1
|
Mousavi N, Zhou E, Razavi A, Ebrahimi E, Varela‐Castillo P, Yang X. Efficient Site-Directed Mutagenesis Mediated by Primer Pairs with 3'-Overhangs. Curr Protoc 2025; 5:e70104. [PMID: 39945594 PMCID: PMC11823567 DOI: 10.1002/cpz1.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Site-directed mutagenesis is an essential tool in molecular biology, protein engineering, plasmid engineering and synthetic biology. While the QuickChange method has been one of the most employed methods for site-directed mutagenesis, it is hindered by low efficiency and frequent introduction of unwanted mutations at the primer sites, raising the urgent need for new, more efficient, and reliable methods. Here, we present an optimized site-directed mutagenesis protocol that leverages partially complementary primer pairs with 3'-overhangs to improve mutagenesis efficiency and reduce error rates. Our method significantly enhances success rates, achieving an average efficiency of ∼50% with some instances approaching the ideal threshold of 100%, while also minimizing the time required for mutant generation. Typically, only 3 colonies need to be analyzed per mutagenesis reaction, and a skillful trainee can engineer 1 to 2 dozen mutant plasmids within a week. In addition, with an in-house protocol for preparing highly competent bacterial cells, we have further increased the reliability and cost-effectiveness of the method. Notably, such competent cells have been kept in a liquid nitrogen tank for >12 years with minimal loss of competency. Thus, this refined method offers a robust, efficient, and scalable solution for high-precision gene modification in vitro, with broad applications in protein and plasmid engineering. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: In vitro site-directed mutagenesis using an optimized primer design strategy Basic Protocol 2: Preparation of high-efficiency chemocompetent DH5α cells for transformation of mutagenized plasmid products Basic Protocol 3: Transformation of chemocompetent DH5α cells and obtaining bacterial colonies with correctly mutagenized plasmid products Alternate Protocol: Transformation if glycerol stocks are unavailable.
Collapse
Affiliation(s)
- Negar Mousavi
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
- These authors contributed equally to this work
| | - Ethan Zhou
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
- These authors contributed equally to this work
| | - Arezousadat Razavi
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
- These authors contributed equally to this work
| | - Elham Ebrahimi
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of BiochemistryMcGill UniversityMontrealCanada
| | - Paulina Varela‐Castillo
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
| | - Xiang‐Jiao Yang
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
- Department of BiochemistryMcGill UniversityMontrealCanada
- McGill University Health CenterMontrealCanada
| |
Collapse
|
2
|
Heo KT, Lee B, Hwang GJ, Park B, Jang JP, Hwang BY, Jang JH, Hong YS. A unique dual acyltransferase system shared in the polyketide chain initiation of kidamycinone and rubiflavinone biosynthesis. Front Microbiol 2023; 14:1274358. [PMID: 38029143 PMCID: PMC10646177 DOI: 10.3389/fmicb.2023.1274358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
The pluramycin family of natural products has diverse substituents at the C2 position, which are closely related to their biological activity. Therefore, it is important to understand the biosynthesis of C2 substituents. In this study, we describe the biosynthesis of C2 moieties in Streptomyces sp. W2061, which produces kidamycin and rubiflavinone C-1, containing anthrapyran aglycones. Sequence analysis of the loading module (Kid13) of the PKS responsible for the synthesis of these anthrapyran aglycones is useful for confirming the incorporation of atypical primer units into the corresponding products. Kid13 is a ketosynthase-like decarboxylase (KSQ)-type loading module with unusual dual acyltransferase (AT) domains (AT1-1 and AT1-2). The AT1-2 domain primarily loads ethylmalonyl-CoA and malonyl-CoA for rubiflavinone and kidamycinone and rubiflavinone, respectively; however, the AT1-1 domain contributed to the functioning of the AT1-2 domain to efficiently load ethylmalonyl-CoA for rubiflavinone. We found that the dual AT system was involved in the production of kidamycinone, an aglycone of kidamycin, and rubiflavinone C-1 by other shared biosynthetic genes in Streptomyces sp. W2061. This study broadens our understanding of the incorporation of atypical primer units into polyketide products.
