1
|
Zheng G, Xu J, Liu H, Hua H, Zimin AA, Wang W, Lu Y. iCASRED, a scarless DNA editing tool in E. coli for high-efficiency engineering of natural product biosynthetic gene clusters. Synth Syst Biotechnol 2025; 10:751-763. [PMID: 40248484 PMCID: PMC12002714 DOI: 10.1016/j.synbio.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Efficient gene cluster editing tools are one of the key techniques for discovering novel compounds encoded by silent natural product (NP) biosynthetic gene clusters (BGCs) in microbial genomes. Currently, in vivo BGC editing tools developed in E. coli is the most widely used, but they often introduces DNA scars into gene clusters, which may affect the function of target NP BGCs. Herein, a genome-integrated Cas9/λRed system-based in vivo scarless gene cluster editing tool (iCASRED) was established in E. coli BL23, which was constructed on the basis of BL21/DE3 with recA deletion and simultaneous integration of an inducible sgRNA targeting the editing plasmid (an all-in-one plasmid with the BGC-targeting sgRNAs and repair templates). iCASRED achieved scarless editing of single targets in three tested gene clusters (44.2, 72.0, and 76.2 kb) cloned in either a single-copy BAC plasmid or a high-copy plasmid pCAP01 with the efficiencies of 28.8 % ± 3.9 %-100 % ± 0 %. Furthermore, this tool could enable convenient, high-efficiency iterative editing. Finally, we achieved 24.4 % ± 3.8 % efficiency for simultaneous double-target editing by replacing Cas9 by nCas9 (Cas9D10A). Collectively, iCASRED provides a simple, convenient, and cost-effective approach for engineering gene clusters, which may facilitate the discovery of novel NPs and strain improvements for high-yield of target compounds.
Collapse
Affiliation(s)
- Guosong Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiafeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hewei Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Huimin Hua
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Andrei A. Zimin
- G.K. Scriabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, 142290, Russia
| | - Wenfang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
2
|
Campos‐Magaña MA, Martins dos Santos VAP, Garcia‐Morales L. Enabling Access to Novel Bacterial Biosynthetic Potential From ONT Draft Genomic Data. Microb Biotechnol 2025; 18:e70104. [PMID: 40034067 PMCID: PMC11876861 DOI: 10.1111/1751-7915.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Natural products comprise a wide diversity of compounds with a range of biological activities, including antibiotics, anti-inflammatory and anti-tumoral molecules. However, we can only access a small portion of these compounds due to various technical difficulties. We have herein developed a novel and efficient approach for accessing biosynthetic gene clusters (BGCs) that encode natural products from soil bacteria. The pipeline uses a combination of long-read sequencing, antiSMASH for BGC identification and Transformation-associated recombination (TAR) for cloning the BGCs. We hypothesized that a genome assembly using Oxford Nanopore Technology (ONT) sequencing could facilitate the detection of large BGCs at a relatively fast and low-cost DNA sequencing. Despite the relative low accuracy and sequence mistakes due to high GC content and sequence repetitions frequently found in BGC containing bacteria, we demonstrate that ONT long-read sequencing and antiSMASH are effective for identifying novel BGCs and enabling TAR cloning to isolate the BGC in a desired vector. We applied this pipeline on a previously non-sequenced myxobacteria Aetherobacter fasciculatus SBSr002. Our approach enabled us to clone a previously unknown BGC into a genome engineering-ready vector, illustrating the capabilities of this powerful and cost-effective strategy.
