1
|
Yanai Y, Tsukada M, Kimura Y, Umeno D. Fabrication, Evolution, and Mutual Conversion of d-Fucose-Activatable and -Repressible Acetyltransferase upon Mutations. ACS Synth Biol 2025. [PMID: 40307007 DOI: 10.1021/acssynbio.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The fusion of different proteins can result in the linkage-dependent emergence of molecular switches. We inserted chloramphenicol acetyltransferase (CAT) from Escherichia coli into a loop of a d-fucose-responsive mutant of transcription factor AraC, using linker libraries with various lengths. We found that on-switches tend to emerge when two proteins are fused with linkers long enough to fill the gap of the distance of residues to be connected, while fusing with short or zero linkers results in the frequent emergence of off-switches. Both types of switches rapidly evolved their switching efficiency upon mutations, establishing the d-fucose-on and -off regulations of CAT activity without disrupting the d-fucose-inducible logic of AraC function. To our surprise, both one-input/two-output split gates thus obtained could be easily interconverted upon mutations. Through mutations, fusion proteins rapidly establish and evolve mutual regulatory relationships with unrelated partner proteins, enabling diverse functional outcomes. Furthermore, random mutagenesis can alter the behavior of these emergent regulatory relationships, such as interconverting the activation or deactivation of the partner protein upon ligand binding, sometimes at a surprisingly high frequency.
Collapse
Affiliation(s)
- Yuki Yanai
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Miyu Tsukada
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Kimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
2
|
O'Connor E, Micklefield J, Cai Y. Searching for the optimal microbial factory: high-throughput biosensors and analytical techniques for screening small molecules. Curr Opin Biotechnol 2024; 87:103125. [PMID: 38547587 DOI: 10.1016/j.copbio.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/09/2024]
Abstract
High-throughput screening technologies have been lacking in comparison to the plethora of high-throughput genetic diversification techniques developed in biotechnology. This review explores the challenges and advancements in high-throughput screening for high-value natural products, focusing on the critical need to expand ligand targets for biosensors and increase the throughput of analytical techniques in screening microbial cell libraries for optimal strain performance. The engineering techniques to broaden the scope of ligands for biosensors, such as transcription factors, G protein-coupled receptors and riboswitches are discussed. On the other hand, integration of microfluidics with traditional analytical methods is explored, covering fluorescence-activated cell sorting, Raman-activated cell sorting and mass spectrometry, emphasising recent developments in maximising throughput.
Collapse
Affiliation(s)
- Eloise O'Connor
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
3
|
Smith A, Naudin EA, Edgell CL, Baker EG, Mylemans B, FitzPatrick L, Herman A, Rice HM, Andrews DM, Tigue N, Woolfson DN, Savery NJ. Design and Selection of Heterodimerizing Helical Hairpins for Synthetic Biology. ACS Synth Biol 2023; 12:1845-1858. [PMID: 37224449 PMCID: PMC10278171 DOI: 10.1021/acssynbio.3c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Synthetic biology applications would benefit from protein modules of reduced complexity that function orthogonally to cellular components. As many subcellular processes depend on peptide-protein or protein-protein interactions, de novo designed polypeptides that can bring together other proteins controllably are particularly useful. Thanks to established sequence-to-structure relationships, helical bundles provide good starting points for such designs. Typically, however, such designs are tested in vitro and function in cells is not guaranteed. Here, we describe the design, characterization, and application of de novo helical hairpins that heterodimerize to form 4-helix bundles in cells. Starting from a rationally designed homodimer, we construct a library of helical hairpins and identify complementary pairs using bimolecular fluorescence complementation in E. coli. We characterize some of the pairs using biophysics and X-ray crystallography to confirm heterodimeric 4-helix bundles. Finally, we demonstrate the function of an exemplar pair in regulating transcription in both E. coli and mammalian cells.