Collapse
Affiliation(s)
- Kyung Taek Heo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Gwi Ja Hwang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Beomcheol Park
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| |
Collapse
|
3
|
Yu F, Li X, Wang F, Liu Y, Zhai C, Li W, Ma L, Chen W. TLTC, a T5 exonuclease-mediated low-temperature DNA cloning method. Front Bioeng Biotechnol 2023; 11:1167534. [PMID: 37635997 PMCID: PMC10457141 DOI: 10.3389/fbioe.2023.1167534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Molecular cloning is used in a wide variety of biological and medical research. Here, we developed a rapid and efficient DNA-assembling method for routine laboratory work. We discovered that the cleavage speed of T5 exonuclease is approximately 3 nt/min at 0°C and hence developed a T5 exonuclease-mediated low-temperature sequence- and ligation-independent cloning method (TLTC). Two homologous regions of 15 bp-25 bp compatible with the ends of the vector backbones were introduced into the inserts through PCR. Approximately 120 fmol of inserts and linear vectors was mixed at a molar ratio of approximately 3:1 and treated with 0.5 U of T5 exonuclease at 0°C for 5 min. Then, the mixture was transformed into Escherichia coli to generate recombinant plasmids. Single segment and multi-segments can be assembled efficiently using TLTC. For single segment, the overall cloning efficiency is above 95%. Moreover, extra nucleotides in the vectors can be removed during TLTC. In conclusion, an extremely simple and fast DNA cloning/assembling method was established in the present study. This method facilitates routine DNA cloning and synthesis of DNA fragments.
Collapse
Affiliation(s)
- Fang Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
- School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Huttanus HM, Triola EKH, Velasquez-Guzman JC, Shin SM, Granja-Travez RS, Singh A, Dale T, Jha RK. Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations. Front Bioeng Biotechnol 2023; 11:1202388. [PMID: 37545889 PMCID: PMC10400447 DOI: 10.3389/fbioe.2023.1202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/25/2023] [Indexed: 08/08/2023] Open
Abstract
Targeted mutagenesis of a promoter or gene is essential for attaining new functions in microbial and protein engineering efforts. In the burgeoning field of synthetic biology, heterologous genes are expressed in new host organisms. Similarly, natural or designed proteins are mutagenized at targeted positions and screened for gain-of-function mutations. Here, we describe methods to attain complete randomization or controlled mutations in promoters or genes. Combinatorial libraries of one hundred thousands to tens of millions of variants can be created using commercially synthesized oligonucleotides, simply by performing two rounds of polymerase chain reactions. With a suitably engineered reporter in a whole cell, these libraries can be screened rapidly by performing fluorescence-activated cell sorting (FACS). Within a few rounds of positive and negative sorting based on the response from the reporter, the library can rapidly converge to a few optimal or extremely rare variants with desired phenotypes. Library construction, transformation and sequence verification takes 6-9 days and requires only basic molecular biology lab experience. Screening the library by FACS takes 3-5 days and requires training for the specific cytometer used. Further steps after sorting, including colony picking, sequencing, verification, and characterization of individual clones may take longer, depending on number of clones and required experiments.
Collapse
Affiliation(s)
- Herbert M. Huttanus
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Ellin-Kristina H. Triola
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Jeanette C. Velasquez-Guzman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Rommel S. Granja-Travez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Anmoldeep Singh
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| |
Collapse
|
5
|
Xiong X, Lu Z, Ma L, Zhai C. Applications of Programmable Endonucleases in Sequence- and Ligation-Independent Seamless DNA Assembly. Biomolecules 2023; 13:1022. [PMID: 37509059 PMCID: PMC10377497 DOI: 10.3390/biom13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Programmable endonucleases, such as Cas (Clustered Regularly-Interspaced Short Repeats-associated proteins) and prokaryotic Argonaute (pAgo), depend on base pairing of the target DNA with the guide RNA or DNA to cleave DNA strands. Therefore, they are capable of recognizing and cleaving DNA sequences at virtually any arbitrary site. The present review focuses on the commonly used in vivo and in vitro recombination-based gene cloning methods and the application of programmable endonucleases in these sequence- and ligation-independent DNA assembly methods. The advantages and shortcomings of the programmable endonucleases utilized as tools for gene cloning are also discussed in this review.
