1
|
Huang Y, Gao Y, Huang Y, Wang X, Xu M, Xu G, Zhang X, Li H, Shi J, Xu Z, Zhang X. Enhanced l-serine synthesis in Corynebacterium glutamicum by exporter engineering and Bayesian optimization of the medium composition. Synth Syst Biotechnol 2025; 10:835-845. [PMID: 40291977 PMCID: PMC12033900 DOI: 10.1016/j.synbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
l-serine is a versatile, high value-added amino acid, widely used in food, medicine and cosmetics. However, the low titer of l-serine has limited its industrial production. In this study, a cell factory without plasmid for efficient production of l-serine was constructed based on transport engineering. Firstly, the effects of l-serine exporter SerE overexpression and deletion on the cell growth and l-serine titer were investigated in Corynebacterium glutamicum (C. glutamicum) A36, overexpression of s erE using a plasmid led to a 15.1% increase in l-serine titer but also caused a 15.1% decrease in cell growth. Subsequently, to increase the export capacity of SerE, we conducted semi-rational design and bioinformatics analysis, combined with alanine mutation and site-specific saturation mutation. The mutant E277K was obtained and exhibited a 53.2% higher export capacity compared to wild-type SerE, resulting in l-serine titer increased by 39.6%. Structural analysis and molecular dynamics simulations were performed to elucidate the mechanism. The results showed that the mutation shortened the hydrogen bond distance between the exporter and l-serine, enhanced complex stability, and reduced the binding energy. Finally, Bayesian optimization was employed to further improve l-serine titer of the mutant strain C-E277K. Under the optimized conditions, 47.77 g/L l-serine was achieved in a 5-L bioreactor, representing the highest reported titer for C. glutamicum to date. This study provides a basis for the transformation of l-serine export pathway and offers a new strategy for increasing l-serine titer.
Collapse
Affiliation(s)
- Yifan Huang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yujie Gao
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yamin Huang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiaogang Wang
- Key Laboratory of Advanced Control for Light Industry Processes, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Xu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiaojuan Zhang
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhenghong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
2
|
Zhao J, Bo T, Wu Y, Geng Z, Zhao J, Wu K, Zheng Y, Chen T, Ma H, Wang Z. Engineering Corynebacterium glutamicum for the Production of 5-Aminolevulinic Acid under Microaerobic Conditions Guided by a Genome-Scale Metabolic Network. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40365842 DOI: 10.1021/acs.jafc.4c10853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
5-Aminolevulinic acid (5-ALA) has been widely used in modern agriculture and therapy as a biostimulant, feed nutrient, and photodynamic drug. Although metabolic engineering strategies have been employed to increase the yield of 5-ALA in Corynebacterium glutamicum, the production of 5-ALA under microaerobic conditions has not been studied. In this paper, we developed, for the first time, overproducing-5-ALA Corynebacterium glutamicum strains under microaerobic conditions, guided by a genome-scale metabolic network model. The engineered strain for the C4 pathway synthesis of 5-ALA was constructed based on the Corynebacterium glutamicum genome-scale metabolic network model iCW773 under different oxygen environmental conditions. The fusion of the key enzymes SucCD and HemA effectively opened the substrate channel and improved the biosynthesis of 5-ALA. Further selection of 5-ALA synthetases alleviated the inhibitory effect of heme, which further improved the titer of 5-ALA. Combinatorial optimization of the lpd, coaA, and ppc genes was employed to enhance the supply of the precursor succinyl-CoA. Finally, a 3.8 g/L 5-ALA titer was achieved in a 5-L bioreactor at 8% dissolved oxygen. This study provides a reference for the synthesis of 5-ALA or other high value-added chemicals with succinyl-CoA as the precursor under microaerobic conditions.