Collapse
Affiliation(s)
- Abigail
J. Smith
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.
| | - Elise A. Naudin
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Caitlin L. Edgell
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Emily G. Baker
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Bram Mylemans
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | | | - Andrew Herman
- Flow
Cytometry Facility, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K.
| | - Helen M. Rice
- Flow
Cytometry Facility, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K.
| | | | - Natalie Tigue
- BioPharmaceuticals
R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Derek N. Woolfson
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Nigel J. Savery
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
4
|
Electrochemical Determination of Progesterone in Calf Serum Samples Using a Molecularly Imprinted Polymer Sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Zimran G, Feuer E, Pri-Tal O, Shpilman M, Mosquna A. Directed Evolution of Herbicide Biosensors in a Fluorescence-Activated Cell-Sorting-Compatible Yeast Two-Hybrid Platform. ACS Synth Biol 2022; 11:2880-2888. [PMID: 35922400 PMCID: PMC9396700 DOI: 10.1021/acssynbio.2c00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/27/2022]
Abstract
Developing sensory modules for specific molecules of interest represents a fundamental challenge in synthetic biology and its applications. A somewhat generalizable approach for this challenge is demonstrated here by evolving a naturally occurring chemically induced heterodimer into a genetically encoded sensor for herbicides. The interaction between PYRABACTIN-RESISTANT-like receptors and type-2C protein phosphatases is induced by abscisic acid─a small-molecule hormone in plants. We considered abscisic acid receptors as a potential scaffold for the development of biosensors because of past successes in their engineering, a structurally defined ligand cavity and the availability of large-scale assays for their activation. A panel of 475 receptor variants, mutated at ligand-proximal residues, was screened for activation by 37 herbicides from several classes. Twelve compounds activated at least one member of the mutant panel. To facilitate the subsequent improvement of herbicide receptors through directed evolution, we engineered a yeast two-hybrid platform optimized for sequential positive and negative selection using fluorescence-activated cell sorting. By utilizing this system, we were able to isolate receptors with low nanomolar sensitivity and a broad dynamic range in sensing a ubiquitous group of chloroacetamide herbicides. Aside from its possible applicative value, this work lays down conceptual groundwork and provides infrastructure for the future development of biosensors through directed evolution.
Collapse
Affiliation(s)
- Gil Zimran
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Erez Feuer
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Oded Pri-Tal
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Michal Shpilman
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Assaf Mosquna
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| |
Collapse
|
6
|
Metabolite-based biosensors for natural product discovery and overproduction. Curr Opin Biotechnol 2022; 75:102699. [DOI: 10.1016/j.copbio.2022.102699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
|
7
|
Nasr M, Timmins LR, Martin VJJ, Kwan DH. A Versatile Transcription Factor Biosensor System Responsive to Multiple Aromatic and Indole Inducers. ACS Synth Biol 2022; 11:1692-1698. [PMID: 35316041 PMCID: PMC9017570 DOI: 10.1021/acssynbio.2c00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/26/2022]
Abstract
Allosteric transcription factor (aTF) biosensors are valuable tools for engineering microbes toward a multitude of applications in metabolic engineering, biotechnology, and synthetic biology. One of the challenges toward constructing functional and diverse biosensors in engineered microbes is the limited toolbox of identified and characterized aTFs. To overcome this, extensive bioprospecting of aTFs from sequencing databases, as well as aTF ligand-specificity engineering are essential in order to realize their full potential as biosensors for novel applications. In this work, using the TetR-family repressor CmeR from Campylobacter jejuni, we construct aTF genetic circuits that function as salicylate biosensors in the model organisms Escherichia coli and Saccharomyces cerevisiae. In addition to salicylate, we demonstrate the responsiveness of CmeR-regulated promoters to multiple aromatic and indole inducers. This relaxed ligand specificity of CmeR makes it a useful tool for detecting molecules in many metabolic engineering applications, as well as a good target for directed evolution to engineer proteins that are able to detect new and diverse chemistries.