Collapse
Affiliation(s)
- Xingchen Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiwen Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
6
|
Zhang G, Wang J, Li Y, Shang G. CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis and saturation mutagenesis of plasmid-encoded genes. Biotechnol Lett 2023; 45:629-637. [PMID: 36930400 DOI: 10.1007/s10529-023-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
Site-directed and saturation mutagenesis are critical DNA methodologies for studying protein structure and function. For plasmid-based gene mutation, PCR and overlap-extension PCR involve tedious cloning steps. When the plasmid size is large, PCR yield may be too low for cloning; and for saturation mutagenesis of a single codon, one experiment may not enough to generate all twenty coding variants. Oligo-mediated recombineering sidesteps the complicated cloning process by homologous recombination between a mutagenic oligo and its target site. However, the low recombineering efficiency and inability to select for the recombinant makes it necessary to screen a large number of clones. Herein, we describe two plasmid-based mutagenic strategies: CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis (CRM) and saturation mutagenesis (CRSM). CRM and CRSM involve co-electroporation of target plasmid, sgRNA expression plasmid and mutagenic oligonucleotide into Escherichia coli cells with induced expression of λ-Red recombinase and Cas9, followed by plasmid extraction and characterization. We established CRM and CRSM via ampicillin resistance gene repair and mutagenesis of N-acetyl‑D‑neuraminic acid aldolase. The mutational efficiency was between 80 and 100% and all twenty amino acid coding variants were obtained at a target site via a single CRSM strategy. CRM and CRSM have the potential to be general plasmid-based gene mutagenesis tools.
Collapse
Affiliation(s)
- Guoyi Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Junyu Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Yiwen Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Iqbal Z, Sadaf S. A patent-based consideration of latest platforms in the art of directed evolution: a decade long untold story. Biotechnol Genet Eng Rev 2022; 38:133-246. [PMID: 35200115 DOI: 10.1080/02648725.2021.2017638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed (or in vitro) evolution of proteins and metabolic pathways requires tools for creating genetic diversity and identifying protein variants with new or improved functional properties. Besides simplicity, reliability, speed, versatility, universal applicability and economy of the technique, the new science of synthetic biology requires improved means for construction of smart and high-quality mutant libraries to better navigate the sequence diversity. In vitro CRISPR/Cas9-mediated mutagenic (ICM) system and machine-learning (ML)-assisted approaches to directed evolution are now in the field to achieve the goal. This review describes the gene diversification strategies, screening and selection methods, in silico (computer-aided), Cas9-mediated and ML-based approaches to mutagenesis, developed especially in the last decade, and their patent position. The objective behind is to emphasize researchers the need for noting which mutagenesis, screening or selection method is patented and then selecting a suitable restriction-free approach to sequence diversity. Techniques and evolved products subject to patent rights need commercial license if their use is for purposes other than private or experimental research.