Collapse
Affiliation(s)
- Juntao Zhao
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Taidong Bo
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yin Wu
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhouxiao Geng
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxiao Zhao
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ke Wu
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yangyang Zheng
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhiwen Wang
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Lu W, Chen H, Liu T, Hu J, Zhu L, Tao X, Xu X, Du Y. Serine-modified silver nanoparticle porous spray membrane: A novel approach to wound infection prevention and inflammation reduction. Int J Pharm 2025; 670:125120. [PMID: 39755341 DOI: 10.1016/j.ijpharm.2024.125120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Traditional wound care preparations frequently face challenges such as complex care protocols, poor patient compliance, limited skin permeability, lack of aesthetics, and inconvenience, in addition to the risk of bacterial infection. We developed a spray film preparation containing nanocellulose and L-serine modified nanosilver, capable of rapidly forming a transparent film on the skin within minutes of application. The incorporation of nanocellulose imparted protective, moisturizing, and breathable properties to the film, allowing for easy removal after use. Moreover, our innovative application of L-serine as a precursor for synthesizing silver nanoparticles not only overcomed the limitations of current silver nanoparticle synthesis methods but also enhanced antibacterial efficacy by leveraging the inherent antimicrobial properties and bacterial targeting capability of L-serine. Specifically, the addition of nanocellulose to the spray film forming system enhanced air permeability and drug carrying capacity by creating a lightweight porous structure, while also ensuring the antimicrobial and anti-inflammatory efficacy of serine modified silver nanoparticles. Mice treated with spray film formulations containing nanocellulose and silver nanoparticles demonstrated superior wound healing, normalization of keratin thickness, increased hair follicle count, and reduced inflammatory markers. In conclusion, our study developed a spray film that integrated excellent antimicrobial properties with user convenience. This research presented innovative strategies for clinical wound care, antibacterial infection management, and post laser cosmetic treatment, with the potential to substantially enhance wound care in practical application.
Collapse
Affiliation(s)
- Wei Lu
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, PR China
| | - Hui Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Tingting Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - JiaHao Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - LuWen Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - XiaoHua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, PR China.
| | - XiaoLing Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China.
| | - YongZhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
4
|
Zhang Y, Wang X, Odesanmi C, Hu Q, Li D, Tang Y, Liu Z, Mi J, Liu S, Wen T. Model-guided metabolic rewiring to bypass pyruvate oxidation for pyruvate derivative synthesis by minimizing carbon loss. mSystems 2024; 9:e0083923. [PMID: 38315666 PMCID: PMC10949502 DOI: 10.1128/msystems.00839-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Engineering microbial hosts to synthesize pyruvate derivatives depends on blocking pyruvate oxidation, thereby causing severe growth defects in aerobic glucose-based bioprocesses. To decouple pyruvate metabolism from cell growth to improve pyruvate availability, a genome-scale metabolic model combined with constraint-based flux balance analysis, geometric flux balance analysis, and flux variable analysis was used to identify genetic targets for strain design. Using translation elements from a ~3,000 cistronic library to modulate fxpK expression in a bicistronic cassette, a bifido shunt pathway was introduced to generate three molecules of non-pyruvate-derived acetyl-CoA from one molecule of glucose, bypassing pyruvate oxidation and carbon dioxide generation. The dynamic control of flux distribution by T7 RNAP-mediated synthetic small RNA decoupled pyruvate catabolism from cell growth. Adaptive laboratory evolution and multi-omics analysis revealed that a mutated isocitrate dehydrogenase functioned as a metabolic switch to activate the glyoxylate shunt as the only C4 anaplerotic pathway to generate malate from two molecules of acetyl-CoA input and bypass two decarboxylation reactions in the tricarboxylic acid cycle. A chassis strain for pyruvate derivative synthesis was constructed to reduce carbon loss by using the glyoxylate shunt as the only C4 