Collapse
Affiliation(s)
- Mohamed
A. Nasr
- Department
of Biology, Centre for Applied Synthetic Biology, and Centre for Structural
and Functional Genomics, Concordia University, Montréal, Quebec H4B 1R6, Canada
- PROTEO,
Quebec Network for Research on Protein Function, Structure, and Engineering, Québec City, Quebec G1 V 0A6, Canada
| | - Logan R. Timmins
- Department
of Biology, Centre for Applied Synthetic Biology, and Centre for Structural
and Functional Genomics, Concordia University, Montréal, Quebec H4B 1R6, Canada
- PROTEO,
Quebec Network for Research on Protein Function, Structure, and Engineering, Québec City, Quebec G1 V 0A6, Canada
| | - Vincent J. J. Martin
- Department
of Biology, Centre for Applied Synthetic Biology, and Centre for Structural
and Functional Genomics, Concordia University, Montréal, Quebec H4B 1R6, Canada
| | - David H. Kwan
- Department
of Biology, Centre for Applied Synthetic Biology, and Centre for Structural
and Functional Genomics, Concordia University, Montréal, Quebec H4B 1R6, Canada
- PROTEO,
Quebec Network for Research on Protein Function, Structure, and Engineering, Québec City, Quebec G1 V 0A6, Canada
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Quebec H4B 1R6, Canada
| |
Collapse
|
8
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|
9
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
10
|
Mormino M, Siewers V, Nygård Y. Development of an Haa1-based biosensor for acetic acid sensing in Saccharomyces cerevisiae. FEMS Yeast Res 2021; 21:6363685. [PMID: 34477863 PMCID: PMC8435060 DOI: 10.1093/femsyr/foab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Acetic acid is one of the main inhibitors of lignocellulosic hydrolysates and acetic acid tolerance is crucial for the development of robust cell factories for conversion of biomass. As a precursor of acetyl-coenzyme A, it also plays an important role in central carbon metabolism. Thus, monitoring acetic acid levels is a crucial aspect when cultivating yeast. Transcription factor-based biosensors represent useful tools to follow metabolite concentrations. Here, we present the development of an acetic acid biosensor based on the Saccharomyces cerevisiae transcription factor Haa1 that upon binding to acetic acid relocates to the nucleus. In the biosensor, a synthetic transcription factor consisting of Haa1 and BM3R1 from Bacillus megaterium was used to control expression of a reporter gene under a promoter containing BM3R1 binding sites. The biosensor did not drive expression under a promoter containing Haa1 binding sites and responded to acetic acid over a linear range spanning from 10 to 60 mM. To validate its applicability, the biosensor was integrated into acetic acid-producing strains. A direct correlation between biosensor output and acetic acid production was detected. The developed biosensor enables high-throughput screening of strains producing acetic acid and could also be used to investigate acetic acid-tolerant strain libraries.
Collapse
Affiliation(s)
- Maurizio Mormino
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
|
12
|
Towards functional de novo designed proteins. Curr Opin Chem Biol 2019; 52:102-111. [DOI: 10.1016/j.cbpa.2019.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
|
13
|
Custom-made transcriptional biosensors for metabolic engineering. Curr Opin Biotechnol 2019; 59:78-84. [DOI: 10.1016/j.copbio.2019.02.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/20/2023]
|
14
|
Tools and systems for evolutionary engineering of biomolecules and microorganisms. ACTA ACUST UNITED AC 2019; 46:1313-1326. [DOI: 10.1007/s10295-019-02191-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022]
Abstract
Abstract
Evolutionary approaches have been providing solutions to various bioengineering challenges in an efficient manner. In addition to traditional adaptive laboratory evolution and directed evolution, recent advances in synthetic biology and fluidic systems have opened a new era of evolutionary engineering. Synthetic genetic circuits have been created to control mutagenesis and enable screening of various phenotypes, particularly metabolite production. Fluidic systems can be used for high-throughput screening and multiplexed continuous cultivation of microorganisms. Moreover, continuous directed evolution has been achieved by combining all the steps of evolutionary engineering. Overall, modern tools and systems for evolutionary engineering can be used to establish the artificial equivalent to natural evolution for various research applications.
Collapse
|
15
|
Yu H, Chen Z, Wang N, Yu S, Yan Y, Huo YX. Engineering transcription factor BmoR for screening butanol overproducers. Metab Eng 2019; 56:28-38. [PMID: 31449878 DOI: 10.1016/j.ymben.2019.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/15/2023]
Abstract
The wild-type transcription factors are sensitive to their corresponding signal molecules. Using wild-type transcription factors as biosensors to screen industrial overproducers are generally impractical because of their narrow detection ranges. This study took transcription factor BmoR as an example and aimed to expand the detection range of BmoR for screening alcohols overproducers. Firstly, a BmoR mutation library was established, and the mutations distributed randomly in all predicted functional domains of BmoR. Structure of BmoR-isobutanol complex were modelled, and isobutanol binding sites were confirmed by site-directed mutagenesis. Subsequently, the effects of the mutations on the detection range or output were confirmed in the BmoR mutants. Four combinatorial mutants containing one increased-detection-range mutation and one enhanced-output mutation were constructed. Compared with wild-type BmoR, F276A/E627N BmoR and D333N/E627N BmoR have wider detection ranges (0-100 mM) and relatively high outputs to the isobutanol added quantitatively or produced intracellularly, demonstrating they have potential for screening isobutanol overproduction strains. This work presented an example of engineering the wild-type transcription factors with physiological significance for industrial utilization.