Collapse
Affiliation(s)
- Zarina Iqbal
- IP Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
Sun H, Wu H, Teng Q, Liu Y, Wang H, Wang ZG. Enzyme-Mimicking Materials from Designed Self-Assembly of Lysine-Rich Peptides and G-Quadruplex DNA/Hemin DNAzyme: Charge Effect of the Key Residues on the Catalytic Functions. Biomacromolecules 2022; 23:3469-3476. [PMID: 35901109 DOI: 10.1021/acs.biomac.2c00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In enzymatic active sites, the essential functional groups are spatially arranged as a result of the enzyme three-dimensional folding, which leads to remarkable catalytic properties. We are inspired to self-assemble the polylysine peptides with guanine-rich DNA and hemin as cofactor to fabricate the peroxidase-mimicking catalytic nanomaterials. The DNA can fold into G-quadruplex to provide a supramolecular scaffold and a nucleobase for supporting and coordinating hemin, and the polylysine provides amine as distal groups to promote the H2O2 adsorption to the iron of hemin. The polylysine and DNA components synergistically accelerated the hemin-catalyzed reactions, and the complex containing ε-polylysine exhibited higher activity than α-polylysine. This activity difference is attributed to the higher pKa value and more susceptible protonation of amine of ε-polylysine than α-polylysine. The ε-polylysine/DNA/hemin had similar coordination states of hemin and conformations of the components to α-polylysine/DNA/hemin but accelerated the formation of the intermediate compound I faster than α-polylysine. Theoretical simulation reveals that the unprotonated NH2 behaved like a base catalyst, similar to His-42 residue in the natural heme pocket, while the protonated NH3+ acted as an acid, which indicated that the base catalyst on the distal side of the hemin pocket is more active than the acid. This work provides an avenue to control the distribution of the catalytic residues in an enzyme-like active site and to understand the roles of the key residues of native enzymes.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Roychaudhuri R, Snyder SH. Mammalian D-cysteine: A novel regulator of neural progenitor cell proliferation: Endogenous D-cysteine, the stereoisomer with rapid spontaneous in vitro racemization rate, has major neural roles: Endogenous D-cysteine, the stereoisomer with rapid spontaneous in vitro racemization rate, has major neural roles. Bioessays 2022; 44:e2200002. [PMID: 35484375 DOI: 10.1002/bies.202200002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
D-amino acids are being recognized as functionally important molecules in mammals. We recently identified endogenous D-cysteine in mammalian brain. D-cysteine is present in neonatal brain in substantial amounts (mM) and decreases with postnatal development. D-cysteine binds to MARCKS and a host of proteins implicated in cell division and neurodevelopmental disorders. D-cysteine decreases phosphorylation of MARCKS in neural progenitor cells (NPCs) affecting its translocation. D-cysteine controls NPC proliferation by inhibiting AKT signaling. Exogenous D-cysteine inhibits AKT phosphorylation at Thr 308 and Ser 473 in NPCs. D-cysteine treatment of NPCs led to 50% reduction in phosphorylation of Foxo1 at Ser 256 and Foxo3a at Ser 253. We hypothesize that in the developing brain endogenous D-cysteine is as a physiologic regulator of NPC proliferation by inhibiting AKT signaling mediated by Foxo1 and Foxo3a. Endogenous D-cysteine may regulate mammalian neurodevelopment with roles in schizophrenia and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Li R, Meng Q, Qi J, Hu L, Huang J, Zhang Y, Yang J, Sun J. Microinjection-based CRISPR/Cas9 mutagenesis in the decapoda crustaceans, Neocaridina heteropoda and Eriocheir sinensis. J Exp Biol 2022; 225:274276. [DOI: 10.1242/jeb.243702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
CRISPR/Cas9 technology has been applied to many arthropods. However, application of this technology to crustaceans remains limited due to the unique characteristics of embryos. Our group has developed a microinjection system to introduce the CRISPR/Cas9 system into Neocaridina heteropoda embryos (one-cell stage). Using the developed method, we mutated the target gene Nh-scarlet (N. heteropoda scarlet), which functions in eye development and pigmentation. The results showed that both eye color and shape were altered in individuals in which Nh-scarlet was knocked out. Furthermore, this system was also successfully applied to another decapod crustacean, Eriocheir sinensis. DNA sequencing revealed that the zoeae with red eyes had an edited version of Es-scarlet. This study provides a stable microinjection method for freshwater crustaceans, and will contribute to functional genomics studies in various decapods.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Qinghao Meng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jiachen Qi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Lezhen Hu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinwei Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jiale Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
11
|
