1
|
Zhao X, Yang L, Li P, Cheng Z, Jia Y, Luo L, Bi A, Xiong H, Zhang H, Xu H, Zhang J, Zhang Y. High-accuracy crRNA array assembly strategy for multiplex CRISPR. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102428. [PMID: 39897580 PMCID: PMC11787013 DOI: 10.1016/j.omtn.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Simultaneous targeting of multiple loci with the CRISPR system, a tool known as multiplex CRISPR, offers greater feasibility for manipulating and elucidating the intricate and redundant endogenous networks underlying complex cellular functions. Owing to the versatility of continuously emerging Cas nucleases and the use of CRISPR arrays, multiplex CRISPR has been implemented in numerous in vitro and in vivo studies. However, a streamlined, practical strategy for CRISPR array assembly that is both convenient and accurate is lacking. Here, we present a novel, highly accurate, cost-, and time-saving strategy for CRISPR array assembly. Using this strategy, we efficiently assembled 12 CRISPR RNAs (crRNAs) (for AsCas12a) and 15 crRNAs (for RfxCas13d) in a single reaction. CRISPR arrays driven by Pol II promoters exhibited a distinct expression pattern compared with those driven by Pol III promoters, which could be exploited for specific distributions of CRISPR intensity. Improved approaches were subsequently designed and validated for expressing long CRISPR arrays. The study provides a flexible and powerful tool for the convenient implementation of multiplex CRISPR across DNA and RNA, facilitating the dissection of sophisticated cellular networks and the future realization of multi-target gene therapy.
Collapse
Affiliation(s)
- Xiangtong Zhao
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lixian Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Li
- Department of Gastroenterology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zijing Cheng
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Limin Luo
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aihong Bi
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongen Xu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jinrui Zhang
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, China
| | - Yaodong Zhang
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Qu T, Zhang C, Lu X, Dai J, He X, Li W, Han L, Yin D, Zhang E. 8q24 derived ZNF252P promotes tumorigenesis by driving phase separation to activate c-Myc mediated feedback loop. Nat Commun 2025; 16:1986. [PMID: 40011431 PMCID: PMC11865308 DOI: 10.1038/s41467-025-56879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
As a well-known cancer risk region, the 8q24 locus is frequently amplified in a variety of solid tumors. Here we identify a pseudogene-derived oncogenic lncRNA, ZNF252P, which is upregulated in a variety of cancer types by copy number gain as well as c-Myc-mediated transcriptional activation. Mechanistically, ZNF252P binds and drives "phase separation" of HNRNPK and ILF3 protein in the nucleus and cytoplasm, respectively, to transcriptionally and posttranscriptionally activate c-Myc, thus forming a c-Myc/ZNF252P/c-Myc positive feedback loop. These findings expand the understanding of the relationship between genomic instability in the 8q24 region and tumorigenesis and clarify a regulatory mechanism involved in transcription and posttranscription from the perspective of RNA-mediated nuclear and cytoplasmic protein phase separation, which sheds light on the dialogue with the driver oncogene c-Myc. The pivotal regulatory axis of ZNF252P/c-Myc has potential as a promising biomarker and therapeutic target in cancer development.
Collapse
Affiliation(s)
- Tianyu Qu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liang Han
- Department of Oncology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Cenik BK, Aoi Y, Iwanaszko M, Howard BC, Morgan MA, Andersen GD, Bartom ET, Shilatifard A. TurboCas: A method for locus-specific labeling of genomic regions and isolating their associated protein interactome. Mol Cell 2024; 84:4929-4944.e8. [PMID: 39706164 DOI: 10.1016/j.molcel.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 11/07/2024] [Indexed: 12/23/2024]
Abstract
Regulation of gene expression during development and stress response requires the concerted action of transcription factors and chromatin-binding proteins. Because this process is cell-type specific and varies with cellular conditions, mapping of chromatin factors at individual regulatory loci is crucial for understanding cis-regulatory control. Previous methods only characterize static protein binding. We present "TurboCas," a method combining a proximity-labeling (PL) enzyme, miniTurbo, with CRISPR-dCas9 that allows for efficient and site-specific labeling of chromatin factors in mammalian cells. Validating TurboCas at the FOS promoter, we identify proteins recruited upon heat shock, cross-validated via RNA polymerase II and P-TEFb immunoprecipitation. These methodologies reveal canonical and uncharacterized factors that function to activate expression of heat-shock-responsive genes. Applying TurboCas to the MYC promoter, we identify two P-TEFb coactivators, the super elongation complex (SEC) and BRD4, as MYC co-regulators. TurboCas provides a genome-specific targeting PL, with the potential to deepen our molecular understanding of transcriptional regulatory pathways in development and stress response.
Collapse
Affiliation(s)
- Bercin K Cenik
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Benjamin C Howard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Grant D Andersen
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA; Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Rajaram N, Benzler K, Bashtrykov P, Jeltsch A. Allele-specific DNA demethylation editing leads to stable upregulation of allele-specific gene expression. iScience 2024; 27:111007. [PMID: 39429790 PMCID: PMC11490731 DOI: 10.1016/j.isci.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Epigenome editing is an emerging technology that allows to rewrite epigenome states and reprogram gene expression. Here, we have developed allele-specific DNA demethylation editing at gene promoters containing an SNP by sgRNA/dCas9 mediated recuitment of TET1. Maximal DNA demethylation (up to 90%) was observed 6 days after transient transfection of the epigenome editors and it was almost stable for 15 days. After allele-specific targeting, DNA demethylation was up to 15-fold more efficient at the targeted allele. Our data show that locus-specific and allele-specific DNA demethylation can trigger the expression of previously silenced genes. Allele-specific DNA demethylation shifted allelic expression ratios about 4-fold. Allele-specific DNA demethylation could be used to correct aberrant imprinting in patients suffering from imprinting disorders and to study the roles of individual alleles of a gene in a given cellular context.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Katharina Benzler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Swain T, Pflueger C, Freytag S, Poppe D, Pflueger J, Nguyen T, Li J, Lister R. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Nucleic Acids Res 2024; 52:474-491. [PMID: 38000387 PMCID: PMC10783489 DOI: 10.1093/nar/gkad1108] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct 'effector' chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. To overcome this we have created a modular combinatorial epigenome editing platform, called SSSavi. This system is an interchangeable and reconfigurable docking platform fused to dCas9 that enables simultaneous recruitment of up to four different effectors, allowing precise control of effector composition and spatial ordering. We demonstrate the activity and specificity of the SSSavi system and, by testing it against existing multi-effector targeting systems, demonstrate its comparable efficacy. Furthermore, we demonstrate the importance of the spatial ordering of the recruited effectors for effective transcriptional regulation. Together, the SSSavi system enables exploration of combinatorial effector co-recruitment to enhance manipulation of chromatin contexts previously resistant to targeted editing.
