1
|
Petkevičius V, Juknevičiūtė J, Mašonis D, Meškys R. Synthetic pathways for microbial biosynthesis of valuable pyrazine derivatives using genetically modified Pseudomonas putida KT2440. Metab Eng Commun 2025; 20:e00258. [PMID: 40236303 PMCID: PMC11999294 DOI: 10.1016/j.mec.2025.e00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Using engineered microbes for synthesizing high-valued chemicals from renewable sources is a foundation in synthetic biology, however, it is still in its early stages. Here, we present peculiarities and troubleshooting of the construction of novel synthetic metabolic pathways in genetically modified work-horse Pseudomonas putida KT2440. The combination of this microbial host and heterologous expressed non-heme diiron monooxygenases enabled de novo biosynthesis of 2,5-dimethylpyrazine (2,5-DMP) carboxylic acid and N-oxides as target products. A key intermediate, 2,5-DMP, was obtained by using Pseudomonas putida KT2440Δ6 strain containing six gene deletions in the L-threonine pathway, along with the overexpression of thrA S345F and tdh from E. coli. Thus, the carbon surplus was redirected from glucose through L-threonine metabolism toward the formation of 2,5-DMP, resulting in a product titre of 106 ± 30 mg L-1. By introducing two native genes (thrB and thrC from P. putida KT2440) from the L-threonine biosynthesis pathway, the production of 2,5-DMP was increased to 168 ± 20 mg L-1. The resulting 2,5-DMP was further derivatized through two separate pathways. Recombinant P. putida KT2440 strain harboring xylene monooxygenase (XMO) produced 5-methyl-2-pyrazinecarboxylic acid from glucose as a targeted compound in a product titre of 204 ± 24 mg L-1. The microbial host containing genes of PmlABCDEF monooxygenase (Pml) biosynthesized N-oxides - 2,5-dimethylpyrazine 1-oxide as a main product, and 2,5-dimethylpyrazine 1,4-dioxide as a minor product, reaching product titres of 82 ± 8 mg L-1 and 11 ± 2 mg L-1 respectively.
Collapse
Affiliation(s)
- Vytautas Petkevičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Justė Juknevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Domas Mašonis
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
2
|
Yue SJ, Liu Y, Wang W, Hu HB, Zhang XH. Metabolic design of a platform Pseudomonas strain producing various phenazine derivatives. Metab Eng 2025; 91:217-227. [PMID: 40315980 DOI: 10.1016/j.ymben.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/25/2025] [Accepted: 04/30/2025] [Indexed: 05/04/2025]
Abstract
Phenazine derivatives, a class of nitrogen-containing heterocyclic compounds, exhibit broad-spectrum antifungal, anticancer, and antimalarial activities. Pseudomonas and Streptomyces are the primary microbial strains responsible for the synthesis of phenazine derivatives. In general, Pseudomonas strains use phenazine-1-carboxylic acid (PCA) as a precursor for enzymatic modification, while Streptomyces strains employ phenazine-1,6-dicarboxylic acid (PDC) as the precursor. Pseudomonas is considered an ideal platform for the efficient biosynthesis of various phenazine derivatives due to its rapid growth rate, ease of genetic manipulation, and well-established fermentation systems. However, the synthesis of phenazine derivatives in Pseudomonas largely relies on previously reported natural biosynthetic pathways from other microbial strains. The biosynthesis of phenazine derivatives through unknown pathways often presents significant challenges for researchers. The concept of combinatorial biosynthesis offers a promising solution to overcome these difficulties. In this study, we designed and constructed a platform Pseudomonas strain producing 15 phenazine derivatives by exchanging and combining the modifying enzymes of PCA and PDC, besides 16 constructed modification pathways. Among these, three derivatives feature novel chemical structures, while 13 represent previously unreported biosynthetic pathways. With the discovery of new phenazine modifying enzymes, they can be quickly incorporated into our platform, enabling the rapid synthesis of a wide variety of phenazine derivatives. This work demonstrates the potential of designing non-natural metabolic pathways to enable the production of diverse phenazine derivatives, thereby enhancing bacterial capacity for the synthesis of high-value phenazine compounds. This combinatorial biosynthetic approach provides a potential alternative for exploring unknown biosynthetic routes and for the development of unexplored natural biosynthetic pathways for phenazine derivatives.