Cadet XF, Gelly JC, van Noord A, Cadet F, Acevedo-Rocha CG. Learning Strategies in Protein Directed Evolution. Methods Mol Biol 2022; 2461:225-275. [PMID: 35727454 DOI: 10.1007/978-1-0716-2152-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic biology is a fast-evolving research field that combines biology and engineering principles to develop new biological systems for medical, pharmacological, and industrial applications. Synthetic biologists use iterative "design, build, test, and learn" cycles to efficiently engineer genetic systems that are reliable, reproducible, and predictable. Protein engineering by directed evolution can benefit from such a systematic engineering approach for various reasons. Learning can be carried out before starting, throughout or after finalizing a directed evolution project. Computational tools, bioinformatics, and scanning mutagenesis methods can be excellent starting points, while molecular dynamics simulations and other strategies can guide engineering efforts. Similarly, studying protein intermediates along evolutionary pathways offers fascinating insights into the molecular mechanisms shaped by evolution. The learning step of the cycle is not only crucial for proteins or enzymes that are not suitable for high-throughput screening or selection systems, but it is also valuable for any platform that can generate a large amount of data that can be aided by machine learning algorithms. The main challenge in protein engineering is to predict the effect of a single mutation on one functional parameter-to say nothing of several mutations on multiple parameters. This is largely due to nonadditive mutational interactions, known as epistatic effects-beneficial mutations present in a genetic background may not be beneficial in another genetic background. In this work, we provide an overview of experimental and computational strategies that can guide the user to learn protein function at different stages in a directed evolution project. We also discuss how epistatic effects can influence the success of directed evolution projects. Since machine learning is gaining momentum in protein engineering and the field is becoming more interdisciplinary thanks to collaboration between mathematicians, computational scientists, engineers, molecular biologists, and chemists, we provide a general workflow that familiarizes nonexperts with the basic concepts, dataset requirements, learning approaches, model capabilities and performance metrics of this intriguing area. Finally, we also provide some practical recommendations on how machine learning can harness epistatic effects for engineering proteins in an "outside-the-box" way.
Collapse
Affiliation(s)
- Xavier F Cadet
- PEACCEL, Artificial Intelligence Department, Paris, France
| | - Jean Christophe Gelly
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | | - Frédéric Cadet
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | |
Collapse
|
12
|
Chen W, She W, Li A, Zhai C, Ma L. Site-Directed Mutagenesis Method Mediated by Cas9. Methods Mol Biol 2022; 2461:165-174. [PMID: 35727450 DOI: 10.1007/978-1-0716-2152-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This study presents an in vitro CRISPR/Cas9-mediated mutagenic (ICM) system that allows rapid construction of designed mutants or site-saturation mutagenesis libraries in a PCR-independent manner. The plasmid DNA is double digested with Cas9 bearing specific single guide RNAs to remove the target nucleotides. Next, T5 exonuclease excises both 5'-ends of the linearized plasmid to generate homologous regions of approximately 15 nt. Subsequently, a short dsDNA of approximately 30-50 bp containing the desired mutation cyclizes the plasmid through base pairing and introduces the mutation into the plasmid. The gaps are repaired in Escherichia coli host cells after transformation. This method is highly efficient and accurate. Both single and multiple site-directed mutagenesis can be successfully performed, especially to large sized plasmids. This method demonstrates the great potential for creating high-quality mutant libraries in directed evolution as an alternative to PCR-based saturation mutagenesis, thus facilitating research on synthetic biology.
Collapse
Affiliation(s)
- Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Wenwen She
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
13
|
Zhang Z, Liu Y, Zhao J, Li W, Hu R, Li X, Li A, Wang Y, Ma L. Active-site engineering of ω-transaminase from Ochrobactrum anthropi for preparation of L-2-aminobutyric acid. BMC Biotechnol 2021; 21:55. [PMID: 34563172 PMCID: PMC8466713 DOI: 10.1186/s12896-021-00713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The unnatural amino acid, L-2-aminobutyric acid (L-ABA) is an essential chiral building block for various pharmaceutical drugs, such as the antiepileptic drug levetiracetam and the antituberculosis drug ethambutol. The present study aims at obtaining variants of ω-transaminase from Ochrobactrum anthropi (OATA) with high catalytic activity to α-ketobutyric acid through protein engineering. RESULTS Based on the docking model using α-ketobutyric acid as the ligand, 6 amino acid residues, consisting of Y20, L57, W58, G229, A230 and M419, were chosen for saturation mutagenesis. The results indicated that L57C, M419I, and A230S substitutions demonstrated the highest elevation of enzymatic activity among 114 variants. Subsequently, double substitutions combining L57C and M419I caused a further increase of the catalytic efficiency to 3.2-fold. This variant was applied for threonine deaminase/OATA coupled reaction in a 50-mL reaction system with 300 mM L-threonine as the substrate. The reaction was finished in 12 h and the conversion efficiency of L-threonine into L-ABA was 94%. The purity of L-ABA is 75%, > 99% ee. The yield of L-ABA was 1.15 g. CONCLUSION This study provides a basis for further engineering of ω-transaminase for producing chiral amines from keto acids substrates.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Ruiwen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Xia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Yaping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China.