Collapse
Affiliation(s)
- Huan Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China; UCLA Institute for Technology Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, 215123, Suzhou, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, 30602, GA, USA
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China; UCLA Institute for Technology Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, 215123, Suzhou, China.
| |
Collapse
|
16
|
Kanjanatanin P, Pichyangkura R, Sitthiyotha T, Charoenwongpaiboon T, Wangpaiboon K, Chunsrivirot S. Computational design of Bacillus licheniformis RN-01 levansucrase for control of the chain length of levan-type fructooligosaccharides. Int J Biol Macromol 2019; 140:1239-1248. [PMID: 31437510 DOI: 10.1016/j.ijbiomac.2019.08.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Levansucrase (LS) from Gram-positive bacteria generally produces a large quantity of levan polymer, a polyfructose with glucose at the end (GFn) but a small quantity of levan-type fructooligosaccharides (LFOs). The properties of levan and LFOs depend on their chain lengths, thereby determining their potential applications in food and pharmaceutical industries such as prebiotics and anti-tumor agents. Therefore, an ability to redesign and engineer the active site of levansucrase for synthesis of products with desired degree of polymerization (DP) is very beneficial. We employed computational protein design, docking and molecular dynamics to redesign and engineer the active site of Bacillus licheniformis RN-01 levansucrase for production of LFOs with DP up to five (GF4), using two approaches: 1) blocking oligosaccharide binding track of GF3-LS complex with large aromatic residues and 2) eliminating hydrogen bond interactions between terminal glucose of GF4 and side chains of binding residues of GF4-LS complex. The designed enzymes and their product patterns from these two approaches were experimentally characterized. The experimental results show that the first approach was successful in creating N251W and N251W/K372Y mutants that synthesized LFOs with DP up to five. This work illustrates how computer-aided approaches can offer novel opportunities to engineer enzymes for desired products.
Collapse
Affiliation(s)
- Pongsakorn Kanjanatanin
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Thassanai Sitthiyotha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Thanapon Charoenwongpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Surasak Chunsrivirot
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
17
|
Detection of inorganic ions and organic molecules with cell-free biosensing systems. J Biotechnol 2019; 300:78-86. [DOI: 10.1016/j.jbiotec.2019.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/17/2022]
|
18
|
Pu J, Disare M, Dickinson BC. Evolution of C-Terminal Modification Tolerance in Full-Length and Split T7 RNA Polymerase Biosensors. Chembiochem 2019; 20:1547-1553. [PMID: 30694596 DOI: 10.1002/cbic.201800707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/27/2019] [Indexed: 01/23/2023]
Abstract
T7 RNA polymerase (RNAP) is a powerful protein scaffold for the construction of synthetic biology tools and biosensors. However, both T7 RNAP and its split variants are intolerant to C-terminal modifications or fusions, thus placing a key limitation on their engineering and deployment. Here, we use rapid continuous-evolution approaches to evolve both full-length and split T7 RNAP variants that tolerate modified C termini and fusions to entire other proteins. Moreover, we show that the evolved split C-terminal RNAP variants can function as small-molecule biosensors, even in the context of large C-terminal fusions. This work provides a panel of modified RNAP variants with robust activity and tolerance to C-terminal fusions, and provides insights into the biophysical requirements of the C-terminal carboxylic acid functional group of T7 RNAP.
Collapse
Affiliation(s)
- Jinyue Pu
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Michael Disare
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
19
|
Abstract
With the rapid development of DNA synthesis and next-generation sequencing, synthetic biology that aims to standardize, modularize, and innovate cellular functions, has achieved vast progress. Here we review key advances in synthetic biology of the yeast Saccharomyces cerevisiae, which serves as an important eukaryal model organism and widely applied cell factory. This covers the development of new building blocks, i.e., promoters, terminators and enzymes, pathway engineering, tools developments, and gene circuits utilization. We will also summarize impacts of synthetic biology on both basic and applied biology, and end with further directions for advancing synthetic biology in yeast.
Collapse
Affiliation(s)
- Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing Key Laboratory of Bioprocess , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yueping Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing Key Laboratory of Bioprocess , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing Key Laboratory of Bioprocess , Beijing University of Chemical Technology , Beijing 100029 , China.,Department of Biology and Biological Engineering , Chalmers University of Technology , Gothenburg SE41296 , Sweden.,Novo Nordisk Foundation Center for Biosustainability , Technical University of Denmark , Kongens Lyngby DK2800 , Denmark
| |
Collapse
|