anaplerotic pathway and the bifido shunt as a non-pyruvate-derived acetyl-CoA synthetic pathway and produced 22.46, 27.62, and 6.28 g/L of l-leucine, l-alanine, and l-valine by a controlled small RNA switch, respectively. Our study establishes a novel metabolic pattern of glucose-grown bacteria to minimize carbon loss under aerobic conditions and provides valuable insights into cell design for manufacturing pyruvate-derived products.IMPORTANCEBio-manufacturing from biomass-derived carbon sources using microbes as a cell factory provides an eco-friendly alternative to petrochemical-based processes. Pyruvate serves as a crucial building block for the biosynthesis of industrial chemicals; however, it is different to improve pyruvate availability in vivo due to the coupling of pyruvate-derived acetyl-CoA with microbial growth and energy metabolism via the oxidative tricarboxylic acid cycle. A genome-scale metabolic model combined with three algorithm analyses was used for strain design. Carbon metabolism was reprogrammed using two genetic control tools to fine-tune gene expression. Adaptive laboratory evolution and multi-omics analysis screened the growth-related regulatory targets beyond rational design. A novel metabolic pattern of glucose-grown bacteria is established to maintain growth fitness and minimize carbon loss under aerobic conditions for the synthesis of pyruvate-derived products. This study provides valuable insights into the design of a microbial cell factory for synthetic biology to produce industrial bio-products of interest.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xueliang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Christianah Odesanmi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qitiao Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Mi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuwen Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tingyi Wen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Nie M, Wang J, Zhang K. Engineering a Novel Acetyl-CoA Pathway for Efficient Biosynthesis of Acetyl-CoA-Derived Compounds. ACS Synth Biol 2024; 13:358-369. [PMID: 38151239 DOI: 10.1021/acssynbio.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Acetyl-CoA is an essential central metabolite in living organisms and a key precursor for various value-added products as well. However, the intracellular availability of acetyl-CoA limits the efficient production of these target products due to complex and strict regulation. Here, we proposed a new acetyl-CoA pathway, relying on two enzymes, threonine aldolase and acetaldehyde dehydrogenase (acetylating), which can convert one l-threonine into one acetyl-CoA, one glycine, and generate one NADH, without carbon loss. Introducing the acetyl-CoA pathway could increase the intracellular concentration of acetyl-CoA by 8.6-fold compared with the wild-type strain. To develop a cost-competitive and genetically stable acetyl-CoA platform strain, the new acetyl-CoA pathway, driven by the constitutive strong promoter, was integrated into the chromosome of Escherichia coli. We demonstrated the practical application of this new acetyl-CoA pathway by high titer production of β-alanine, mevalonate, and N-acetylglucosamine. At the same time, this pathway achieved a high-yield production of glycine, a value-added commodity chemical for the synthesis of glyphosate and thiamphenicol. This work shows the potential of this new acetyl-CoA pathway for the industrial production of acetyl-CoA-derived compounds.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
6
|
Shen ZY, Wang YF, Wang LJ, Wang Y, Liu ZQ, Zheng YG. Thorough research and modification of one-carbon units cycle for improving L-methionine production in Escherichia coli. 3 Biotech 2023; 13:203. [PMID: 37220602 PMCID: PMC10199968 DOI: 10.1007/s13205-023-03625-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Methionine is the only one of the essential amino acids that contain sulfur, widely used as a feed additive in agriculture. In this study, the availability of 5-methyl-tetrahydrofolate was confirmed as the main limitation in the complex multibranched biosynthetic pathway of L-methionine. The cycle of one-carbon units was thoroughly investigated and modified to supply 5-methyl-tetrahydrofolate for L-methionine production, such as enhancing the supply of precursor, expediting the conversion rate of the cycle, introducing exogenous serine hydroxymethyltransferase and increasing pool size of one-carbon units carrier. The final strain MYA/pAmFA-4 was able to produce 20.89 g/L L-methionine by fed-batch fermentation, which was the highest titer reported in the literatures. This study is instructive for other metabolites biosynthesized needing one-carbon units or having a complex multibranched biosynthetic pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03625-9.