| |
Collapse
|
14
|
Alejaldre L, Pelletier JN, Quaglia D. Methods for enzyme library creation: Which one will you choose?: A guide for novices and experts to introduce genetic diversity. Bioessays 2021; 43:e2100052. [PMID: 34263468 DOI: 10.1002/bies.202100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Enzyme engineering allows to explore sequence diversity in search for new properties. The scientific literature is populated with methods to create enzyme libraries for engineering purposes, however, choosing a suitable method for the creation of mutant libraries can be daunting, in particular for the novices. Here, we address both novices and experts: how can one enter the arena of enzyme library design and what guidelines can advanced users apply to select strategies best suited to their purpose? Section I is dedicated to the novices and presents an overview of established and standard methods for library creation, as well as available commercial solutions. The expert will discover an up-to-date tool to freshen up their repertoire (Section I) and learn of the newest methods that are likely to become a mainstay (Section II). We focus primarily on in vitro methods, presenting the advantages of each method. Our ultimate aim is to offer a selection of methods/strategies that we believe to be most useful to the enzyme engineer, whether a first-timer or a seasoned user.
Collapse
Affiliation(s)
- Lorea Alejaldre
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada
| | - Joelle N Pelletier
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada.,Département de chimie, Université de Montréal, Montréal, Quebec, Canada
| | - Daniela Quaglia
- Département de chimie, Université de Montréal, Montréal, Quebec, Canada.,School of Chemistry, University of Nottingham, Nottingham, UK
| |
Collapse
|
15
|
CT5, a subtle in vitro DNA assembling method based on the combination of FnCas12a and T5 exonuclease. Biotechnol Lett 2021; 43:899-907. [PMID: 33389273 DOI: 10.1007/s10529-020-03064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To develop a new DNA assembly method based on FnCas12a and T5 exonuclease. RESULTS We developed a method named as FnCas12a and T5 exonuclease (CT5) cloning system. FnCas12a performs site-directed cleavage to the target DNA fragments, and T5 exonuclease generates 20-30 nt single-stranded region at each end of the DNA fragments for homologous recombination-mediated DNA assembly. CT5 was applied to multi-fragment assembly and DNA cloning of large vectors (> 10 kb). The efficiencies were approximately 91.4% and 97%, respectively. In addition, CT5 cloning is also utilized for the "walking" of DNA elements, which enables subtle modification of the relative distances of DNA elements in plasmids. CONCLUSIONS The CT5 method was a precise and exquisite DNA operating system and provided an ideal platform for the study of gene functions, genetic engineering and synthetic biology.
Collapse
|
16
|
PfAgo-based detection of SARS-CoV-2. Biosens Bioelectron 2020; 177:112932. [PMID: 33429204 PMCID: PMC7832551 DOI: 10.1016/j.bios.2020.112932] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023]
Abstract
In the present study, we upgraded Pyrococcus furiosus Argonaute (PfAgo) mediated nucleic acid detection method and established a highly sensitive and accurate molecular diagnosis platform for the large-scale screening of COVID-19 infection. Briefly, RT-PCR was performed with the viral RNA extracted from nasopharyngeal or oropharyngeal swabs as template to amplify conserved regions in the viral genome. Next, PfAgo, guide DNAs and molecular beacons in appropriate buffer were added to the PCR products, followed by incubating at 95 °C for 20-30 min. Subsequently, the fluorescence signal was detected. This method was named as SARS-CoV-2 PAND. The whole procedure is accomplished in approximately an hour with the using time of the Real-time fluorescence quantitative PCR instrument shortened from >1 h to only 3-5 min per batch in comparison with RT-qPCR, hence the shortage of the expensive Real-time PCR instrument is alleviated. Moreover, this platform was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The diagnostic results of clinic samples with SARS-CoV-2 PAND displayed 100% consistence with RT-qPCR test.