Collapse
Affiliation(s)
- Sheng-Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Chemical Structures and Biological Activities. Molecules 2024; 29:4771. [PMID: 39407699 PMCID: PMC11477647 DOI: 10.3390/molecules29194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Phenazine natural products are a class of colored nitrogen-containing heterocycles produced by various microorganisms mainly originating from marine and terrestrial sources. The tricyclic ring molecules show various chemical structures and the decorating groups dedicate extensive pharmacological activities, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal. These secondary metabolites provide natural materials for screening and developing medicinal compounds in the field of medicine and agriculture due to biological activities. The review presents a systematic summary of the literature on natural phenazines in the past decade, including over 150 compounds, such as hydroxylated, O-methylated, N-methylated, N-oxide, terpenoid, halogenated, glycosylated phenazines, saphenic acid derivatives, and other phenazine derivatives, along with their characterized antimicrobial and anticancer activities. This review may provide guidance for the investigation of phenazines in the future.
Collapse
Affiliation(s)
- Wei Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Chaozhi Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Huai Su
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Feifei Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| |
Collapse
|
4
|
Huang W, Wan Y, Su H, Zhang Z, Liu Y, Sadeeq M, Xian M, Feng X, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Biosynthesis and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21364-21379. [PMID: 39300971 DOI: 10.1021/acs.jafc.4c05294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Phenazine natural products are a class of nitrogen-containing heterocyclic compounds produced by microorganisms. The tricyclic ring molecules show various chemical structures and extensive pharmacological activities, such as antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal activities, with low toxicity to the environment. Since phenazine-1-carboxylic acid has been developed as a registered biopesticide, the application of phenazine natural products will be promising in the field of agriculture pathogenic fungi control based on broad-spectrum antifungal activity, minimal toxicity to the environment, and improvement of crop production. Currently, there are still plenty of intriguing hidden biosynthetic pathways of phenazine natural products to be discovered, and the titer of naturally occurring phenazine natural products is insufficient for agricultural applications. In this review, we spotlight the progress regarding biosynthesis and metabolic engineering research of phenazine natural products in the past decade. The review provides useful insights concerning phenazine natural products production and more clues on new phenazine derivatives biosynthesis.
Collapse
Affiliation(s)
- Wei Huang
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Huai Su
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Yingjie Liu
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
| | - Mohd Sadeeq
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Peng Xiong
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| | - Feifei Hou
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| |
Collapse
|
5
|
Deng RX, Li HL, Sheng CL, Wang W, Hu HB, Zhang XH. Characterization of Lomofungin Gene Cluster Enables the Biosynthesis of Related Phenazine Derivatives. ACS Synth Biol 2024; 13:2982-2991. [PMID: 39250825 DOI: 10.1021/acssynbio.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Phenazine-based small molecules are nitrogen-containing heterocyclic compounds with diverse bioactivities and electron transfer properties that exhibit promising applications in pharmaceutical and electrochemical industries. However, the biosynthetic mechanism of highly substituted natural phenazines remains poorly understood. In this study, we report the direct cloning and heterologous expression of the lomofungin biosynthetic gene cluster (BGC) from Streptomyces lomondensis S015. Reconstruction and overexpression of the BGCs in Streptomyces coelicolor M1152 resulted in eight phenazine derivatives including two novel hybrid phenazine metabolites, and the biosynthetic pathway of lomofungin was proposed. Furthermore, gene deletion suggested that NAD(P)H-dependent oxidoreductase gene lomo14 is a nonessential gene in the biosynthesis of lomofungin. Cytotoxicity evaluation of the isolated phenazines and lomofungin was performed. Specifically, lomofungin shows substantial inhibition against two human cancer cells, HCT116 and 5637. These results provide insights into the biosynthetic mechanism of lomofungin, which will be useful for the directed biosynthesis of natural phenazine derivatives.