Collapse
Affiliation(s)
- Zhen-Yang Shen
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yi-Feng Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Li-Juan Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Ying Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
7
|
Li Z, Gao C, Ye C, Guo L, Liu J, Chen X, Song W, Wu J, Liu L. Systems engineering of Escherichia coli for high-level shikimate production. Metab Eng 2023; 75:1-11. [PMID: 36328295 DOI: 10.1016/j.ymben.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
To further increase the production efficiency of microbial shikimate, a valuable compound widely used in the pharmaceutical and chemical industries, ten key target genes contributing to shikimate production were identified by exploiting the enzyme constraint model ec_iML1515, and subsequently used for promoting metabolic flux towards shikimate biosynthesis in the tryptophan-overproducing strain Escherichia coli TRP0. The engineered E. coli SA05 produced 78.4 g/L shikimate via fed-batch fermentation. Deletion of quinate dehydrogenase and introduction of the hydroaromatic equilibration-alleviating shikimate dehydrogenase mutant AroET61W/L241I reduced the contents of byproducts quinate (7.5 g/L) and 3-dehydroshikimic acid (21.4 g/L) by 89.1% and 52.1%, respectively. Furthermore, a high concentration shikimate responsive promoter PrpoS was recruited to dynamically regulate the expression of the tolerance target ProV to enhance shikimate productivity by 23.2% (to 2 g/L/h). Finally, the shikimate titer was increased to 126.4 g/L, with a yield of 0.50 g/g glucose and productivity of 2.63 g/L/h, using a 30-L fermenter and the engineered strain E. coli SA09. This is, to the best of our knowledge, the highest reported shikimate titer and productivity in E. coli.
Collapse
Affiliation(s)
- Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
8
|
Chen Z, Li Q, Zhou P, Li B, Zhao Z. Transcriptome sequencing reveals key metabolic pathways for the synthesis of L-serine from glycerol and glucose in Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Bioprocess Engineering, Transcriptome, and Intermediate Metabolite Analysis of L-Serine High-Yielding Escherichia coli W3110. Microorganisms 2022; 10:microorganisms10101927. [PMID: 36296205 PMCID: PMC9612172 DOI: 10.3390/microorganisms10101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
L-serine is widely used in the food, cosmetic, and pharmaceutical industries. However, the complicated metabolic network and regulatory mechanism of L-serine production lead to the suboptimal productivity of the direct fermentation of L-serine and limits its large-scale industrial production. In this study, a high-yield L-serine production Escherichia coli strain was constructed by a series of defined genetic modification methodologies. First, L-serine-mediated feedback inhibition was removed and L-serine biosynthetic pathway genes (serAfr, serC, and serB) associated with phosphoglycerate kinase (pgk) were overexpressed. Second, the L-serine conversion pathway was further examined by introducing a glyA mutation (K229G) and deleting other degrading enzymes based on the deletion of initial sdaA. Finally, the L-serine transport system was rationally engineered to reduce uptake and accelerate L-serine export. The optimally engineered strain produced 35 g/L L-serine with a productivity of 0.98 g/L/h and a yield of 0.42 g/g glucose in a 5-L fermenter, the highest productivity and yield of L-serine from glucose reported to date. Furthermore, transcriptome and intermediate metabolite of the high-yield L-serine production Escherichia coli strain were analyzed. The results demonstrated the regulatory mechanism of L-serine production is delicate, and that combined metabolic and bioprocess engineering strategies for L-serine producing strains can improve the productivity and yield.