Collapse
Affiliation(s)
- Marco A. Campos‐Magaña
- Dept. Bioprocess EngineeringWageningen University and ResearchWageningenthe Netherlands
- Dept. Systems and Synthetic BiologyWageningen University and ResearchWageningenthe Netherlands
| | | | | |
Collapse
|
3
|
Xu X, Huang X, Xu W. Marine actinomycetes-derived angucyclines and angucyclinones with biosynthesis and activity--past 10 years (2014-2023). Eur J Med Chem 2025; 283:117161. [PMID: 39700875 DOI: 10.1016/j.ejmech.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Actinomycete bacteria derived from marine environments are a good source of natural products with diverse biological activities such as cytotoxicity, antiviral, and antimicrobial actions. This review summarizes 191 angucyclines and angucyclinones derived from marine actinomycetes reported in the literature from 2014 to 2023 and introduced the latest developments in actinomycete-silenced biosynthetic gene cluster activation, including heterologous recombination and in situ activation. The key role of redox post-modifications in the biosynthetic process of atypical angucyclines. This review provides insights into the discovery and biosynthesis of valuable angucyclines and angucyclinones from marine-associated actinomycetes and potential lead compounds for the research and development of new drugs.
Collapse
Affiliation(s)
- Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Wenhua Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
4
|
Baltz RH. Regulation of daptomycin biosynthesis in Streptomyces roseosporus: new insights from genomic analysis and synthetic biology to accelerate lipopeptide discovery and commercial production. Nat Prod Rep 2024; 41:1895-1914. [PMID: 39279757 DOI: 10.1039/d4np00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Covering 2005-2024Daptomycin is a clinically important antibiotic that treats Gram-positive infections of skin and skin structure, bacteremia, and right-sided endocarditis, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Daptomycin is now generic, and many companies are involved in manufacturing and commercializing this life-saving medicine. There has been much recent interest in improving the daptomycin fermentation of Streptomyces roseosporus by mutagenesis, metabolic engineering, and synthetic biology methods. The genome sequences of two strains discovered and developed at Eli Lilly and Company, a wild-type low-producer and a high-producer induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis, are available for comparitive studies. DNA sequence analysis of the daptomycin biosynthetic gene clusters (BGCs) from these strains indicates that the high producer has two mutations in a large promoter region that drives the transcription of a giant multicistronic mRNA that includes all nine genes involved in daptomycin biosynthesis. The locations of translational start and stop codons strongly suggest that all nine genes are translationally coupled by overlapping stop and start codons or by 70S ribosome scanning. This report also reviews recent studies on this promoter region that have identified at least ten positive or negative regulatory genes suitable to manipulate by metabolic engineering, synthetic biology and focused mutagenesis for strain improvement. Improvements in daptomycin production will also enable high-level production of novel lipopeptide antibiotics identified by genome mining and combinatorial biosynthesis, and accelerate clinical and commercial development of superior lipopeptide antibiotics.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 7757 Uliva Way, Sarasota, FL 34238, USA.
| |
Collapse
|
5
|
He F, Liu X, Tang M, Wang H, Wu Y, Liang S. CRISETR: an efficient technology for multiplexed refactoring of biosynthetic gene clusters. Nucleic Acids Res 2024; 52:11378-11393. [PMID: 39271125 PMCID: PMC11472037 DOI: 10.1093/nar/gkae781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The efficient refactoring of natural product biosynthetic gene clusters (BGCs) for activating silent BGCs is a central challenge for the discovery of new bioactive natural products. Herein, we have developed a simple and robust CRISETR (CRISPR/Cas9 and RecET-mediated Refactoring) technique, combining clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 and RecET, for the multiplexed refactoring of natural product BGCs. By this approach, natural product BGCs can be refactored through the synergistic interaction between RecET-mediated efficient homologous recombination and the CRISPR/Cas9 system. We first performed a proof-of-concept validation of the ability of CRISETR, and CRISETR can achieve simultaneous replacement of four promoter sites and marker-free replacement of single promoter site in natural product BGCs. Subsequently, we applied CRISETR to the promoter engineering of the 74-kb daptomycin BGC containing a large number of direct repeat sequences for enhancing the heterologous production of daptomycin. We used combinatorial design to build multiple refactored daptomycin BGCs with diverse combinations of promoters different in transcriptional strengths, and the yield of daptomycin was improved 20.4-fold in heterologous host Streptomyces coelicolor A3(2). In general, CRISETR exhibits enhanced tolerance to repetitive sequences within gene clusters, enabling efficient refactoring of diverse and complex BGCs, which would greatly accelerate discovery of novel bioactive metabolites present in microorganism.