Collapse
Affiliation(s)
- Tessa Swain
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Saskia Freytag
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Trung Viet Nguyen
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ji Kevin Li
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
6
|
Chen Y, Huang Z, Peng Q, Wang Y. Single Genomic Loci Labeling and Manipulation Using SIMBA System. Curr Protoc 2023; 3:e947. [PMID: 38054948 DOI: 10.1002/cpz1.947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The SIMBA (Simultaneous Imaging and Manipulation of genomic loci by Biomolecular Assemblies) system is an innovative CRISPR-based imaging technique that leverages dCas9-SunTag and FRB-mCherry-HP1α, with scFv-FKBP acting as a bridge. This powerful system enables simultaneous visualization and manipulation of genomic loci. The dCas9-SunTag fusion protein allows for precise targeting of specific genomic sites, and the FRB-mCherry-HP1α fusion protein facilitates the condensation of chromatin at the targeted loci. The scFv-FKBP bridge protein links dCas9-SunTag and FRB-mCherry-HP1α, ensuring efficient and specific recruitment of HP1α to the desired genomic loci. This integrated approach allows us to visualize and manipulate genomic regions of interest, opening up new avenues for studying genome organization, gene expression regulation, and chromatin dynamics in living cells. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Cloning of genetic constructs Basic Protocol 2: Transient transfection in mammalian cells and live-cell imaging Basic Protocol 3: Generation of SIMBA-expressing stable cell lines Basic Protocol 4: Manipulation of genomic loci using SIMBA.
Collapse
Affiliation(s)
- Yanwei Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ziliang Huang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
7
|
Rajaram N, Kouroukli AG, Bens S, Bashtrykov P, Jeltsch A. Development of super-specific epigenome editing by targeted allele-specific DNA methylation. Epigenetics Chromatin 2023; 16:41. [PMID: 37864244 PMCID: PMC10589950 DOI: 10.1186/s13072-023-00515-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epigenome editing refers to the targeted reprogramming of genomic loci using an EpiEditor which may consist of an sgRNA/dCas9 complex that recruits DNMT3A/3L to the target locus. Methylation of the locus can lead to a modulation of gene expression. Allele-specific DNA methylation (ASM) refers to the targeted methylation delivery only to one allele of a locus. In the context of diseases caused by a dominant mutation, the selective DNA methylation of the mutant allele could be used to repress its expression but retain the functionality of the normal gene. RESULTS To set up allele-specific targeted DNA methylation, target regions were selected from hypomethylated CGIs bearing a heterozygous SNP in their promoters in the HEK293 cell line. We aimed at delivering maximum DNA methylation with highest allelic specificity in the targeted regions. Placing SNPs in the PAM or seed regions of the sgRNA, we designed 24 different sgRNAs targeting single alleles in 14 different gene loci. We achieved efficient ASM in multiple cases, such as ISG15, MSH6, GPD1L, MRPL52, PDE8A, NARF, DAP3, and GSPT1, which in best cases led to five to tenfold stronger average DNA methylation at the on-target allele and absolute differences in the DNA methylation gain at on- and off-target alleles of > 50%. In general, loci with the allele discriminatory SNP positioned in the PAM region showed higher success rate of ASM and better specificity. Highest DNA methylation was observed on day 3 after transfection followed by a gradual decline. In selected cases, ASM was stable up to 11 days in HEK293 cells and it led up to a 3.6-fold change in allelic expression ratios. CONCLUSIONS We successfully delivered ASM at multiple genomic loci with high specificity, efficiency and stability. This form of super-specific epigenome editing could find applications in the treatment of diseases caused by dominant mutations, because it allows silencing of the mutant allele without repression of the expression of the normal allele thereby minimizing potential side-effects of the treatment.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexandra G Kouroukli
- Institute of Human Genetics, University of Ulm and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
8
|
Lu S, Hou Y, Zhang XE, Gao Y. Live cell imaging of DNA and RNA with fluorescent signal amplification and background reduction techniques. Front Cell Dev Biol 2023; 11:1216232. [PMID: 37342234 PMCID: PMC10277805 DOI: 10.3389/fcell.2023.1216232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Illuminating DNA and RNA dynamics in live cell can elucidate their life cycle and related biochemical activities. Various protocols have been developed for labeling the regions of interest in DNA and RNA molecules with different types of fluorescent probes. For example, CRISPR-based techniques have been extensively used for imaging genomic loci. However, some DNA and RNA molecules can still be difficult to tag and observe dynamically, such as genomic loci in non-repetitive regions. In this review, we will discuss the toolbox of techniques and methodologies that have been developed for imaging DNA and RNA. We will also introduce optimized systems that provide enhanced signal intensity or low background fluorescence for those difficult-to-tag molecules. These strategies can provide new insights for researchers when designing and using techniques to visualize DNA or RNA molecules.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yu Hou
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
9
|
Disrupting the phase separation of KAT8-IRF1 diminishes PD-L1 expression and promotes antitumor immunity. NATURE CANCER 2023; 4:382-400. [PMID: 36894639 PMCID: PMC10042735 DOI: 10.1038/s43018-023-00522-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/02/2023] [Indexed: 03/11/2023]
Abstract
Immunotherapies targeting the PD-1/PD-L1 axis have become first-line treatments in multiple cancers. However, only a limited subset of individuals achieves durable benefits because of the elusive mechanisms regulating PD-1/PD-L1. Here, we report that in cells exposed to interferon-γ (IFNγ), KAT8 undergoes phase separation with induced IRF1 and forms biomolecular condensates to upregulate PD-L1. Multivalency from both the specific and promiscuous interactions between IRF1 and KAT8 is required for condensate formation. KAT8-IRF1 condensation promotes IRF1 K78 acetylation and binding to the CD247 (PD-L1) promoter and further enriches the transcription apparatus to promote transcription of PD-L1 mRNA. Based on the mechanism of KAT8-IRF1 condensate formation, we identified the 2142-R8 blocking peptide, which disrupts KAT8-IRF1 condensate formation and consequently inhibits PD-L1 expression and enhances antitumor immunity in vitro and in vivo. Our findings reveal a key role of KAT8-IRF1 condensates in PD-L1 regulation and provide a competitive peptide to enhance antitumor immune responses.