Collapse
Affiliation(s)
- Ru-Xiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Ling Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao-Lan Sheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Yue SJ, Zhou Z, Huang P, Wei YC, Zhan SX, Feng TT, Liu JR, Sun HC, Han WS, Xue ZL, Yan ZX, Wang W, Zhang XH, Hu HB. Development of the Static and Dynamic Gene Expression Regulation Toolkit in Pseudomonas chlororaphis. ACS Synth Biol 2024; 13:913-920. [PMID: 38377538 DOI: 10.1021/acssynbio.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The advancement of metabolic engineering and synthetic biology has promoted in-depth research on the nonmodel microbial metabolism, and the potential of nonmodel organisms in industrial biotechnology is becoming increasingly evident. The nonmodel organism Pseudomonas chlororaphis is a safe plant growth promoting bacterium for the production of phenazine compounds; however, its application is seriously hindered due to the lack of an effective gene expression precise regulation toolkit. In this study, we constructed a library of 108 promoter-5'-UTR (PUTR) and characterized them through fluorescent protein detection. Then, 6 PUTRs with stable low, intermediate, and high intensities were further characterized by report genes lacZ encoding β-galactosidase from Escherichia coli K12 and phzO encoding PCA monooxygenase from P. chlororaphis GP72 and thus developed as a static gene expression regulation system. Furthermore, the stable and high-intensity expressed PMOK_RS0128085UTR was fused with the LacO operator to construct an IPTG-induced plasmid, and a self-induced plasmid was constructed employing the high-intensity PMOK_RS0116635UTR regulated by cell density, resulting in a dynamic gene expression regulation system. In summary, this study established two sets of static and dynamic regulatory systems for P. chlororaphis, providing an effective toolkit for fine-tuning gene expression and reprograming the metabolism flux.
Collapse
Affiliation(s)
- Sheng-Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Chen Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Xuan Zhan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong-Tong Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Rui Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao-Cheng Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Shang Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Long Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Xin Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
González‐Valdez A, Escalante A, Soberón‐Chávez G. Heterologous production of rhamnolipids in Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 based on the endogenous production of N-acyl-homoserine lactones. Microb Biotechnol 2024; 17:e14377. [PMID: 38041625 PMCID: PMC10832566 DOI: 10.1111/1751-7915.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Rhamnolipids (RL) are biosurfactants naturally produced by the opportunistic pathogen Pseudomonas aeruginosa. Currently, RL are commercialized for various applications and produced by Pseudomonas putida due to the health risks associated with their large-scale production by P. aeruginosa. In this work, we show that RL containing one or two rhamnose moieties (mono-RL or di-RL, respectively) can be produced by the innocuous soil-bacterium Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 at titres up to 66 mg/L (about 86% of the production of P. aeruginosa PAO1 in the same culture conditions). The production of RL depends on the expression of P. aeruginosa PAO1 genes encoding the enzymes RhlA, RhlB and RhlC. These genes were introduced in a plasmid, together with a transcriptional regulator (rhlR) forming part of the same operon, with and without RhlC. We show that the activation of rhlAB by RhlR depends on its interaction with P. chlororaphis endogenous acyl-homoserine lactones, which are synthetized by either PhzI or CsaI autoinducer synthases (producing 3-hydroxy-hexanoyl homoserine lactone, 3OH-C6-HSL, or 3-oxo-hexanoyl homoserine lactone, 3O-C6-HSL, respectively). P. chlororaphis transcriptional regulator couple with 3OH-C6-HSL is the primary activator of gene expression for phenazine-1-carboxylic acid (PCA) and phenazine-1-carboxamide (PCN) production in this soil bacterium. We show that RhlR coupled with 3OH-C6-HSL or 3O-C6-HSL promotes RL production and increases the production of PCA in P. chlororaphis. However, PhzR/3OH-C6-HSL or CsaR/3O-C6-HSL cannot activate the expression of the rhlAB operon to produce mono-RL. These results reveal a complex regulatory interaction between RhlR and P. chlororaphis quorum-sensing signals and highlight the biotechnology potential of P. chlororaphis ATCC 9446 expressing P. aeruginosa rhlAB-R or rhlAB-R-C for the industrial production of RL.