Collapse
|
10
|
Zhang Y, Zhao J, Wang X, Tang Y, Liu S, Wen T. Model-Guided Metabolic Rewiring for Gamma-Aminobutyric Acid and Butyrolactam Biosynthesis in Corynebacterium glutamicum ATCC13032. BIOLOGY 2022; 11:biology11060846. [PMID: 35741367 PMCID: PMC9219837 DOI: 10.3390/biology11060846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Gamma-aminobutyric acid (GABA) can be used as a bioactive component in the pharmaceutical industry and a precursor for the synthesis of butyrolactam, which functions as a monomer for the synthesis of polyamide 4 (nylon 4) with improved thermal stability and high biodegradability. The bio-based fermentation production of chemicals using microbes as a cell factory provides an alternative to replace petrochemical-based processes. Here, we performed model-guided metabolic engineering of Corynebacterium glutamicum for GABA and butyrolactam fermentation. A GABA biosynthetic pathway was constructed using a bi-cistronic expression cassette containing mutant glutamate decarboxylase. An in silico simulation showed that the increase in the flux from acetyl-CoA to α-ketoglutarate and the decrease in the flux from α-ketoglutarate to succinate drove more flux toward GABA biosynthesis. The TCA cycle was reconstructed by increasing the expression of acn and icd genes and deleting the sucCD gene. Blocking GABA catabolism and rewiring the transport system of GABA further improved GABA production. An acetyl-CoA-dependent pathway for in vivo butyrolactam biosynthesis was constructed by overexpressing act-encoding ß-alanine CoA transferase. In fed-batch fermentation, the engineered strains produced 23.07 g/L of GABA with a yield of 0.52 mol/mol from glucose and 4.58 g/L of butyrolactam. The metabolic engineering strategies can be used for genetic modification of industrial strains to produce target chemicals from α-ketoglutarate as a precursor, and the engineered strains will be useful to synthesize the bio-based monomer of polyamide 4 from renewable resources.
Collapse
Affiliation(s)
- Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Y.Z.); (T.W.)
| | - Jing Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Tang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.Z.); (T.W.)
| |
Collapse
|
11
|
Liu S, Xu JZ, Zhang WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 2022; 38:22. [PMID: 34989926 DOI: 10.1007/s11274-021-03212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
As an important raw material for pharmaceutical, food and feed industry, highly efficient production of L-tryptophan by Escherichia coli has attracted a considerable attention. However, there are complicated and multiple layers of regulation networks in L-tryptophan biosynthetic pathway and thus have difficulty to rewrite the biosynthetic pathway for producing L-tryptophan with high efficiency in E. coli. This review summarizes the biosynthetic pathway of L-tryptophan and highlights the main regulatory mechanisms in E. coli. In addition, we discussed the latest metabolic engineering strategies achieved in E. coli to reconstruct the L-tryptophan biosynthetic pathway. Moreover, we also review a few strategies that can be used in E. coli to improve robustness and streamline of L-tryptophan high-producing strains. Lastly, we also propose the potential strategies to further increase L-tryptophan production by systematic metabolic engineering and synthetic biology techniques.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
12
|
Li N, Wang M, Yu S, Zhou J. Optimization of CRISPR-Cas9 through promoter replacement and efficient production of L-homoserine in Corynebacterium glutamicum. Biotechnol J 2021; 16:e2100093. [PMID: 34018325 DOI: 10.1002/biot.202100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Corynebacterium glutamicum is an important chassis for industrial applications. The low efficiency of commonly used genome editing methods for C. glutamicum limits the rapid multiple engineering of the bacterium. MAIN METHODS AND MAJOR RESULTS In this study, chromosome-borne expression of cas9 and recET from Escherichia coli K12-MG1655 was achieved to avoid toxicity to the strain, increase the probability of homologous recombination, and reduce loss of viability caused by double-strand breaks. Constitutive strong promoters, such as P45 , Ptrc , and PH36 , were used to replace PglyA and to expand the application of the CRISPR-Cas9 system. By using this system, a C. glutamicum strain producing L-homoserine to 22.1 g per L in a 5-L bioreactor after 96 h was obtained. CONCLUSIONS AND IMPLICATIONS Through the application of visualized fluorescent protein, the process of plasmid curing was optimized, obtain a continuous and rapid CRISPR-Cas9 genome editing system. The method described here could be useful to construct C. glutamicum mutant rapidly.
