1. Finally, after accounting for general repression, synthetic promoter transcriptional activity within a local multigene vector format deviated from that expected. Taken together, our data reveal that mammalian synthetic promoters can be employed in vectors to mediate expression of multiple genes at predictable relative stoichiometries. However, empirical validation of functional performance is a necessary prerequisite, as vector and promoter design features can significantly impact performance.
Collapse
Affiliation(s)
- Yash D. Patel
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Adam J. Brown
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Jie Zhu
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Guglielmo Rosignoli
- Dynamic
Omics, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Suzanne J. Gibson
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Diane Hatton
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - David C. James
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| |
Collapse
|
2
|
Johnstone CP, Wang NB, Sevier SA, Galloway KE. Understanding and Engineering Chromatin as a Dynamical System across Length and Timescales. Cell Syst 2020; 11:424-448. [PMID: 33212016 DOI: 10.1016/j.cels.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Connecting the molecular structure and function of chromatin across length and timescales remains a grand challenge to understanding and engineering cellular behaviors. Across five orders of magnitude, dynamic processes constantly reshape chromatin structures, driving spaciotemporal patterns of gene expression and cell fate. Through the interplay of structure and function, the genome operates as a highly dynamic feedback control system. Recent experimental techniques have provided increasingly detailed data that revise and augment the relatively static, hierarchical view of genomic architecture with an understanding of how dynamic processes drive organization. Here, we review how novel technologies from sequencing, imaging, and synthetic biology refine our understanding of chromatin structure and function and enable chromatin engineering. Finally, we discuss opportunities to use these tools to enhance understanding of the dynamic interrelationship of chromatin structure and function.
Collapse
Affiliation(s)
| | - Nathan B Wang
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA
| | - Stuart A Sevier
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Huang H, Liu Y, Liao W, Cao Y, Liu Q, Guo Y, Lu Y, Xie Z. Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat Commun 2019; 10:4801. [PMID: 31641136 PMCID: PMC6805884 DOI: 10.1038/s41467-019-12794-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Improving efficacy of oncolytic virotherapy remains challenging due to difficulty increasing specificity and immune responses against cancer and limited understanding of its population dynamics. Here, we construct programmable and modular synthetic gene circuits to control adenoviral replication and release of immune effectors selectively in hepatocellular carcinoma cells in response to multiple promoter and microRNA inputs. By performing mouse model experiments and computational simulations, we find that replicable adenovirus has a superior tumor-killing efficacy than non-replicable adenovirus. We observe a synergistic effect on promoting local lymphocyte cytotoxicity and systematic vaccination in immunocompetent mouse models by combining tumor lysis and secretion of immunomodulators. Furthermore, our computational simulations show that oncolytic virus which encodes immunomodulators can exert a more robust therapeutic efficacy than combinatorial treatment with oncolytic virus and immune effector. Our results provide an effective strategy to engineer oncolytic adenovirus, which may lead to innovative immunotherapies for a variety of cancers. It is difficult to improve the efficacy of oncolytic virotherapy due to immune system responses and limited understanding of population dynamics. Here the authors use synthetic biology gene circuits to control adenoviral replication and release of immunomodulators in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Huiya Huang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Yiqi Liu
- Syngentech Inc., Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Weixi Liao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Yubing Cao
- Syngentech Inc., Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Qiang Liu
- Syngentech Inc., Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Yakun Guo
- Syngentech Inc., Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Yinying Lu
- The comprehensive Liver cancer center, The 5th medical center of PLA Genaral Hospital, 100 Xi-Si-Huan Middle Road, Beijing, 100039, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|