Collapse
Affiliation(s)
- Fuqiang He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xinpeng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Haiyi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Yun Wu
- Department of Cell Biology, College of Life Science, Sichuan Normal University, Chengdu, Sichuan, 610101, P.R. China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
6
|
Singh A, Anwer M, Israr J, Kumar A. Advances in CRISPR-Cas systems for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:83-107. [PMID: 39266189 DOI: 10.1016/bs.pmbts.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Fungi contain a wide range of bioactive secondary metabolites (SMs) that have numerous applications in various fields, including agriculture, medicine, human health, and more. It is common for genes responsible for the production of secondary metabolites (SMs) to form biosynthetic gene clusters (BGCs). The identification and analysis of numerous unexplored gene clusters (BGCs) and their corresponding substances (SMs) has been significantly facilitated by the recent advancements in genomic and genetic technologies. Nevertheless, the exploration of secondary metabolites with commercial value is impeded by a variety of challenges. The emergence of modern CRISPR/Cas technologies has brought about a paradigm shift in fungal genetic engineering, significantly streamlining the process of discovering new bioactive compounds. This study begins with an examination of fungal biosynthetic gene clusters (BGCs) and their interconnections with the secondary metabolites (SMs) they generate. Following that, a brief summary of the conventional methods employed in fungal genetic engineering is provided. This study explores various sophisticated CRISPR/Cas-based methodologies and their utilization in examining the synthesis of secondary metabolites (SMs) in fungi. The chapter provides an in-depth analysis of the limitations and obstacles encountered in CRISPR/Cas-based systems when applied to fungal genetic engineering. It also proposes promising avenues for future research to optimize the efficiency of these systems.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Monisa Anwer
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India
| | - Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow, Barabanki, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
7
|
Ji CH, Je HW, Kim H, Kang HS. Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications. Nat Prod Rep 2024; 41:672-699. [PMID: 38259139 DOI: 10.1039/d3np00049d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Covering 2011 to 2022Low titers of natural products in laboratory culture or fermentation conditions have been one of the challenging issues in natural products research. Many natural product biosynthetic gene clusters (BGCs) are also transcriptionally silent in laboratory culture conditions, making it challenging to characterize the structures and activities of their metabolites. Promoter engineering offers a potential solution to this problem by providing tools for transcriptional activation or optimization of biosynthetic genes. In this review, we summarize the 10 years of progress in promoter engineering approaches in natural products research focusing on the most metabolically talented group of bacteria actinomycetes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
8
|
Zhao X, Zong Y, Lou Q, Qin C, Lou C. A flexible, modular and versatile functional part assembly toolkit for gene cluster engineering in Streptomyces. Synth Syst Biotechnol 2024; 9:69-77. [PMID: 38273864 PMCID: PMC10809003 DOI: 10.1016/j.synbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Streptomyces has enormous potential to produce novel natural products (NPs) as it harbors a huge reservoir of uncharacterized and silent natural product biosynthetic gene clusters (BGCs). However, the lack of efficient gene cluster engineering strategies has hampered the pace of new drug discovery. Here, we developed an easy-to-use, highly flexible DNA assembly toolkit for gene cluster engineering. The DNA assembly toolkit is compatible with various DNA assembling approaches including Biobrick, Golden Gate, CATCH, yeast homologous recombination-based DNA assembly and homing endonuclease-mediated assembly. This compatibility offers great flexibility in handling multiple genetic parts or refactoring large gene clusters. To demonstrate the utility of this toolkit, we quantified a library of modular regulatory parts, and engineered a gene cluster (act) using characterized promoters that led to increased production. Overall, this work provides a powerful part assembly toolkit that can be used for natural product discovery and optimization in Streptomyces.