Collapse
|
17
|
Sun W, Wang H. Recent advances of genome editing and related technologies in China. Gene Ther 2020; 27:312-320. [DOI: 10.1038/s41434-020-0181-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
|
18
|
Malavia D, Gow NAR, Usher J. Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms 2020; 8:E803. [PMID: 32466582 PMCID: PMC7356103 DOI: 10.3390/microorganisms8060803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic fungi represent an increasing infectious disease threat to humans, especially with an increasing challenge of antifungal drug resistance. Over the decades, numerous tools have been developed to expedite the study of pathogenicity, initiation of disease, drug resistance and host-pathogen interactions. In this review, we highlight advances that have been made in the use of molecular tools using CRISPR technologies, RNA interference and transposon targeted mutagenesis. We also discuss the use of animal models in modelling disease of human fungal pathogens, focusing on zebrafish, the silkworm, Galleria mellonella and the murine model.
Collapse
Affiliation(s)
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (N.A.R.G.)
| |
Collapse
|
19
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201901491] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Deutschland
- Department of Chemistry, Hans-Meerwein-Straße 4 Philipps-Universität 35032 Marburg Deutschland
| |
Collapse
|
20
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew Chem Int Ed Engl 2020; 59:13204-13231. [PMID: 31267627 DOI: 10.1002/anie.201901491] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Department of Chemistry, Hans-Meerwein-Strasse 4 Philipps-University 35032 Marburg Germany
| |
Collapse
|
21
|
Dong M, Wang F, Li Q, Han R, Li A, Zhai C, Ma L. A single digestion, single-stranded oligonucleotide mediated PCR-independent site-directed mutagenesis method. Appl Microbiol Biotechnol 2020; 104:3993-4003. [PMID: 32152687 DOI: 10.1007/s00253-020-10477-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
A PCR-independent in vitro site-directed mutagenesis method was established. Cas12a from Francisella novicida (FnCas12a) linearizes the plasmid with single digestion. T5 exonuclease removes the target nucleotide. A short single- or double-stranded mutagenic oligonucleotide introduces the mutation. This rapid and simple mutagenesis method is referred to as FnCas12a and T5 exonuclease mediated site-directed mutagenesis system (CT5-SDM). The platform is also suitable for the mutagenesis of plasmids larger than 10 kb. KEY POINTS: Site-directed mutagenesis mediated by single-stranded DNA. Removing target site with T5 exonuclease. Highly efficient cleavage of target DNA with FnCas12a.
Collapse
Affiliation(s)
- Mengjie Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Qingqing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Rui Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
22
|
Unbiased libraries in protein directed evolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140321. [DOI: 10.1016/j.bbapap.2019.140321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
|
23
|
Lau CH. Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR J 2018; 1:379-404. [PMID: 31021245 DOI: 10.1089/crispr.2018.0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CRISPR technology is rapidly evolving, and the scope of CRISPR applications is constantly expanding. CRISPR was originally employed for genome editing. Its application was then extended to epigenome editing, karyotype engineering, chromatin imaging, transcriptome, and metabolic pathway engineering. Now, CRISPR technology is being harnessed for genetic circuits engineering, cell signaling sensing, cellular events recording, lineage information reconstruction, gene drive, DNA genotyping, miRNA quantification, in vivo cloning, site-directed mutagenesis, genomic diversification, and proteomic analysis in situ. It has also been implemented in the translational research of human diseases such as cancer immunotherapy, antiviral therapy, bacteriophage therapy, cancer diagnosis, pathogen screening, microbiota remodeling, stem-cell reprogramming, immunogenomic engineering, vaccine development, and antibody production. This review aims to summarize the key concepts of these CRISPR applications in order to capture the current state of play in this fast-moving field. The key mechanisms, strategies, and design principles for each technological advance are also highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong , Hong Kong, SAR, China
| |
Collapse
|