Collapse
|
10
|
Jung A, Munõz-López Á, Buchmuller BC, Banerjee S, Summerer D. Imaging-Based In Situ Analysis of 5-Methylcytosine at Low Repetitive Single Gene Loci with Transcription-Activator-Like Effector Probes. ACS Chem Biol 2023; 18:230-236. [PMID: 36693632 PMCID: PMC9942090 DOI: 10.1021/acschembio.2c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcription-activator-like effectors (TALEs) are programmable DNA binding proteins that can be used for sequence-specific, imaging-based analysis of cellular 5-methylcytosine. However, this has so far been limited to highly repetitive satellite DNA. To expand this approach to the analysis of coding single gene loci, we here explore a number of signal amplification strategies for increasing imaging sensitivity with TALEs. We develop a straightforward amplification protocol and employ it to target the MUC4 gene, which features only a small cluster of repeat sequences. This offers high sensitivity imaging of MUC4, and in costaining experiments with pairs of one TALE selective for unmethylated cytosine and one universal control TALE enables analyzing methylation changes in the target independently of changes in target accessibility. These advancements offer prospects for 5-methylcytosine analysis at coding, nonrepetitive gene loci by the use of designed TALE probe collections.
Collapse
Affiliation(s)
- Anne Jung
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Álvaro Munõz-López
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany,International
Max Planck Research School of Living Matter, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Benjamin C. Buchmuller
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany,International
Max Planck Research School of Living Matter, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Sudakshina Banerjee
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany,International
Max Planck Research School of Living Matter, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Daniel Summerer
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany,International
Max Planck Research School of Living Matter, Otto-Hahn-Str. 11, 44227 Dortmund, Germany,
| |
Collapse
|
11
|
Peng Q, Huang Z, Sun K, Liu Y, Yoon CW, Harrison RES, Schmitt DL, Zhu L, Wu Y, Tasan I, Zhao H, Zhang J, Zhong S, Chien S, Wang Y. Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells. Nat Commun 2022; 13:7933. [PMID: 36566209 PMCID: PMC9789998 DOI: 10.1038/s41467-022-35504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Genome architecture and organization play critical roles in cell life. However, it remains largely unknown how genomic loci are dynamically coordinated to regulate gene expression and determine cell fate at the single cell level. We have developed an inducible system which allows Simultaneous Imaging and Manipulation of genomic loci by Biomolecular Assemblies (SIMBA) in living cells. In SIMBA, the human heterochromatin protein 1α (HP1α) is fused to mCherry and FRB, which can be induced to form biomolecular assemblies (BAs) with FKBP-scFv, guided to specific genomic loci by a nuclease-defective Cas9 (dCas9) or a transcriptional factor (TF) carrying tandem repeats of SunTag. The induced BAs can not only enhance the imaging signals at target genomic loci using a single sgRNA, either at repetitive or non-repetitive sequences, but also recruit epigenetic modulators such as histone methyltransferase SUV39H1 to locally repress transcription. As such, SIMBA can be applied to simultaneously visualize and manipulate, in principle, any genomic locus with controllable timing in living cells.
Collapse
Affiliation(s)
- Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.
| | - Ziliang Huang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Yahan Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Reed E S Harrison
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Danielle L Schmitt
- Department of Pharmacology, University of California, La Jolla, CA, 92093-0435, USA
| | - Linshan Zhu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Yiqian Wu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, La Jolla, CA, 92093-0435, USA
| | - Sheng Zhong
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Shu Chien
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
- Department of Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA.
| |
Collapse
|
12
|
Van Tricht C, Voet T, Lammertyn J, Spasic D. Imaging the unimaginable: leveraging signal generation of CRISPR-Cas for sensitive genome imaging. Trends Biotechnol 2022; 41:769-784. [PMID: 36369053 DOI: 10.1016/j.tibtech.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Fluorescence in situ hybridization (FISH) is the gold standard for visualizing genomic DNA in fixed cells and tissues, but it is incompatible with live-cell imaging, and its combination with RNA imaging is challenging. Consequently, due to its capacity to bind double-stranded DNA (dsDNA) and design flexibility, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) technology has sparked enormous interest over the past decade. In this review, we describe various nucleic acid (NA)- and protein-based (amplified) signal generation methods that achieve imaging of repetitive and single-copy sequences, and even single-nucleotide variants (SNVs), next to highly multiplexed as well as dynamic imaging in live cells. With future progress in the field, the CRISPR-(d)Cas9-based technology promises to break through as a next-generation cell-imaging technique.