Collapse
Affiliation(s)
- Xuejin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yeqing Zong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiuli Lou
- Center for Cell and Gene Circuit Design, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055, China
| | - Chenrui Qin
- Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, 100871, China
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100149, China
| |
Collapse
|
9
|
Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. J Fungi (Basel) 2023; 9:jof9030362. [PMID: 36983530 PMCID: PMC10058990 DOI: 10.3390/jof9030362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Fungi represent an important source of bioactive secondary metabolites (SMs), which have wide applications in many fields, including medicine, agriculture, human health, and many other industries. The genes involved in SM biosynthesis are usually clustered adjacent to each other into a region known as a biosynthetic gene cluster (BGC). The recent advent of a diversity of genetic and genomic technologies has facilitated the identification of many cryptic or uncharacterized BGCs and their associated SMs. However, there are still many challenges that hamper the broader exploration of industrially important secondary metabolites. The recent advanced CRISPR/Cas system has revolutionized fungal genetic engineering and enabled the discovery of novel bioactive compounds. In this review, we firstly introduce fungal BGCs and their relationships with associated SMs, followed by a brief summary of the conventional strategies for fungal genetic engineering. Next, we introduce a range of state-of-the-art CRISPR/Cas-based tools that have been developed and review recent applications of these methods in fungi for research on the biosynthesis of SMs. Finally, the challenges and limitations of these CRISPR/Cas-based systems are discussed and directions for future research are proposed in order to expand their applications and improve efficiency for fungal genetic engineering.
Collapse
|
10
|
Sreedharan SM, Rishi N, Singh R. Microbial Lipopeptides: Properties, Mechanics and Engineering for Novel Lipopeptides. Microbiol Res 2023; 271:127363. [PMID: 36989760 DOI: 10.1016/j.micres.2023.127363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/04/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Microorganisms produce active surface agents called lipopeptides (LPs) which are amphiphilic in nature. They are cyclic or linear compounds and are predominantly isolated from Bacillus and Pseudomonas species. LPs show antimicrobial activity towards various plant pathogens and act by inhibiting the growth of these organisms. Several mechanisms are exhibited by LPs, such as cell membrane disruption, biofilm production, induced systematic resistance, improving plant growth, inhibition of spores, etc., making them suitable as biocontrol agents and highly advantageous for industrial utilization. The biosynthesis of lipopeptides involves large multimodular enzymes referred to as non-ribosomal peptide synthases. These enzymes unveil a broad range of engineering approaches through which lipopeptides can be overproduced and new LPs can be generated asserting high efficacy. Such approaches involve several synthetic biology systems and metabolic engineering techniques such as promotor engineering, enhanced precursor availability, condensation domain engineering, and adenylation domain engineering. Finally, this review provides an update of the applications of lipopeptides in various fields.
Collapse
|
11
|
Yilmaz S, Nyerges A, van der Oost J, Church GM, Claassens NJ. Towards next-generation cell factories by rational genome-scale engineering. Nat Catal 2022. [DOI: 10.1038/s41929-022-00836-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Kong L, Xiong Z, Song X, Xia Y, Ai L. CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus. J Dairy Sci 2022; 105:6499-6512. [PMID: 35691751 DOI: 10.3168/jds.2021-21409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Streptococcus thermophilus is used extensively in the dairy industry and has shown great promise as a chassis cell for the biosynthesis of high-value metabolites. However, metabolic engineering in S. thermophilus lacks effective genetic modification tools to modulate gene expression to relieve metabolic burden and maximize the production of desired compounds. Here, we developed a clustered regularly interspaced short palindromic repeats interference (CRISPRi) system for efficient gene transcriptional modulation in S. thermophilus. Our CRISPRi system typically achieved 66 to 98% knockdown of single or multiple gene expression. We used CRISPRi for the biosynthesis of a new exopolysaccharide (EPS) as a paradigm model. Repression of galK at module of uridine diphosphate glucose sugar metabolism and overexpression of epsA and epsE at EPS synthesis module resulted in an approximately 2-fold increase in EPS titer (277 mg/L) when compared with a control strain. This study demonstrated the effectiveness of CRISPRi as a powerful metabolic engineering tool and synthetic biology strategy for S. thermophilus.