Collapse
Affiliation(s)
- Ning Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Miao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Zhang H, Li Q, Li Y, Chen S. The Serine Biosynthesis of Paenibacillus polymyxa WLY78 Is Regulated by the T-Box Riboswitch. Int J Mol Sci 2021; 22:ijms22063033. [PMID: 33809732 PMCID: PMC8002221 DOI: 10.3390/ijms22063033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Serine is important for nearly all microorganisms in protein and downstream amino acids synthesis, however, the effect of serine on growth and nitrogen fixation was not completely clear in many bacteria, besides, the regulatory mode of serine remains to be fully established. In this study, we demonstrated that L-serine is essential for growth and nitrogen fixation of Paenibacillus polymyxa WLY78, but high concentrations of L-serine inhibit growth, nitrogenase activity, and nifH expression. Then, we revealed that expression of the serA whose gene product catalyzes the first reaction in the serine biosynthetic pathway is regulated by the T-box riboswitch regulatory system. The 508 bp mRNA leader region upstream of the serA coding region contains a 280 bp T-box riboswitch. The secondary structure of the T-box riboswitch with several conserved features: three stem-loop structures, a 14-bp T-box sequence, and an intrinsic transcriptional terminator, is predicted. Mutation and the transcriptional leader-lacZ fusions experiments revealed that the specifier codon of serine is AGC (complementary to the anticodon sequence of tRNAser). qRT-PCR showed that transcription of serA is induced by serine starvation, whereas deletion of the specifier codon resulted in nearly no expression of serA. Deletion of the terminator sequence or mutation of the continuous seven T following the terminator led to constitutive expression of serA. The data indicated that the T-box riboswitch, a noncoding RNA segment in the leader region, regulates expression of serA by a transcription antitermination mechanism.
Collapse
|
14
|
Liu H, Wang Y, Hou Y, Li Z. Fitness of Chassis Cells and Metabolic Pathways for l-Cysteine Overproduction in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14928-14937. [PMID: 33264003 DOI: 10.1021/acs.jafc.0c06134] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
l-Cysteine is a ubiquitous and unique sulfur-containing amino acid with numerous applications in agricultural and food industries. The efficient production of l-cysteine via microbial fermentation has received a great deal of attention. In this study, the fitness of different Escherichia coli K-12 strains harboring plasmid pLH03 was investigated. The enhancement of the precursor synthetic pathway and thiosulfate assimilation pathway resulted in the good performance of the E. coli BW25113 strain. The expression levels of synthetic pathway genes were optimized by two constitutive promoters to assess their effects on cysteine production. In conjunction, the main degradation pathway genes were also deleted for more efficient production of cysteine. l-Cysteine production was further increased through the manipulation of the sulfur transcription regulator cysB and sulfur supplementation. After process optimization in a 1.5 L bioreactor, LH2A1M0BΔYTS-pLH03 [BW25113 Ptrc2-serA Ptrc1-cysMPtrc-cysBΔyhaMΔtnaAΔsdaA-(pLH03)] accumulated 8.34 g/L cysteine, laying a foundation for application in the cysteine fermentation industry.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yehua Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
15
|
Li N, Zeng W, Xu S, Zhou J. Toward fine-tuned metabolic networks in industrial microorganisms. Synth Syst Biotechnol 2020; 5:81-91. [PMID: 32542205 PMCID: PMC7283098 DOI: 10.1016/j.synbio.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
There are numerous microorganisms in nature capable of synthesizing diverse useful compounds; however, these natural microorganisms are generally inefficient in the production of target products on an industrial scale, relative to either chemical synthesis or extraction methods. To achieve industrial production of useful compounds, these natural microorganisms must undergo a certain degree of mutation or effective fine-tuning strategies. This review describes how to achieve an ideal metabolic fine-tuned process, including static control strategies and dynamic control strategies. The static control strategies mainly focus on various matabolic engineering strategies, including protein engineering, upregulation/downregulation, and combinatrorial control of these metabolic engineering strategies, to enhance the flexibility of their application in fine-tuned metabolic metworks. Then, we focus on the dynamic control strategies for fine-tuned metabolic metworks. The design principles derived would guide us to construct microbial cell factories for various useful compounds.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
16
|
Hong Y, Ren J, Zhang X, Wang W, Zeng AP. Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Curr Opin Biotechnol 2019; 64:70-78. [PMID: 31715494 DOI: 10.1016/j.copbio.2019.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Glycine is an essential one-carbon (C1) metabolite nested in a complex network of cellular metabolism. Glycine and its related metabolic pathways have important biochemical and biomedical implications and have thus been studied for a long time. However, quantitative and systems level knowledge about the interactions and regulations of the pathways are severely limited, especially for the purpose of reengineering the relevant pathways for C1-based biotechnological processes using synthetic biology and metabolic engineering approaches. In fact, quantitative analytic methods are missing for some of the key players of the glycine-related pathways, prominently the glycine cleavage system and folate cycle, particularly for intracellular processes under physiological conditions. Here, we pinpoint the existing gaps and highlight the need and challenges for future development.