Collapse
|
13
|
Mehra D, Adhikari S, Banerjee C, Puchner EM. Characterizing locus specific chromatin structure and dynamics with correlative conventional and super-resolution imaging in living cells. Nucleic Acids Res 2022; 50:e78. [PMID: 35524554 PMCID: PMC9303368 DOI: 10.1093/nar/gkac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
The dynamic rearrangement of chromatin is critical for gene regulation, but mapping both the spatial organization of chromatin and its dynamics remains a challenge. Many structural conformations are too small to be resolved via conventional fluorescence microscopy and the long acquisition time of super-resolution photoactivated localization microscopy (PALM) precludes the structural characterization of chromatin below the optical diffraction limit in living cells due to chromatin motion. Here we develop a correlative conventional fluorescence and PALM imaging approach to quantitatively map time-averaged chromatin structure and dynamics below the optical diffraction limit in living cells. By assigning localizations to a locus as it moves, we reliably discriminate between bound and unbound dCas9 molecules, whose mobilities overlap. Our approach accounts for changes in DNA mobility and relates local chromatin motion to larger scale domain movement. In our experimental system, we show that compacted telomeres move faster and have a higher density of bound dCas9 molecules, but the relative motion of those molecules is more restricted than in less compacted telomeres. Correlative conventional and PALM imaging therefore improves the ability to analyze the mobility and time-averaged nanoscopic structural features of locus specific chromatin with single molecule sensitivity and yields unprecedented insights across length and time scales.
Collapse
Affiliation(s)
- Dushyant Mehra
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, USA
| | - Santosh Adhikari
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| | - Chiranjib Banerjee
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| |
Collapse
|
14
|
Hou Y, Wang D, Lu S, Guo D, Li M, Cui M, Zhang XE. Optogenetic Control of Background Fluorescence Reduction for CRISPR-Based Genome Imaging. Anal Chem 2022; 94:8724-8731. [PMID: 35666940 DOI: 10.1021/acs.analchem.2c01113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CRISPR/dCas9 system has become an essential tool for live-cell imaging of genomic loci, but it has limited applications in imaging low-/non-repetitive genomic loci due to the strong nuclear background noise emerging from many untargeted fluorescent modules. Here, we propose an optogenetically controlled background fluorescence reduction strategy that combines the CRISPR-SunTag system with a light-inducible nuclear export tag (LEXY). Utilizing the SunTag system, multiple copies of LEXY-tagged sfGFP were recruited to the C-terminal dCas9, recognizing the target genomic loci. As the nuclear export sequence at the C-terminal LEXY could be exposed to pulsed blue light irradiation, the untargeted nuclear labeling modules were light controllably transferred to the cytoplasm. Consequently, genomic loci containing as few as nine copies of repeats were clearly visualized, and a significant increase in the signal-to-noise ratio was achieved. This simple and controllable method is expected to have a wide range of applications in cell biology.
Collapse
Affiliation(s)
- Yu Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Lu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongge Guo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengmeng Cui
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Tarnowski MJ, Gorochowski TE. Massively parallel characterization of engineered transcript isoforms using direct RNA sequencing. Nat Commun 2022; 13:434. [PMID: 35064117 PMCID: PMC8783025 DOI: 10.1038/s41467-022-28074-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Transcriptional terminators signal where transcribing RNA polymerases (RNAPs) should halt and disassociate from DNA. However, because termination is stochastic, two different forms of transcript could be produced: one ending at the terminator and the other reading through. An ability to control the abundance of these transcript isoforms would offer bioengineers a mechanism to regulate multi-gene constructs at the level of transcription. Here, we explore this possibility by repurposing terminators as 'transcriptional valves' that can tune the proportion of RNAP read-through. Using one-pot combinatorial DNA assembly, we iteratively construct 1780 transcriptional valves for T7 RNAP and show how nanopore-based direct RNA sequencing (dRNA-seq) can be used to characterize entire libraries of valves simultaneously at a nucleotide resolution in vitro and unravel genetic design principles to tune and insulate termination. Finally, we engineer valves for multiplexed regulation of CRISPR guide RNAs. This work provides new avenues for controlling transcription and demonstrates the benefits of long-read sequencing for exploring complex sequence-function landscapes.
Collapse
Affiliation(s)
- Matthew J Tarnowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
- BrisSynBio, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
16
|
Abstract
The imaging of chromatin, genomic loci, RNAs, and proteins is very important to study their localization, interaction, and coordinated regulation. Recently, several clustered regularly interspaced short palindromic repeats (CRISPR) based imaging methods have been established. The refurbished tool kits utilizing deactivated Cas9 (dCas9) and dCas13 have been established to develop applications of CRISPR-Cas technology beyond genome editing. Here, we review recent advancements in CRISPR-based methods that enable efficient imaging and visualization of chromatin, genomic loci, RNAs, and proteins. RNA aptamers, Pumilio, SuperNova tagging system, molecular beacons, halotag, bimolecular fluorescence complementation, RNA-guided endonuclease in situ labeling, and oligonucleotide-based imaging methods utilizing fluorescent proteins, organic dyes, or quantum dots have been developed to achieve improved fluorescence and signal-to-noise ratio for the imaging of chromatin or genomic loci. RNA-guided RNA targeting CRISPR systems (CRISPR/dCas13) and gene knock-in strategies based on CRISPR/Cas9 mediated site-specific cleavage and DNA repair mechanisms have been employed for efficient RNA and protein imaging, respectively. A few CRISPR-Cas-based methods to investigate the coordinated regulation of DNA-protein, DNA-RNA, or RNA-protein interactions for understanding chromatin dynamics, transcription, and protein function are also available. Overall, the CRISPR-based methods offer a significant improvement in elucidating chromatin organization and dynamics, RNA visualization, and protein imaging. The current and future advancements in CRISPR-based imaging techniques can revolutionize genome biology research for various applications.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Wang Y, Cottle WT, Wang H, Feng XA, Mallon J, Gavrilov M, Bailey S, Ha T. Genome oligopaint via local denaturation fluorescence in situ hybridization. Mol Cell 2021; 81:1566-1577.e8. [PMID: 33657402 PMCID: PMC8026568 DOI: 10.1016/j.molcel.2021.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Cas9 in complex with a programmable guide RNA targets specific double-stranded DNA for cleavage. By harnessing Cas9 as a programmable loader of superhelicase to genomic DNA, we report a physiological-temperature DNA fluorescence in situ hybridization (FISH) method termed genome oligopaint via local denaturation (GOLD) FISH. Instead of global denaturation as in conventional DNA FISH, loading a superhelicase at a Cas9-generated nick allows for local DNA denaturation, reducing nonspecific binding of probes and avoiding harsh treatments such as heat denaturation. GOLD FISH relies on Cas9 cleaving target DNA sequences and avoids the high nuclear background associated with other genome labeling methods that rely on Cas9 binding. The excellent signal brightness and specificity enable us to image nonrepetitive genomic DNA loci and analyze the conformational differences between active and inactive X chromosomes. Finally, GOLD FISH could be used for rapid identification of HER2 gene amplification in patient tissue.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wayne Taylor Cottle
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haobo Wang
- Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinyu Ashlee Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John Mallon
- Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Momcilo Gavrilov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Scott Bailey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Brandão HB, Gabriele M, Hansen AS. Tracking and interpreting long-range chromatin interactions with super-resolution live-cell imaging. Curr Opin Cell Biol 2020; 70:18-26. [PMID: 33310227 PMCID: PMC8364313 DOI: 10.1016/j.ceb.2020.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Mammalian genomes are organized and regulated through long-range chromatin interactions. Structural loops formed by CCCTC-binding factor (CTCF) and cohesin fold the genome into domains, while enhancers interact with promoters across vast genomic distances to regulate gene expression. Although genomics and fixed-cell imaging approaches help illuminate many aspects of chromatin interactions, temporal information is usually lost. Here, we discuss how 3D super-resolution live-cell imaging (SRLCI) can resolve open questions on the dynamic formation and dissolution of chromatin interactions. We discuss SRLCI experimental design, implementation strategies, and data interpretation and highlight associated pitfalls. We conclude that, while technically demanding, SRLCI approaches will likely emerge as a critical tool to dynamically probe 3D genome structure and function and to study enhancer–promoter interactions and chromatin looping.