Collapse
Affiliation(s)
- Linghui Kong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Pharmacy (School of Enology), Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
13
|
Gong FL, Han J, Li S. MULTI-SCULPT: Multiplex Integration via Selective, CRISPR-Mediated, Ultralong Pathway Transformation in Yeast for Plant Natural Product Synthesis. ACS Synth Biol 2022; 11:2484-2495. [PMID: 35737816 DOI: 10.1021/acssynbio.2c00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Yeast has been a versatile model host for complex and valuable natural product biosynthesis via the reconstruction of heterologous biosynthetic pathways. Recent advances in natural product pathway elucidation have uncovered many large and complicated plant pathways that contain 10-30 genes for the biosynthesis of structurally complex, valuable natural products. However, the ability to reconstruct ultralong pathways efficiently in yeast does not match the increasing demand for valuable plant natural product biomanufacturing. Here, we developed a one-pot, multigene pathway integration method in yeast, named MULTI-SCULPT for multiplex integration via selective, CRISPR-mediated, ultralong pathway transformation. Leveraging multilocus genomic disruption via CRISPR/Cas9, newly developed native and synthetic genetic parts, and fine-tuned gene integration and characterization methods, we managed to integrate 21 DNA inserts that contain a 12-gene plant isoflavone biosynthetic pathway into yeast with a 90-100% success rate in 12 days. This method enables fast and efficient ultralong biosynthetic pathway integration and can allow for the fast iterative integration of even longer pathways in the future. Ultimately, this method will accelerate combinatorial optimization of elucidated plant natural product pathways and accelerate putative pathway characterization heterologously.
Collapse
Affiliation(s)
- Franklin Leyang Gong
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jianing Han
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sijin Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Zhao X, Zong Y, Wei W, Lou C. Multiplexed Promoter Engineering for Improving Thaxtomin A Production in Heterologous Streptomyces Hosts. Life (Basel) 2022; 12:689. [PMID: 35629358 PMCID: PMC9146380 DOI: 10.3390/life12050689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Thaxtomin A is a potent bioherbicide in both organic and conventional agriculture; however, its low yield hinders its wide application. Here, we report the direct cloning and heterologous expression of the thaxtomin A gene cluster in three well-characterized Streptomyces hosts. Then, we present an efficient, markerless and multiplex large gene cluster editing method based on in vitro CRISPR/Cas9 digestion and yeast homologous recombination. With this method, we successfully engineered the thaxtomin A cluster by simultaneously replacing the native promoters of the txtED operon, txtABH operon and txtC gene with strong constitutive promoters, and the yield of thaxtomin A improved to 289.5 µg/mL in heterologous Streptomyces coelicolor M1154. To further optimize the biosynthetic pathway, we used constraint-based combinatorial design to build 27 refactored gene clusters by varying the promoter strength of every operon, and the highest titer of thaxtomin A production reached 504.6 μg/mL. Taken altogether, this work puts forward a multiplexed promoter engineering strategy to engineer secondary metabolism gene clusters for efficiently improving fermentation titers.