Collapse
Affiliation(s)
- Abigail González‐Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Gloria Soberón‐Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
| |
Collapse
|
8
|
Guo S, Zhao Q, Hu H, Wang W, Bilal M, Fei Q, Zhang X. Metabolic Degradation and Bioactive Derivative Synthesis of Phenazine-1-Carboxylic Acid by Genetically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37247609 DOI: 10.1021/acs.jafc.3c01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) secreted by Pseudomonas chlororaphis has been commercialized and widely employed as an antifungal pesticide. However, it displays potential hazards to nontarget microorganisms and the environment. Although the PCA degradation characteristics have received extensive attention, the biodegradation efficiency is still insufficient to address the environmental risks. In this study, an engineered Pseudomonas capable of degrading PCA was constructed by introducing heterologous PCA 1,2-dioxygenase (PcaA1A2A3A4). By integrating the PCA degradation module in the chemical mutagenesis mutant P3, 7.94 g/L PCA can be degraded in 60 h, which exhibited the highest PCA degradation efficiency to date and was 35.4-fold higher than that of the PCA natural degraders. Additionally, PCA was converted to 1-methoxyphenazine through structure modification by introducing the functional enzymes PhzSPa and PhzMLa, which has good antifungal activity and environmental compatibility. This work demonstrates new possibilities for developing PCA-derived biopesticides and enables targeted control of the impact of PCA in diverse environments.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Franco A, Elbahnasy M, Rosenbaum MA. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems. Microb Biotechnol 2023; 16:579-594. [PMID: 36571174 PMCID: PMC9948232 DOI: 10.1111/1751-7915.14199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
Mediated extracellular electron transfer (EET) might be a great vehicle to connect microbial bioprocesses with electrochemical control in stirred-tank bioreactors. However, mediated electron transfer to date is not only much less efficient but also much less studied than microbial direct electron transfer to an anode. For example, despite the widespread capacity of pseudomonads to produce phenazine natural products, only Pseudomonas aeruginosa has been studied for its use of phenazines in bioelectrochemical applications. To provide a deeper understanding of the ecological potential for the bioelectrochemical exploitation of phenazines, we here investigated the potential electroactivity of over 100 putative diverse native phenazine producers and the performance within bioelectrochemical systems. Five species from the genera Pseudomonas, Streptomyces, Nocardiopsis, Brevibacterium and Burkholderia were identified as new electroactive bacteria. Electron discharge to the anode and electric current production correlated with the phenazine synthesis of Pseudomonas chlororaphis subsp. aurantiaca. Phenazine-1-carboxylic acid was the dominant molecule with a concentration of 86.1 μg/ml mediating an anodic current of 15.1 μA/cm2 . On the other hand, Nocardiopsis chromatogenes used a wider range of phenazines at low concentrations and likely yet-unknown redox compounds to mediate EET, achieving an anodic current of 9.5 μA/cm2 . Elucidating the energetic and metabolic usage of phenazines in these and other species might contribute to improving electron discharge and respiration. In the long run, this may enhance oxygen-limited bioproduction of value-added compounds based on mediated EET mechanisms.
Collapse
Affiliation(s)
- Angel Franco
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Mahmoud Elbahnasy
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| |
Collapse
|
10
|
Bioactivity of bacteria associated with Red Sea nudibranchs and whole genome sequence of Nocardiopsis dassonvillei RACA-4. Mar Genomics 2023; 67:101004. [PMID: 36521348 DOI: 10.1016/j.margen.2022.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Microorganisms associated with marine invertebrates consider an important source of bioactive products. This study aimed to screen for antimicrobial and anticancer activity of crude extracts of bacteria associated with Red sea nudibranchs and molecular identification of the bioactive isolates using 16Sr RNA sequencing, in addition to whole-genome sequencing of one of the most bioactive bacteria. This study showed that bacteria associated with Red sea nudibranchs are highly bioactive and 16Sr RNA sequencing results showed that two isolates belonged to Firmicutes, and two isolates belonged to Proteobacteria, and Actinobacteria. The whole genome sequence data of the isolated Nocardiopsis RACA4 isolate has an estimated genome length of 6,721,839 bp and the taxonomy showed it belongs to the bacteria Nocardiopsis dassonvillei. The De novo assembly of RACA-4 paired reads using Unicycler v0.4.8 initially yielded 97 contigs with an N50 value of 214,568 bp and L50 value of 10, The resulting assembly was further mapped to the reference genome Nocardiopsis dassonvillei strain NCTC10488 using RagTag software v.2.1.0 and a final genome assembly resulted in 39 contigs and N50 value of 6,726,007 and L50 of 1. Genome mining using anti-smash showed around 9.1% of the genome occupied with genes related to secondary metabolites biosynthesis. A wide variety of secondary metabolites belonging to Polyketides, Terpenes, and nonribosomal peptides were predicted with high degree of similarity to known compounds. Non-characterized clusters were also found which suggest new natural compounds discovered by further studies.