Collapse
Affiliation(s)
- Hugo B Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Michele Gabriele
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
19
|
Lu S, Wang D, Hou Y, Guo D, Deng Y, Zhang XE. Illuminating single genomic loci in live cells by reducing nuclear background fluorescence. SCIENCE CHINA-LIFE SCIENCES 2020; 64:667-677. [PMID: 33131028 DOI: 10.1007/s11427-020-1794-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Abstract
The tagging of genomic loci in living cells provides visual evidence for the study of genomic spatial organization and gene interaction. CRISPR/dCas9 (clustered regularly interspaced short palindromic repeats/deactivated Cas9) labeling system labels genes through binding of the dCas9/sgRNA/fluorescent protein complex to repeat sequences in the target genomic loci. However, the existence of numerous fluorescent proteins in the nucleus usually causes a high background fluorescent readout. This study aims to limit the number of fluorescent modules entering the nucleus by redesigning the current CRISPR/dCas9-SunTag labeling system consisting of dCas9-SunTag-NLS (target module) and scFv-sfGFP-NLS (signal module). We removed the nuclear location sequence (NLS) of the signal module and inserted two copies of EGFP into the signal module. The ratio of the fluorescent intensity of the nucleus to that of the cytoplasm (N/C ratio) was decreased by 71%, and the ratio of the signal to the background (S/B ratio) was increased by 1.6 times. The system can stably label randomly selected genomic loci with as few as 9 repeat sequences.
Collapse
Affiliation(s)
- Song Lu
- School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongge Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yulin Deng
- School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Tasan I, Su CJ, Enghiad B, Zhang M, Mishra S, Zhao H. Two-Color Imaging of Nonrepetitive Endogenous Loci in Human Cells. ACS Synth Biol 2020; 9:2502-2514. [PMID: 32822529 DOI: 10.1021/acssynbio.0c00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tools for live cell imaging of multiple nonrepetitive genomic loci in mammalian cells are necessary to study chromatin dynamics. Here, we report a new system based on two chromosomally integrated orthogonal irregular repeat arrays and particularly a new general strategy to construct irregular repeat arrays. Briefly, we utilized a "bridge oligonucleotide-mediated ligation" protocol to assemble 8-mer repeats de novo which were then combined into a final 96-mer repeat array using Golden Gate cloning. This strategy was used for assembling a new mutant TetO irregular repeat array, which worked orthogonally to the wild type TetO repeat. Single copy integration of the new repeat array did not cause replication deficiencies at the tagged locus. Moreover, the mutant TetO irregular repeat could also be visualized by CRISPR imaging. Our new irregular repeat assembly method demonstrates a generally applicable strategy that can be used for assembling additional orthogonal repeat arrays for imaging genomic loci and irregular repeats to visualize RNA or proteins via signal amplification.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Christina Jean Su
- Department of Molecular and Cellular Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Behnam Enghiad
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Meng Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shekhar Mishra
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Sun NH, Chen DY, Ye LP, Sheng G, Gong JJ, Chen BH, Lu YM, Han F. CRISPR-Sunspot: Imaging of endogenous low-abundance RNA at the single-molecule level in live cells. Theranostics 2020; 10:10993-11012. [PMID: 33042266 PMCID: PMC7532675 DOI: 10.7150/thno.43094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/21/2020] [Indexed: 12/23/2022] Open
Abstract
CRISPR/Cas-based mRNA imaging has been developed to labeling of high-abundance mRNAs. A lack of non-genetically encoded mRNA-tagged imaging tools has limited our ability to explore the functional distributions of endogenous low-abundance mRNAs in cells. Here, we developed a CRISPR-Sunspot method based on the SunTag signal amplification system that allows efficient imaging of low-abundance mRNAs with CRISPR/Cas9. Methods: We created a stable TRE3G-dCas9-EGFP cell line and generated an Inducible dCas9-EGFP imaging system for assessment of two factors, sgRNA and dCas9, which influence imaging quality. Based on SunTag system, we established a CRISPR-Sunspot imaging system for amplifying signals from single-molecule mRNA in live cells. CRISPR-Sunspot was used to track co-localization of Camk2a mRNA with regulatory protein Xlr3b in neurons. CRISPR-Sunspot combined with CRISPRa was used to determine elevated mRNA molecules. Results: Our results showed that manipulating the expression of fluorescent proteins and sgRNA increased the efficiency of RNA imaging in cells. CRISPR-Sunspot could target endogenous mRNAs in the cytoplasm and amplified signals from single-molecule mRNA. Furthermore, CRISPR-Sunspot was also applied to visualize mRNA distributions with its regulating proteins in neurons. CRISPR-Sunspot detected the co-localization of Camk2a mRNA with overexpressed Xlr3b proteins in the neuronal dendrites. Moreover, we also manipulated CRISPR-Sunspot to detect transcriptional activation of target gene such as HBG1 in live cells. Conclusion: Our findings suggest that CRISPR-Sunspot is a novel applicable imaging tool for visualizing the distributions of low-abundance mRNAs in cells. This study provides a novel strategy to unravel the molecular mechanisms of diseases caused by aberrant mRNA molecules.
