1
|
Hayashi M, Sumi T, Inooka Y, Hamatake H, Kawakita H, Ohto K, Morisada S. Effect of Particle-Substrate Interactions on Colloidal Layer Structure Prepared by Convective Self-Assembly Using Polyelectrolyte-Grafted Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8493-8502. [PMID: 38602017 DOI: 10.1021/acs.langmuir.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cationic and anionic polyelectrolytes, poly(vinylbenzyl trimethylammonium chloride) (PVBTA) and poly(sodium styrene sulfate) (PSSS), were grafted on the surface of the silica particles, respectively, and then these two types of polyelectrolyte-grafted silica particles were applied to the colloidal layer preparation by convective self-assembly (CSA) using hydrophilic or hydrophobic glass substrates to investigate the effect of the interactions between the particles and the substrate surface on the resultant layer structures. When the PVBTA-grafted silica particle (PVBTA-Si) was used, the colloidal monolayers with a non-close-packed (NCP) structure were formed on both hydrophilic and hydrophobic glass substrates, where the NCP colloidal layers on the hydrophobic glass substrate have a somewhat more ordered structure than those on the hydrophilic glass substrate. In the case of the PSSS-grafted silica particle (PSSS-Si), on the other hand, stripe patterns with close-packed (CP) colloidal layers were obtained on both types of the glass substrates. The number of layers of the stripes on the hydrophilic glass substrate was less than that on the hydrophobic glass substrate, while the spacing and width of the stripes on both substrates were similar to each other. The difference in the structures of the colloidal layers obtained here indicates that an attractive interaction, such as an electrostatic attraction and a hydrophobic interaction, between the particle and the substrate surface is necessary to achieve the NCP structure by the CSA process using polyelectrolyte-grafted silica particles.
Collapse
Affiliation(s)
- Miki Hayashi
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Takahiro Sumi
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Yaya Inooka
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Hiromu Hamatake
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Hidetaka Kawakita
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Keisuke Ohto
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Shintaro Morisada
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| |
Collapse
|
2
|
Ge J, Cheng X, Rong LH, Capadona JR, Caldona EB, Advincula RC. 3D Temperature-Controlled Interchangeable Pattern for Size-Selective Nanoparticle Capture. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422547 DOI: 10.1021/acsami.3c17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Patterned surfaces with distinct regularity and structured arrangements have attracted great interest due to their extensive promising applications. Although colloidal patterning has conventionally been used to create such surfaces, herein, we introduce a novel 3D patterned poly(N-isopropylacrylamide) (PNIPAM) surface, synthesized by using a combination of colloidal templating and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization. In order to investigate the temperature-driven 3D morphological variations at a lower critical solution temperature (LCST) of ∼32 °C, multifaceted characterization techniques were employed. Atomic force microscopy confirmed the morphological transformations at 20 and 40 °C, while water contact angle measurements, upon heating, revealed distinct trends, offering insights into the correlation between surface wettability and topography adaptations. Moreover, quartz crystal microbalance with dissipation monitoring and electrochemical measurements were employed to detect the topographical adjustments of the unique hollow capsule structure within the LCST. Tests using different sizes of PSNPs shed light on the size-selective capture-release potential of the patterned PNIPAM, accentuating its biomimetic open-close behavior. Notably, our approach negates the necessity for expensive proteins, harnessing temperature adjustments to facilitate the noninvasive and efficient reversible capture and release of nanostructures. This advancement hopes to pave the way for future innovative cellular analysis platforms.