Collapse
|
11
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Chi X, Wang Y, Miao J, Wang W, Sun Y, Yu Z, Feng Z, Cheng S, Chen L, Ge Y. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05. Microbiol Res 2022; 260:127050. [DOI: 10.1016/j.micres.2022.127050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
13
|
Guo S, Hu H, Wang W, Bilal M, Zhang X. Production of Antibacterial Questiomycin A in Metabolically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7742-7750. [PMID: 35708224 DOI: 10.1021/acs.jafc.2c03216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pseudomonas chlororaphis has been demonstrated as a valuable source of antimicrobial metabolites for plant disease biocontrol and biopesticide development. Although phenazine-1-carboxylic acid (PCA) secreted by P. chlororaphis has been commercialized as an antifungal biopesticide, it shows poor antibacterial activity. Questiomycin A, with versatile antibacterial activities, is mainly discovered in some well-known phenazine-producing strains but not in Pseudomonas. Its low titer hinders practical applications. In this work, a metabolite was first identified as Questiomycin A in P. chlororaphis-derived strain HT66ΔphzBΔNat. Subsequently, Questiomycin A has been elucidated to share the same biosynthesis process with PCA by gene deletion and in vitro assays. Through rational metabolic engineering, heterologous phenoxazinone synthase introduction, and medium optimization, the titer reached 589.78 mg/L in P. chlororaphis, the highest production reported to date. This work contributes to a better understanding of Questiomycin A biosynthesis and demonstrates a promising approach to developing a new antibacterial biopesticide in Pseudomonas.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Lawrence JM, Yin Y, Bombelli P, Scarampi A, Storch M, Wey LT, Climent-Catala A, Baldwin GS, O’Hare D, Howe CJ, Zhang JZ, Ouldridge TE, Ledesma-Amaro R. Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. SCIENCE ADVANCES 2022; 8:eabm5091. [PMID: 35507663 PMCID: PMC9067924 DOI: 10.1126/sciadv.abm5091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization. In this work, we developed a strong, unidirectional, redox-responsive promoter before deriving a mutant promoter library with a spectrum of strengths. We constructed genetic circuits with these parts and demonstrated their activation by multiple classes of redox molecules. Last, we demonstrated electrochemical activation of gene expression under aerobic conditions using a novel, modular bioelectrochemical device. These genetic and electrochemical tools facilitate the design and improve the performance of electrogenetic systems. Furthermore, the genetic design strategies used can be applied to other redox-responsive promoters to further expand the available tools for electrogenetics.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yutong Yin
- Department of Bioengineering, Imperial College London, London, UK
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Bioengineering, Imperial College London, London, UK
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Alberto Scarampi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marko Storch
- London DNA Foundry, Imperial College Translation and Innovation Hub, London, UK
| | - Laura T. Wey
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Geoff S. Baldwin
- Department of Life Sciences, Imperial College London, London, UK
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Jenny Z. Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, UK
- Corresponding author.