Collapse
Affiliation(s)
- Ning-He Sun
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan-Yang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Peng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Gang Sheng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jun-Jie Gong
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Bao-Hui Chen
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health of Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
22
|
Li M, Gan J, Sun Y, Xu Z, Yang J, Sun Y, Li C. Architectural proteins for the formation and maintenance of the 3D genome. SCIENCE CHINA. LIFE SCIENCES 2020; 63:795-810. [PMID: 32249389 DOI: 10.1007/s11427-019-1613-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
Abstract
Eukaryotic genomes are densely packaged into hierarchical three-dimensional (3D) structures that contain information about gene regulation and many other biological processes. With the development of imaging and sequencing-based technologies, 3D genome studies have revealed that the high-order chromatin structure is composed of hierarchical levels, including chromosome territories, A/B compartments, topologically associated domains, and chromatin loops. However, how this chromatin architecture is formed and maintained is not completely clear. In this review, we introduce experimental methods to investigate the 3D genome, review major architectural proteins that regulate 3D chromatin organization in mammalian cells, such as CTCF (CCCTC-binding factor), cohesin, lamins, and transcription factors, and discuss relevant mechanisms such as phase separation.
Collapse
Affiliation(s)
- Mengfan Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingbo Gan
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuao Sun
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Zihan Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China
| | - Junsheng Yang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| | - Cheng Li
- Center for Statistical Science, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
23
|
Wu X, Ying Y, Mao S, Krueger CJ, Chen AK. Live-Cell Imaging of Genomic Loci Using CRISPR/Molecular Beacon Hybrid Systems. Methods Mol Biol 2020; 2166:357-372. [PMID: 32710420 DOI: 10.1007/978-1-0716-0712-1_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor the behavior of specific genomic loci in living cells can offer tremendous opportunities for deciphering the molecular basis driving cellular physiology and disease evolution. Toward this goal, clustered regularly interspersed short palindromic repeat (CRISPR)-based imaging systems have been developed, with tagging of either the nuclease-deactivated mutant of the CRISPR-associated protein 9 (dCas9) or the CRISPR single-guide RNA (sgRNA) with fluorescent protein (FP) molecules currently the major strategies for labeling. Recently, we have demonstrated the feasibility of tagging the sgRNA with molecular beacons, a class of small molecule dye-based, fluorogenic oligonucleotide probes, and demonstrated that the resulting system, termed CRISPR/MB, could be more sensitive and quantitative than conventional approaches employing FP reporters in detecting single telomere loci. In this chapter, we describe detailed protocols for the synthesis of CRISPR/MB, as well as its applications for imaging single telomere and centromere loci in live mammalian cells.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
24
|
Higashikuni Y, Lu TK. Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells. ACS Synth Biol 2019; 8:2607-2619. [PMID: 31751114 DOI: 10.1021/acssynbio.9b00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human diseases are caused by dysregulation of cellular biological programs that are encoded in DNA. Unveiling the endogenous programs and encoding new programs into the genome are key to creating novel diagnostic and therapeutic strategies. CRISPR/Cas9, originally identified in bacteria, has revolutionized genome editing in mammalian cells. Recent advances in CRISPR technologies have provided new programmable platforms for modifying cell function and behavior. CRISPR-based transcriptional regulators and modified gRNAs have enabled multiplexed regulation and visualization of genome dynamics with spatiotemporal precision. Using these toolkits, genome-scale screening platforms can identify key genetic elements or combinations thereof that modulate phenotypes in mammalian cells. In addition, imaging platforms for multiplexed genomic labeling have been created to study the conformation and dynamics of chromatin in living cells, which are essential for genome function. Furthermore, CRISPR-based computation and memory platforms have been built in living mammalian cells by using DNA as a data processing and storage medium to regulate and monitor cellular behaviors. The conditional regulation of CRISPR-based parts has enabled the design of complex multilayered biological programs. CRISPR-based memory platforms can continuously record biological events as mutations in defined DNA loci. By making use of base editors, CRISPR-based computation and memory platforms have been interconnected to perform logic operations based on past events. These technologies open up new avenues for understanding biological phenomena and designing mammalian cells as living machines for biomedical applications.
Collapse
|
25
|
MacLeod RS, Cawley KM, Gubrij I, Nookaew I, Onal M, O'Brien CA. Effective CRISPR interference of an endogenous gene via a single transgene in mice. Sci Rep 2019; 9:17312. [PMID: 31754144 PMCID: PMC6872636 DOI: 10.1038/s41598-019-53611-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Drawbacks of conditional gene deletion in mice include the need for extensive breeding and, often, a lack of cell type-specificity. CRISPR interference (CRISPRi) is an alternative approach for loss-of-function studies that inhibits expression by guiding a transcriptional repressor to the transcription start-site of target genes. However, there has been limited exploration of CRISPRi in mice. We tested the effectiveness of a single CRISPRi transgene broadly expressing a single guide RNA and a catalytically dead Cas9 fused to the KRAB repressor domain to suppress a well-characterized target gene, Tnfsf11. The phenotype of CRISPRi transgenic mice was compared to mice with germline deletion of Tnfsf11, which are osteopetrotic and do not form lymph nodes. High transgene expression mimicked gene deletion, with failure of lymph node development and classic signs of osteopetrosis such as high bone mass and failure of tooth eruption. Mice with low transgene expression were normal and mice with medium expression displayed an intermediate phenotype. Transgene expression in tissues from these mice correlated inversely with Tnfsf11 mRNA levels. These results demonstrate that a single CRISPRi transgene can effectively suppress a target gene in mice and suggest that this approach may be useful for cell type-specific loss-of-function studies.