Collapse
Affiliation(s)
- Jin Ge
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiang Cheng
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Li-Han Rong
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eugene B Caldona
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
3
|
Diepenbroek E, Pérez MB, de Beer S. PNIPAM Brushes in Colloidal Photonic Crystals Enable Ex Situ Ethanol Vapor Sensing. ACS APPLIED POLYMER MATERIALS 2024; 6:870-878. [PMID: 38230366 PMCID: PMC10788857 DOI: 10.1021/acsapm.3c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Structural colors are formed by the periodic repetition of nanostructures in a material. Upon reversibly tuning the size or optical properties of the repetitive unit inside a nanostructured material, responsive materials can be made that change color due to external stimuli. This paper presents a simple method to obtain films of ethanol vapor-responsive structural colors based on stacked poly(N-isopropylacrylamide) (PNIPAM)-grafted silica nanoparticles. Our materials show clear, reversible color transitions in the presence of near-saturated ethanol vapor. Moreover, due to the absorption of ethanol in the PNIPAM brushes, relatively long recovery times are observed (∼30 s). Materials based on bare or poly(methyl methacrylate) (PMMA) brush-grafted silica nanoparticles also change color in the presence of ethanol vapor but possess significantly shorter recovery times (∼1 s). Atomic force microscopy reveals that the delayed recovery originates from the ability of PNIPAM brushes to swell in ethanol vapor. This renders the films highly suitable for ex situ ethanol vapor sensing.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department of Molecules & Materials,
MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| | - Maria Brió Pérez
- Department of Molecules & Materials,
MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules & Materials,
MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
4
|
Zhang XR, Deng HT, Wen DL, Zeng X, Wang YL, Huang P, Zhang XS. Patterned Nanoparticle Arrays Fabricated Using Liquid Film Rupture Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37466176 DOI: 10.1021/acs.langmuir.3c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Self-assembly is an important bottom-up fabrication approach based on accurate manipulation of solid-air-liquid interfaces to construct microscale structures using nanoscale materials. This approach plays a substantial role in the fabrication of microsensors, nanosensors, and actuators. Improving the controllability of self-assembly to realize large-scale regular micro/nano patterns is crucial for this approach's further development and wider applications. Herein, we propose a novel strategy for patterning nanoparticle arrays on soft substrates. This strategy is based on a unique process of liquid film rupture self-assembly that is convenient, precise, and cost-efficient for mass manufacturing. This approach involves two key steps. First, suspended liquid films comprising monolayer polystyrene (PS) spheres are realized via liquid-air interface self-assembly over prepatterned microstructures. Second, these suspended liquid films are ruptured in a controlled manner to induce the self-assembly of internal PS spheres around the morphological edges of the underlying microstructures. This nanoparticle array patterning method is comprehensively investigated in terms of the effect of the PS sphere size, morphological effect of the microstructured substrate, key factors influencing liquid film-rupture self-assembly, and optical transmittance of the fabricated samples. A maximum rupture rate of 95.4% was achieved with an optimized geometric and dimensional design. Compared with other nanoparticle-based self-assembly methods used to form patterned arrays, the proposed approach reduces the waste of nanoparticles substantially because all nanoparticles self-assemble around the prepatterned microstructures. More nanoparticles assemble to form prepatterned arrays, which could strengthen the nanoparticle array network without affecting the initial features of prepatterned microstructures.
Collapse
Affiliation(s)
- Xin-Ran Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hai-Tao Deng
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dan-Liang Wen
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xu Zeng
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi-Lin Wang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Huang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao-Sheng Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Zhang Z, Yi G, Li P, Zhang X, Wan Z, Wang X, Zhang C, Zhang Y. Recent Advances in Binary Colloidal Crystals for Photonics and Porous Material Fabrication. J Phys Chem B 2021; 125:6012-6022. [PMID: 34038121 DOI: 10.1021/acs.jpcb.1c03349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past few years, binary colloidal crystals (BCCs) composed of both large and small particles have attracted considerable attention from the scientific community as an exciting alternative to single colloidal crystals (SCCs). In particular, more complex structures with diverse nanotopographies and desirable optical properties of BCCs can be obtained by various colloidal assembly methods, as compared to SCCs. Furthermore, high accuracy in crystal growth with controllable stoichiometries allows for a great deal of promising applications in the fields of both interfacial and material sciences. The visible-light diffraction property of BCCs is more superior than that of SCCs, which makes them have more promising applications in the fabrication of photonic crystals with full band gaps. On the other hand, their spherical shapes and ease of removal property make them ideal templates for ordered porous material fabrication. Hence, this perspective outlined recent advances in assembly approaches of BCCs, with an emphasis on their promising applications for advanced photonics and multifunctional porous material fabrication. Eventually, some challenging yet important issues and some future perspectives are further discussed.