| |
Collapse
|
15
|
Wan Y, Liu H, Xian M, Huang W. Biosynthetic Pathway Construction and Production Enhancement of 1-Hydroxyphenazine Derivatives in Pseudomonas chlororaphis H18. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1223-1231. [PMID: 35057615 DOI: 10.1021/acs.jafc.1c07760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1-Hydroxyphenazine derivatives are phenazine family chemicals with broad-spectrum antibacterial and potential biological activities. However, the lack of variety and low titer hinder their applications. In this research, three enzymes PhzS (monooxygenase), NaphzNO1 (N-monooxygenase), and LaphzM (methyltransferase) were heterologously expressed in a phenazine-1-carboxylic acid generating strain Pseudomonas chlororaphis H18. Four phenazines, 1-hydroxyphenazine, 1-methoxyphenazine, 1-hydroxyphenazine N' 10-oxide, and a novel phenazine derivative 1-methoxyphenazine N' 10-oxide, were isolated, characterized in the genetically modified strains, and exhibited excellent antimicrobial activities. Next, we verified the hydroxyl methylation activity of LaphzM and elucidated the biosynthetic pathway of 1-methoxyphenazine N' 10-oxide in vitro. Moreover, the titer of 1-hydroxyphenazine derivatives was engineered. The three compounds 1-methoxyphenazine, 1-hydroxyphenazine N' 10-oxide, and 1-methoxyphenazine N' 10-oxide all reach the highest titer reported to date. This work provides a promising platform for phenazine derivatives' combinatorial biosynthesis and engineering.
Collapse
Affiliation(s)
- Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongchen Liu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wei Huang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
The silver-mediated annulation of arylcarbamic acids and nitrosoarenes toward phenazines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Wan Y, Liu H, Xian M, Huang W. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18. Microb Cell Fact 2021; 20:235. [PMID: 34965873 PMCID: PMC8717658 DOI: 10.1186/s12934-021-01731-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
Background 1-Hydroxyphenazine (1-OH-PHZ) is a phenazine microbial metabolite with broad-spectrum antibacterial activities against a lot of plant pathogens. However, its use is hampered by the low yield all along. Metabolic engineering of microorganisms is an increasingly powerful method for the production of valuable organisms at high levels. Pseudomonas chlororaphis is recognized as a safe and effective plant rhizosphere growth-promoting bacterium, and faster growth rate using glycerol or glucose as a renewable carbon source. Therefore, Pseudomonas chlororaphis is particularly suitable as the chassis cell for the modification and engineering of phenazines. Results In this study, enzyme PhzS (monooxygenase) was heterologously expressed in a phenazine-1-carboxylic acid (PCA) generating strain Pseudomonas chlororaphis H18, and 1-hydroxyphenazine was isolated, characterized in the genetically modified strain. Next, the yield of 1-hydroxyphenazine was systematically engineered by the strategies including (1) semi-rational design remodeling of crucial protein PhzS, (2) blocking intermediate PCA consumption branch pathway, (3) enhancing the precursor pool, (4) engineering regulatory genes, etc. Finally, the titer of 1-hydroxyphenazine reached 3.6 g/L in 5 L fermenter in 54 h. Conclusions The 1-OH-PHZ production of Pseudomonas chlororaphis H18 was greatly improved through systematically engineering strategies, which is the highest, reported to date. This work provides a promising platform for 1-hydroxyphenazine engineering and production. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01731-y.
Collapse
Affiliation(s)
- Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongchen Liu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Wei Huang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Che Y, Qi X, Qu W, Shi B, Lin Q, Yao H, Zhang Y, Wei T. Synthetic strategies of phenazine derivatives: a review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu‐Xin Che
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Xiao‐Ni Qi
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Bing‐Bing Shi
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Qi Lin
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Hong Yao
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| |
Collapse
|
19
|
Advances in Phenazines over the Past Decade: Review of Their Pharmacological Activities, Mechanisms of Action, Biosynthetic Pathways and Synthetic Strategies. Mar Drugs 2021; 19:md19110610. [PMID: 34822481 PMCID: PMC8620606 DOI: 10.3390/md19110610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.