Collapse
Affiliation(s)
- Ryan S MacLeod
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Keisha M Cawley
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Igor Gubrij
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Melda Onal
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA.
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA.
- Central Arkansas Veterans Healthcare System, Little Rock, 72205, AR, USA.
| |
Collapse
|
26
|
Mao S, Ying Y, Wu X, Krueger CJ, Chen AK. CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Res 2019; 47:e131. [PMID: 31504824 PMCID: PMC6847002 DOI: 10.1093/nar/gkz752] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic imaging systems predominantly rely on fluorescent protein reporters, which lack the optical properties essential for sensitive dynamic imaging. Here, we modified the CRISPR single-guide RNA (sgRNA) to carry two distinct molecular beacons (MBs) that can undergo fluorescence resonance energy transfer (FRET) and demonstrated that the resulting system, CRISPR/dual-FRET MB, enables dynamic imaging of non-repetitive genomic loci with only three unique sgRNAs.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Martella A, Firth M, Taylor BJM, Göppert A, Cuomo EM, Roth RG, Dickson AJ, Fisher DI. Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System. ACS Synth Biol 2019; 8:1998-2006. [PMID: 31398008 DOI: 10.1021/acssynbio.8b00527] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to manipulate the expression of mammalian genes using synthetic transcription factors is highly desirable in both fields of basic research and industry for diverse applications, including stem cell reprogramming and differentiation, tissue engineering, and drug discovery. Orthogonal CRISPR systems can be used for simultaneous transcriptional upregulation of a subset of target genes while downregulating another subset, thus gaining control of gene regulatory networks, signaling pathways, and cellular processes whose activity depends on the expression of multiple genes. We have used a rapid and efficient modular cloning system to build and test in parallel diverse CRISPRa and CRISPRi systems and develop an efficient orthogonal gene regulation system for multiplexed and simultaneous up- and downregulation of endogenous target genes.
Collapse
Affiliation(s)
- Andrea Martella
- Discovery Biology, Discovery Sciences , R&D, AstraZeneca , Cambridge CB4 0WG , U.K
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences , R&D, AstraZeneca , Cambridge CB4 0WG , U.K
| | - Benjamin J M Taylor
- Discovery Biology, Discovery Sciences , R&D, AstraZeneca , Cambridge CB4 0WG , U.K
| | - Anne Göppert
- Discovery Biology, Discovery Sciences , R&D, AstraZeneca , Cambridge CB4 0WG , U.K
| | - Emanuela M Cuomo
- Discovery Biology, Discovery Sciences , R&D, AstraZeneca , Cambridge CB4 0WG , U.K
| | - Robert G Roth
- Discovery Biology, Discovery Sciences , R&D, AstraZeneca , 431 50 Mölndal , Sweden
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering , University of Manchester , Manchester M1 7DN , U.K
| | - David I Fisher
- Discovery Biology, Discovery Sciences , R&D, AstraZeneca , Cambridge CB4 0WG , U.K
| |
Collapse
|
28
|
Xing J, Tian XJ. Investigating epithelial-to-mesenchymal transition with integrated computational and experimental approaches. Phys Biol 2019; 16:031001. [PMID: 30665206 PMCID: PMC6609444 DOI: 10.1088/1478-3975/ab0032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transition between epithelial and mesenchymal (EMT) is a fundamental cellular process that plays critical roles in development, cancer metastasis, and tissue wound healing. EMT is not a binary process but involves multiple partial EMT states that give rise to a high degree of cell state plasticity. Here, we first reviewed several studies on theoretical predictions and experimental verification of these intermediate states, the role of partial EMT on kidney fibrosis development, and how quantitative signaling information controls cell commitment to partial or full EMT upon transient signals. Next, we summarized existing knowledge and open questions on the coupling between EMT and other biological processes, such as the cell cycle, epigenetic regulation, stemness, and apoptosis. Taken together, EMT is a model system that has attracted increasing interests for quantitative experimental and theoretical studies.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America. UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America. To whom correspondence should be addressed
| | | |
Collapse
|
29
|
Wu X, Mao S, Ying Y, Krueger CJ, Chen AK. Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR-based Platforms. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:119-128. [PMID: 30710789 PMCID: PMC6620262 DOI: 10.1016/j.gpb.2018.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
Chromatin conformation, localization, and dynamics are crucial regulators of cellular behaviors. Although fluorescence in situ hybridization-based techniques have been widely utilized for investigating chromatin architectures in healthy and diseased states, the requirement for cell fixation precludes the comprehensive dynamic analysis necessary to fully understand chromatin activities. This has spurred the development and application of a variety of imaging methodologies for visualizing single chromosomal loci in the native cellular context. In this review, we describe currently-available approaches for imaging single genomic loci in cells, with special focus on clustered regularly interspaced short palindromic repeats (CRISPR)-based imaging approaches. In addition, we discuss some of the challenges that limit the application of CRISPR-based genomic imaging approaches, and potential solutions to address these challenges. We anticipate that, with continued refinement of CRISPR-based imaging techniques, significant understanding can be gained to help decipher chromatin activities and their relevance to cellular physiology and pathogenesis.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Williams DK, Pinzón C, Huggins S, Pryor JH, Falck A, Herman F, Oldeschulte J, Chavez MB, Foster BL, White SH, Westhusin ME, Suva LJ, Long CR, Gaddy D. Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci Rep 2018; 8:16945. [PMID: 30446691 PMCID: PMC6240114 DOI: 10.1038/s41598-018-35079-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 12/02/2022] Open
Abstract
The availability of tools to accurately replicate the clinical phenotype of rare human diseases is a key step toward improved understanding of disease progression and the development of more effective therapeutics. We successfully generated the first large animal model of a rare human bone disease, hypophosphatasia (HPP) using CRISPR/Cas9 to introduce a single point mutation in the tissue nonspecific alkaline phosphatase (TNSALP) gene (ALPL) (1077 C > G) in sheep. HPP is a rare inherited disorder of mineral metabolism that affects bone and tooth development, and is associated with muscle weakness. Compared to wild-type (WT) controls, HPP sheep have reduced serum alkaline phosphatase activity, decreased tail vertebral bone size, and metaphyseal flaring, consistent with the mineralization deficits observed in human HPP patients. Computed tomography revealed short roots and thin dentin in incisors, and reduced mandibular bone in HPP vs. WT sheep, accurately replicating odonto-HPP. Skeletal muscle biopsies revealed aberrant fiber size and disorganized mitochondrial cristae structure in HPP vs. WT sheep. These genetically engineered sheep accurately phenocopy human HPP and provide a novel large animal platform for the longitudinal study of HPP progression, as well as other rare human bone diseases.