Collapse
Affiliation(s)
- Yaeseong Hong
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China
| | - Xinyi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China; Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany.
| |
Collapse
|
17
|
Cheng F, Yu H, Stephanopoulos G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. Metab Eng 2019; 55:276-289. [DOI: 10.1016/j.ymben.2019.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
|
18
|
Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, Öhrlein J, Grund B, Hüser A, Takors R, Blombach B. Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:65. [PMID: 30962820 PMCID: PMC6432763 DOI: 10.1186/s13068-019-1410-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND l-Histidine biosynthesis is embedded in an intertwined metabolic network which renders microbial overproduction of this amino acid challenging. This is reflected in the few available examples of histidine producers in literature. Since knowledge about the metabolic interplay is limited, we systematically perturbed the metabolism of Corynebacterium glutamicum to gain a holistic understanding in the metabolic limitations for l-histidine production. We, therefore, constructed C. glutamicum strains in a modularized metabolic engineering approach and analyzed them with LC/MS-QToF-based systems metabolic profiling (SMP) supported by flux balance analysis (FBA). RESULTS The engineered strains produced l-histidine, equimolar amounts of glycine, and possessed heavily decreased intracellular adenylate concentrations, despite a stable adenylate energy charge. FBA identified regeneration of ATP from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as crucial step for l-histidine production and SMP identified strong intracellular accumulation of inosine monophosphate (IMP) in the engineered strains. Energy engineering readjusted the intracellular IMP and ATP levels to wild-type niveau and reinforced the intrinsic low ATP regeneration capacity to maintain a balanced energy state of the cell. SMP further indicated limitations in the C1 supply which was overcome by expression of the glycine cleavage system from C. jeikeium. Finally, we rerouted the carbon flux towards the oxidative pentose phosphate pathway thereby further increasing product yield to 0.093 ± 0.003 mol l-histidine per mol glucose. CONCLUSION By applying the modularized metabolic engineering approach combined with SMP and FBA, we identified an intrinsically low ATP regeneration capacity, which prevents to maintain a balanced energy state of the cell in an l-histidine overproduction scenario and an insufficient supply of C1 units. To overcome these limitations, we provide a metabolic engineering strategy which constitutes a general approach to improve the production of ATP and/or C1 intensive products.
Collapse
Affiliation(s)
- Andreas Schwentner
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - André Feith
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Eugenia Münch
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Judith Stiefelmaier
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ira Lauer
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lorenzo Favilli
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Christoph Massner
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | - Bastian Grund
- Evonik Creavis GmbH, Paul-Baumann-Straße 1, 45772 Marl, Germany
| | - Andrea Hüser
- Evonik Nutrition & Care GmbH, Kantstraße 2, 33790 Halle, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| |
Collapse
|