1
|
Xu Y, Wang T, Guo Y, Li G, Lian J. Improvements of Corrosion Resistance and Antibacterial Properties of Hydroxyapatite/Cupric Oxide Doped Titania Composite Coatings on Degradable Magnesium Alloys. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13937-13948. [PMID: 33172269 DOI: 10.1021/acs.langmuir.0c02442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The excellent biocompatibility of calcium phosphate (CaP) coatings makes them widely used in magnesium (Mg) alloy orthopedic implant materials. However, the porous morphology of CaP coatings limits their corrosion resistance. A cupric oxide (CuO) doped titania (TiO2) sol-gel coating is prepared on a porous hydroxyapatite (HA) coating. According to electrochemical test results, the HA/CuO-TiO2 coating obtains a current density of 6 × 10-4 mA/cm2, lower than that of the Mg alloy (2.6 × 10-2 mA/cm2). The hydrogen evaluation of the HA/CuO-TiO2 coating is only 1/12 that of the Mg alloy after immersion for 7 days. In addition, the HA/CuO-TiO2 coating has an antibacterial rate of 99.5 ± 0.4% against Staphylococcus aureus, significantly higher than that of the HA coating (19.8 ± 0.3%) and HTC0 coating (38.4 ± 0.5%). The CuO doped composite coating has no adverse effect or cytotoxicity on cell proliferation (cell viability ≥79.6%). Hence, the HA/CuO-TiO2 composite coating is useful for enhancing the corrosion resistance and antibacterial properties of Mg alloys while ensuring cytocompatibility. The HA/CuO-TiO2 coated AZ60 Mg alloy can meet the requirements of clinical application.
Collapse
Affiliation(s)
- Yingchao Xu
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Tianxiao Wang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Yunting Guo
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Guangyu Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Jianshe Lian
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
2
|
Yang Z, Xi Y, Bai J, Jiang Z, Wang S, Zhang H, Dai W, Chen C, Gou Z, Yang G, Gao C. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo. Biomaterials 2020; 269:120534. [PMID: 33243425 DOI: 10.1016/j.biomaterials.2020.120534] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022]
Abstract
The dual functional implants of antibacteria and osteointegration are highly demanded in orthopedic and dentistry, especially for patients who suffer from diabetes or osteoporosis simultaneously. However, there is lack of the facile and robust method to produce clinically applicable implants with this dual function although coatings possessing single function have been extensively developed. Herein, hyperbranched poly-L-lysine (HBPL) polymers were covalently immobilized onto the alkali-heat treated titanium (Ti) substrates and implants by using 3-glycidyloxypropyltrimethoxysilane (GPTMS) as the coupling agent, which displayed excellent antibacterial activity against S. aureus and E. coli with an efficiency as high as 89.4% and 92.2% in vitro, respectively. The HBPL coating also significantly promoted the adhesion, spreading, proliferation and osteogenic differentiation of MC3T3-E1 cells in vitro. Furthermore, the results of a S. aureus infection rat model in vivo ulteriorly verified that the HBPL-modified screws had good antibacterial and anti-inflammatory abilities at an early stage of implantation and better osteointegration compared with the control Ti screws.
Collapse
Affiliation(s)
- Zhijian Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Xi
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jun Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Dai
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Chaozhen Chen
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Kaplin IY, Lokteva ES, Golubina EV, Maslakov KI, Strokova NE, Chernyak SA, Lunin VV. Sawdust as an effective biotemplate for the synthesis of Ce0.8Zr0.2O2 and CuO–Ce0.8Zr0.2O2 catalysts for total CO oxidation. RSC Adv 2017. [DOI: 10.1039/c7ra10791a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The high catalytic efficiency of biomorphic systems can be explained by the unique texture and effect of ash impurities (K, Ca).
Collapse
Affiliation(s)
- Igor Yu. Kaplin
- Lomonosov Moscow State University
- Chemistry Department
- Moscow
- Russia
| | | | | | | | | | | | - Valery V. Lunin
- Lomonosov Moscow State University
- Chemistry Department
- Moscow
- Russia
| |
Collapse
|
7
|
Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL. Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 2017; 46:481-558. [DOI: 10.1039/c6cs00829a] [Citation(s) in RCA: 839] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review addresses recent advances in synthesis strategies of hierarchically porous materials and their structural design from micro-, meso- to macro-length scale.
Collapse
Affiliation(s)
- Xiao-Yu Yang
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Li-Hua Chen
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Yu Li
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Joanna Claire Rooke
- Laboratory of Inorganic Materials Chemistry (CMI)
- University of Namur
- B-5000 Namur
- Belgium
| | - Clément Sanchez
- Chimie de la Matiere Condensee de Paris
- UniversitePierre et Marie Curie (Paris VI)
- Collège de France
- France
| | - Bao-Lian Su
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| |
Collapse
|
8
|
Jukapli NM, Bagheri S. Recent developments on titania nanoparticle as photocatalytic cancer cells treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:421-30. [DOI: 10.1016/j.jphotobiol.2016.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023]
|
9
|
Abstract
The design, fabrication, performance and applications of hierarchical semiconductor photocatalysts are thoroughly reviewed and apprised.
Collapse
Affiliation(s)
- Xin Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- P. R. China
- Key Laboratory of Energy Plants Resource and Utilization
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- P. R. China
- Department of Physics
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| |
Collapse
|
10
|
Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 2015; 75:203-222. [PMID: 26513414 DOI: 10.1016/j.biomaterials.2015.10.035] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 01/10/2023]
Abstract
The therapeutic applications of silver nanoparticles (AgNPs) against biomedical device-associated infections (BAI), by local delivery, are encountered with risks of detachment, instability and nanotoxicity in physiological milieus. To firmly anchor AgNPs onto modified biomaterial surfaces through tight physicochemical interactions would potentially relieve these concerns. Herein, we present a strategy for hierarchical TiO2/Ag coating, in an attempt to endow medical titanium (Ti) with anticorrosion and antibacterial properties whilst maintaining normal biological functions. In brief, by harnessing the adhesion and reactivity of bioinspired polydopamine, silver nanoparticles were easily immobilized onto peripheral surface and incorporated into interior cavity of a micro/nanoporous TiO2 ceramic coating in situ grown from template Ti. The resulting coating protected the substrate well from corrosion and gave a sustained release of Ag(+) up to 28 d. An interesting germicidal effect, termed "trap-killing", was observed against Staphylococcus aureus strain. The multiple osteoblast responses, i.e. adherence, spreading, proliferation, and differentiation, were retained normal or promoted, via a putative surface-initiated self-regulation mechanism. After subcutaneous implantation for a month, the coated specimens elicited minimal, comparable inflammatory responses relative to the control. Moreover, this simple and safe functionalization strategy manifested a good degree of flexibility towards three-dimensional sophisticated objects. Expectedly, it can become a prospective bench to bedside solution to current challenges facing orthopedics.
Collapse
|