Collapse
Affiliation(s)
- Diarra K Williams
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos Pinzón
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Shannon Huggins
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jane H Pryor
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Forrest Herman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - James Oldeschulte
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Sarah H White
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
31
|
Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D, Milanova D, Kuo CC, Guo X, Sharma S, Tung A, Cecchi RJ, Tuttle M, Pradhan S, Lim ET, Davidsohn N, Ebrahimkhani MR, Collins JJ, Lewis NE, Kiani S, Church GM. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 2018; 15:611-616. [PMID: 30013045 PMCID: PMC6129399 DOI: 10.1038/s41592-018-0048-5] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023]
Abstract
The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor, but inefficiencies in target-gene silencing have limited its utility. Here we describe an improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite repressor domain, KRAB-MeCP2, to nuclease-dead Cas9. We demonstrate the system's superiority in silencing coding and noncoding genes, simultaneously repressing a series of target genes, improving the results of single and dual guide RNA library screens, and enabling new architectures of synthetic genetic circuits.
Collapse
Affiliation(s)
- Nan Cher Yeo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Alissa Lance-Byrne
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Yingleong Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David Menn
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Denitsa Milanova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, San Diego, CA, USA
| | - Xiaoge Guo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sumana Sharma
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Angela Tung
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Ryan J Cecchi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Marcelle Tuttle
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Swechchha Pradhan
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Elaine T Lim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Noah Davidsohn
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mo R Ebrahimkhani
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
- Division of Gastroenterology and Hematology, Mayo Clinic College of Medicine and Science, Phoenix, AZ, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Samira Kiani
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA.
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Fontana J, Voje WE, Zalatan JG, Carothers JM. Prospects for engineering dynamic CRISPR–Cas transcriptional circuits to improve bioproduction. ACTA ACUST UNITED AC 2018; 45:481-490. [DOI: 10.1007/s10295-018-2039-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
Abstract
Dynamic control of gene expression is emerging as an important strategy for controlling flux in metabolic pathways and improving bioproduction of valuable compounds. Integrating dynamic genetic control tools with CRISPR–Cas transcriptional regulation could significantly improve our ability to fine-tune the expression of multiple endogenous and heterologous genes according to the state of the cell. In this mini-review, we combine an analysis of recent literature with examples from our own work to discuss the prospects and challenges of developing dynamically regulated CRISPR–Cas transcriptional control systems for applications in synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Jason Fontana
- 0000000122986657 grid.34477.33 Molecular Engineering and Sciences Institute and Center for Synthetic Biology University of Washington 98195 Seattle WA USA
| | - William E Voje
- 0000000122986657 grid.34477.33 Molecular Engineering and Sciences Institute and Center for Synthetic Biology University of Washington 98195 Seattle WA USA
- 0000000122986657 grid.34477.33 Department of Chemical Engineering University of Washington 98195 Seattle WA USA
| | - Jesse G Zalatan
- 0000000122986657 grid.34477.33 Molecular Engineering and Sciences Institute and Center for Synthetic Biology University of Washington 98195 Seattle WA USA
- 0000000122986657 grid.34477.33 Department of Chemistry University of Washington 98195 Seattle WA USA
| | - James M Carothers
- 0000000122986657 grid.34477.33 Molecular Engineering and Sciences Institute and Center for Synthetic Biology University of Washington 98195 Seattle WA USA
- 0000000122986657 grid.34477.33 Department of Chemical Engineering University of Washington 98195 Seattle WA USA
| |
Collapse
|
33
|
CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control. Mamm Genome 2018; 29:205-228. [PMID: 29196861 PMCID: PMC9881389 DOI: 10.1007/s00335-017-9727-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.
Collapse
|
34
|
Programming of Cell Resistance to Genotoxic and Oxidative Stress. Biomedicines 2018; 6:biomedicines6010005. [PMID: 29301323 PMCID: PMC5874662 DOI: 10.3390/biomedicines6010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022] Open
Abstract
Different organisms, cell types, and even similar cell lines can dramatically differ in resistance to genotoxic stress. This testifies to the wide opportunities for genetic and epigenetic regulation of stress resistance. These opportunities could be used to increase the effectiveness of cancer therapy, develop new varieties of plants and animals, and search for new pharmacological targets to enhance human radioresistance, which can be used for manned deep space expeditions. Based on the comparison of transcriptomic studies in cancer cells, in this review, we propose that there is a high diversity of genetic mechanisms of development of genotoxic stress resistance. This review focused on possibilities and limitations of the regulation of the resistance of normal cells and whole organisms to genotoxic and oxidative stress by the overexpressing of stress-response genes. Moreover, the existing experimental data on the effect of such overexpression on the resistance of cells and organisms to various genotoxic agents has been analyzed and systematized. We suggest that the recent advances in the development of multiplex and highly customizable gene overexpression technology that utilizes the mutant Cas9 protein and the abundance of available data on gene functions and their signal networks open new opportunities for research in this field.
Collapse
|