Collapse
Affiliation(s)
- Xuejin Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeqing Zong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Weijia Wei
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Chunbo Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Ji CH, Kim H, Je HW, Kwon H, Lee D, Kang HS. Top-down synthetic biology approach for titer improvement of clinically important antibiotic daptomycin in Streptomyces roseosporus. Metab Eng 2021; 69:40-49. [PMID: 34737068 DOI: 10.1016/j.ymben.2021.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Secondary metabolites are produced at low titers by native producers due to tight regulations of their productions in response to environmental conditions. Synthetic biology provides a rational engineering principle for transcriptional optimization of secondary metabolite BGCs (biosynthetic gene clusters). Here, we demonstrate the use of synthetic biology principles for the development of a high-titer strain of the clinically important antibiotic daptomycin. Due to the presence of large NRPS (non-ribosomal peptide synthetase) genes with multiple direct repeats, we employed a top-down approach that allows transcriptional optimization of genes in daptomycin BGC with the minimum inputs of synthetic DNAs. The repeat-free daptomycin BGC was created through partial codon-reprogramming of a NRPS gene and cloned into a shuttle BAC vector, allowing BGC refactoring in a host with a powerful recombination system. Then, transcriptions of functionally divided operons were sequentially optimized through three rounds of DBTL (design-build-test-learn) cycles that resulted in up to ~2300% improvement in total lipopeptide titers compared to the wild-type strain. Upon decanoic acid feeding, daptomycin accounted for ∼ 40% of total lipopeptide production. To the best of our knowledge, this is the highest improvement of daptomycin titer ever achieved through genetic engineering of S. roseosporus. The top-down engineering approach we describe here could be used as a general strategy for the development of high-titer industrial strains of secondary metabolites produced by BGCs containing genes of large multi-modular NRPS and PKS enzymes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Haeun Kwon
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
Comparative Genomics Reveals a Remarkable Biosynthetic Potential of the Streptomyces Phylogenetic Lineage Associated with Rugose-Ornamented Spores. mSystems 2021; 6:e0048921. [PMID: 34427515 PMCID: PMC8407293 DOI: 10.1128/msystems.00489-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Streptomyces is one of the richest sources of secondary metabolite biosynthetic gene clusters (BGCs). Sequencing of a large number of genomes has provided evidence that this well-known bacterial genus still harbors a large number of cryptic BGCs, and their metabolites are yet to be discovered. When taking a gene-first approach for new natural product discovery, BGC prioritization would be the most crucial step for the discovery of novel chemotypes. We hypothesized that strains with a greater number of BGCs would also contain a greater number of silent unique BGCs due to the presence of complex regulatory systems. Based on this hypothesis, we employed a comparative genomics approach to identify a specific Streptomyces phylogenetic lineage with the highest and yet-uncharacterized biosynthetic potential. A comparison of BGC abundance and genome size across 158 phylogenetically diverse Streptomyces type strains identified that members of the phylogenetic group characterized by the formation of rugose-ornamented spores possess the greatest number of BGCs (average, 50 BGCs) and also the largest genomes (average, 11.5 Mb). The study of genetic and biosynthetic diversities using comparative genomics of 11 sequenced genomes and a genetic similarity network analysis of BGCs suggested that members of this group carry a large number of unique BGCs, the majority of which are cryptic and not associated with any known natural product. We believe that members of this Streptomyces phylogenetic group possess a remarkable biosynthetic potential and thus would be a good target for a metabolite characterization study that could lead to the discovery of novel chemotypes. IMPORTANCE It is now well recognized that members of the genus Streptomyces still harbor a large number of cryptic BGCs in their genomes, which are mostly silent under laboratory culture conditions. Activation of transcriptionally silent BGCs is technically challenging and thus forms a bottleneck when taking a gene-first approach for the discovery of new natural products. Thus, it is important to focus activation efforts on strains with BGCs that have the potential to produce novel metabolites. The clade-level analysis of biosynthetic diversity could provide insights into the relationship between phylogenetic lineage and biosynthetic diversity. By exploring BGC abundance in relation to Streptomyces phylogeny, we identified a specific monophyletic lineage associated with the highest BGC abundance. Then, using a combined analysis of comparative genomics and a genetic network, we demonstrated that members of this lineage are genetically and biosynthetically diverse, contain a large number of cryptic BGCs with novel genotypes, and thus would be a good target for metabolite characterization studies.
Collapse
|
17
|
Li L, Maclntyre LW, Brady SF. Refactoring biosynthetic gene clusters for heterologous production of microbial natural products. Curr Opin Biotechnol 2021; 69:145-152. [PMID: 33476936 PMCID: PMC8238852 DOI: 10.1016/j.copbio.2020.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
Microbial natural products (NPs) are of paramount importance in human medicine, animal health and plant crop protection. Large-scale microbial genome and metagenomic mining has revealed tremendous biosynthetic potential to produce new NPs. However a majority of NP biosynthetic gene clusters (BGCs) are functionally inaccessible under standard laboratory conditions. BGC refactoring and heterologous expression provide a promising synthetic biology approach to NP discovery, yield optimization and combinatorial biosynthesis studies. In this review, we summarize the recent advances pertaining to the heterologous production of bacterial and fungal NPs, with an emphasis on next-generation transcriptional regulatory modules, novel BGC refactoring techniques and optimized heterologous hosts.