Collapse
|
20
|
Petkevičius V, Vaitekūnas J, Gasparavičiūtė R, Tauraitė D, Meškys R. An efficient and regioselective biocatalytic synthesis of aromatic N-oxides by using a soluble di-iron monooxygenase PmlABCDEF produced in the Pseudomonas species. Microb Biotechnol 2021; 14:1771-1783. [PMID: 34115446 PMCID: PMC8313251 DOI: 10.1111/1751-7915.13849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Here, we present an improved whole-cell biocatalysis system for the synthesis of heteroaromatic N-oxides based on the production of a soluble di-iron monooxygenase PmlABCDEF in Pseudomonas sp. MIL9 and Pseudomonas putida KT2440. The presented biocatalysis system performs under environmentally benign conditions, features a straightforward and inexpensive procedure and possesses a high substrate conversion and product yield. The capacity of gram-scale production was reached in the simple shake-flask cultivation. The template substrates (pyridine, pyrazine, 2-aminopyrimidine) have been converted into pyridine-1-oxide, pyrazine-1-oxide and 2-aminopyrimidine-1-oxide in product titres of 18.0, 19.1 and 18.3 g l-1 , respectively. To our knowledge, this is the highest reported productivity of aromatic N-oxides using biocatalysis methods. Moreover, comparing to the chemical method of aromatic N-oxides synthesis based on meta-chloroperoxybenzoic acid, the developed approach is applicable for a regioselective oxidation that is an additional advantageous option in the preparation of the anticipated N-oxides.
Collapse
Affiliation(s)
- Vytautas Petkevičius
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| |
Collapse
|
21
|
Chen XB, Huang ST, Li J, Yang Q, Yang L, Yu F. Highly Regioselective and Chemoselective [3 + 3] Annulation of Enaminones with ortho-Fluoronitrobenzenenes: Divergent Synthesis of Aposafranones and Their N-Oxides. Org Lett 2021; 23:3032-3037. [PMID: 33792341 DOI: 10.1021/acs.orglett.1c00710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A base-promoted unprecedented strategy for the regioselective and chemoselective divergent synthesis of highly functionalized aposafranones and their N-oxides has been developed from the [3 + 3] annulation of enaminones with o-fluoronitrobenzenenes. This novel synthetic strategy offers an alternative method for the construction of aposafranones and their N-oxides are meaningful in the fields of both biology and organic synthesis. The established protocol explores the annulation scope of enaminones, and it expands the application of nitro-based cyclization.
Collapse
Affiliation(s)
- Xue-Bing Chen
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Shun-Tao Huang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Jie Li
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Qi Yang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Li Yang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, People's Republic of China
| |
Collapse
|
22
|
Li HL, Deng RX, Wang W, Liu KQ, Hu HB, Huang XQ, Zhang XH. Biosynthesis and Characterization of Medium-Chain-Length Polyhydroxyalkanoate with an Enriched 3-Hydroxydodecanoate Monomer from a Pseudomonas chlororaphis Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3895-3903. [PMID: 33759523 DOI: 10.1021/acs.jafc.1c00500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHAs) have been reported with agricultural and medical applications in virtue of their biodegradable and biocompatible properties. Here, we systematically engineered three modules for the enhanced biosynthesis of medium-chain-length polyhydroxyalkanoate (mcl-PHA) in Pseudomonas chlororaphis HT66. The phzE, fadA, and fadB genes were deleted to block the native phenazine pathway and weaken the fatty acid β-oxidation pathway. Additionally, a PHA depolymerase gene phaZ was knocked out to prevent the degradation of mcl-PHA. Three genes involved in the mcl-PHA biosynthesis pathway were co-overexpressed to increase carbon flux. The engineered strain HT4Δ::C1C2J exhibited an 18.2 g/L cell dry weight with 84.9 wt % of mcl-PHA in a shake-flask culture, and the 3-hydroxydodecanoate (3HDD) monomer was increased to 71.6 mol %. Thermophysical and mechanical properties of mcl-PHA were improved with an enriched ratio of 3HDD. This study demonstrated a rational metabolic engineering approach to enhance the production of mcl-PHA with the enriched dominant monomer and improved material properties.