Collapse
Affiliation(s)
- Lei Li
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Logan W Maclntyre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
18
|
Zhang ZX, Wang LR, Xu YS, Jiang WT, Shi TQ, Sun XM, Huang H. Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:3873-3882. [PMID: 33907890 DOI: 10.1007/s00253-021-11287-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in S. cerevisiae were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed. KEY POINTS: • The development of multiplex genome editing in S. cerevisiae was summarized. • The pros and cons of various multiplex genome editing technologies are discussed. • Further prospects on the improvement of multiplex genome editing are proposed.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| | | | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China.
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| |
Collapse
|
19
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
20
|
Liu Z, Zhao Y, Huang C, Luo Y. Recent Advances in Silent Gene Cluster Activation in Streptomyces. Front Bioeng Biotechnol 2021; 9:632230. [PMID: 33681170 PMCID: PMC7930741 DOI: 10.3389/fbioe.2021.632230] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Natural products (NPs) are critical sources of drug molecules for decades. About two-thirds of natural antibiotics are produced by Streptomyces. Streptomyces have a large number of secondary metabolite biosynthetic gene clusters (SM-BGCs) that may encode NPs. However, most of these BGCs are silent under standard laboratory conditions. Hence, activation of these silent BGCs is essential to current natural products discovery research. In this review, we described the commonly used strategies for silent BGC activation in Streptomyces from two aspects. One focused on the strategies applied in heterologous host, including methods to clone and reconstruct BGCs along with advances in chassis engineering; the other focused on methods applied in native host which includes engineering of promoters, regulatory factors, and ribosomes. With the metabolic network being elucidated more comprehensively and methods optimized more high-thoroughly, the discovery of NPs will be greatly accelerated.
Collapse
Affiliation(s)
- Zhenyu Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yatong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chaoqun Huang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Heng E, Tan LL, Zhang MM, Wong FT. CRISPR-Cas strategies for natural product discovery and engineering in actinomycetes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
23
|
Qiao Y, Zhang Q, Chen D, Liu M, Liu W. Application of CRISPR/Cas9 Gene Editing System in Obtaining Natural Products in Actinomycetes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Malcı K, Walls LE, Rios-Solis L. Multiplex Genome Engineering Methods for Yeast Cell Factory Development. Front Bioeng Biotechnol 2020; 8:589468. [PMID: 33195154 PMCID: PMC7658401 DOI: 10.3389/fbioe.2020.589468] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
As biotechnological applications of synthetic biology tools including multiplex genome engineering are expanding rapidly, the construction of strategically designed yeast cell factories becomes increasingly possible. This is largely due to recent advancements in genome editing methods like CRISPR/Cas tech and high-throughput omics tools. The model organism, baker's yeast (Saccharomyces cerevisiae) is an important synthetic biology chassis for high-value metabolite production. Multiplex genome engineering approaches can expedite the construction and fine tuning of effective heterologous pathways in yeast cell factories. Numerous multiplex genome editing techniques have emerged to capitalize on this recently. This review focuses on recent advancements in such tools, such as delta integration and rDNA cluster integration coupled with CRISPR-Cas tools to greatly enhance multi-integration efficiency. Examples of pre-placed gate systems which are an innovative alternative approach for multi-copy gene integration were also reviewed. In addition to multiple integration studies, multiplexing of alternative genome editing methods are also discussed. Finally, multiplex genome editing studies involving non-conventional yeasts and the importance of automation for efficient cell factory design and construction are considered. Coupling the CRISPR/Cas system with traditional yeast multiplex genome integration or donor DNA delivery methods expedites strain development through increased efficiency and accuracy. Novel approaches such as pre-placing synthetic sequences in the genome along with improved bioinformatics tools and automation technologies have the potential to further streamline the strain development process. In addition, the techniques discussed to engineer S. cerevisiae, can be adapted for use in other industrially important yeast species for cell factory development.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|