Collapse
Affiliation(s)
- Hui-Ling Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ru-Xiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai-Quan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xian-Qing Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Deng RX, Zhang Z, Li HL, Wang W, Hu HB, Zhang XH. Identification of a Novel Bioactive Phenazine Derivative and Regulation of phoP on Its Production in Streptomyces lomondensis S015. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:974-981. [PMID: 33443412 DOI: 10.1021/acs.jafc.0c06498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural phenazines are a class of multifunctional secondary metabolites of bacteria that play an important role in the biocontrol of plant pathogens. In this paper, a novel bioactive phenazine derivative was isolated from Streptomyces lomondensis S015 through silica gel chromatography and preparative high-performance liquid chromatography (HPLC). The structure was identified as 1-carboxyl-6-formyl-4,7,9-trihydroxy-phenazine (CFTHP) by NMR spectroscopy in combination with ultraperformance liquid chromatography & mass spectrometry (UPLC-MS). CFTHP could inhibit Pythium ultimum, Rhizoctonia solani, Septoria steviae, and Fusarium oxysporum f. sp. niveum with minimal inhibitory concentration (MIC) values of 16, 32, 16, and 16 μg/mL, respectively. A global regulatory gene phoP could positively regulate CFTHP biosynthesis since its production was 3.0-fold enhanced by phoP overexpression and inhibited by phoP deletion in Streptomyces lomondensis S015. These studies illustrated the potential of CFTHP as a promising biopesticide and provided a reference for phenazine production improvement.
Collapse
Affiliation(s)
- Ru-Xiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Ling Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Clifford ER, Bradley RW, Wey LT, Lawrence JM, Chen X, Howe CJ, Zhang JZ. Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems. Chem Sci 2021; 12:3328-3338. [PMID: 34164103 PMCID: PMC8179378 DOI: 10.1039/d0sc05655c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Bioelectrochemical approaches for energy conversion rely on efficient wiring of natural electron transport chains to electrodes. However, state-of-the-art exogenous electron mediators give rise to significant energy losses and, in the case of living systems, long-term cytotoxicity. Here, we explored new selection criteria for exogenous electron mediation by examining phenazines as novel low-midpoint potential molecules for wiring the photosynthetic electron transport chain of the cyanobacterium Synechocystis sp. PCC 6803 to electrodes. We identified pyocyanin (PYO) as an effective cell-permeable phenazine that can harvest electrons from highly reducing points of photosynthesis. PYO-mediated photocurrents were observed to be 4-fold higher than mediator-free systems with an energetic gain of 200 mV compared to the common high-midpoint potential mediator 2,6-dichloro-1,4-benzoquinone (DCBQ). The low-midpoint potential of PYO led to O2 reduction side-reactions, which competed significantly against photocurrent generation; the tuning of mediator concentration was important for outcompeting the side-reactions whilst avoiding acute cytotoxicity. DCBQ-mediated photocurrents were generally much higher but also decayed rapidly and were non-recoverable with fresh mediator addition. This suggests that the cells can acquire DCBQ-resistance over time. In contrast, PYO gave rise to steadier current enhancement despite the co-generation of undesirable reactive oxygen species, and PYO-exposed cells did not develop acquired resistance. Moreover, we demonstrated that the cyanobacteria can be genetically engineered to produce PYO endogenously to improve long-term prospects. Overall, this study established that energetic gains can be achieved via the use of low-potential phenazines in photosynthetic bioelectrochemical systems, and quantifies the factors and trade-offs that determine efficacious mediation in living bioelectrochemical systems.
Collapse
Affiliation(s)
- Eleanor R Clifford
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert W Bradley
- Department of Life Sciences Sir Alexander Fleming Building, Imperial College SW7 2AZ UK
| | - Laura T Wey
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1QW UK
| | - Joshua M Lawrence
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1QW UK
| | - Xiaolong Chen
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1QW UK
| | - Jenny Z Zhang
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
25
|
Schwanemann T, Otto M, Wierckx N, Wynands B. Pseudomonasas Versatile Aromatics Cell Factory. Biotechnol J 2020; 15:e1900569. [DOI: 10.1002/biot.201900569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Tobias Schwanemann
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Maike Otto
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Nick Wierckx
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Benedikt Wynands
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| |
Collapse
|