Collapse
Affiliation(s)
- Zhengting Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Guiyun Yi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Peng Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Xiuxiu Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Zhuoyan Wan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Xiaodong Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| |
Collapse
|
7
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
8
|
Yang J, Zhu Z, Feng J, Xue M, Meng Z, Qiu L, Mondele Mbola N. Dimethyl sulfoxide infiltrated photonic crystals for gas sensing. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Fang X, Zheng C, Yin Z, Wang Z, Wang J, Liu J, Luo D, Liu YJ. Hierarchically Ordered Silicon Metastructures from Improved Self-Assembly-Based Nanosphere Lithography. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12345-12352. [PMID: 32069012 DOI: 10.1021/acsami.9b22932] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed an improved self-assembly method to obtain a large-area, high-quality templated monolayer mask using the polystyrene spheres. On the basis of the templated mask, hierarchically ordered Si metastructures with different nanosteps are fabricated using cyclic inductively coupled plasma etching technique. By evaporating a thin gold capping layer on these Si metastructures, their optical properties are comparatively studied using the surface-enhanced Raman scattering spectroscopy. Our proposed technique is highly promising for fabricating a variety of periodic three-dimensional hierarchically ordered metastructures, which could be further utilized for applications in SERS-based biosensors, optical absorbers, metamaterial/metasurface devices, etc.
Collapse
Affiliation(s)
- Xiaoguo Fang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Harbin Institute of Technology, Harbin 150001, China
| | - Changxiong Zheng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhen Yin
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenming Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Volk K, Deißenbeck F, Mandal S, Löwen H, Karg M. Moiré and honeycomb lattices through self-assembly of hard-core/soft-shell microgels: experiment and simulation. Phys Chem Chem Phys 2019; 21:19153-19162. [DOI: 10.1039/c9cp03116b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Moiré and honeycomb lattices result from the sequential double deposition of monolayers of core/shell microgels in dependence of the drying conditions.
Collapse
Affiliation(s)
- Kirsten Volk
- Institut für Physikalische Chemie I: Kolloide und Nanooptik
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Florian Deißenbeck
- Institut für Theoretische Physik II: Weiche Materie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Matthias Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| |
Collapse
|
11
|
Diba FS, Boden A, Thissen H, Bhave M, Kingshott P, Wang PY. Binary colloidal crystals (BCCs): Interactions, fabrication, and applications. Adv Colloid Interface Sci 2018; 261:102-127. [PMID: 30243666 DOI: 10.1016/j.cis.2018.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
The organization of matter into hierarchical structures is a fundamental characteristic of functional materials and living organisms. Binary colloidal crystal (BCC) systems present a diversified range of nanotopographic structures where large and small colloidal particles simultaneously self-assemble into either 2D monolayer or 3D hierarchical crystal lattices. More importantly, understanding how BCCs form opens up the possibility to fabricate more complex systems such as ternary or quaternary colloidal crystals. Monolayer BCCs can also offer the possibility to achieve surface micro- and nano-topographies with heterogeneous chemistries, which can be challenging to achieve with other traditional fabrication tools. A number of fabrication methods have been reported that enable generation of BCC structures offering high accuracy in growth with controllable stoichiometries; however, it is still a challenge to make uniform BCC structures over large surface areas. Therefore, fully understand the mechanism of binary colloidal self-assembly is crucial and new/combinational methods are needed. In this review, we summarize the recent advances in BCC fabrication using particles made of different materials, shapes, and dispersion medium. Depending on the potential application, the degree of order and efficiency of crystal formation has to be determined in order to induce variability in the intended lattice structures. The mechanisms involved in the formation of highly ordered lattice structures from binary colloidal suspensions and applications are discussed. The generation of BCCs can be controlled by manipulation of their extensive phase behavior, which facilitates a wide range potential applications in the fields of both material and biointerfacial sciences including photonics, biosensors, chromatography, antifouling surfaces, biomedical devices, and cell culture tools.
Collapse
|
12
|
Lotito V, Zambelli T. Pattern Formation in Binary Colloidal Assemblies: Hidden Symmetries in a Kaleidoscope of Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7827-7843. [PMID: 29886749 DOI: 10.1021/acs.langmuir.8b01411] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we present a detailed investigation of the morphology of binary colloidal structures formed by self-assembly at air/water interface of particles of two different sizes, with a size ratio such that the larger particles do not retain a hexagonal arrangement in the binary assembly. While the structure and symmetry of binary mixtures in which such hexagonal order is preserved has been thoroughly scrutinized, binary colloids in the regime of nonpreservation of the hexagonal order have not been examined with the same level of detail due also to the difficulty in finding analysis tools suitable to recognize hidden symmetries in seemingly amorphous and disordered arrangements. For this purpose, we resorted to a combination of different analysis tools based on computational geometry and computational topology to get a comprehensive picture of the morphology of the assemblies. By carrying out an extensive investigation of binary assemblies in this regime with variable concentration of smaller particles with respect to larger particles, we identify the main patterns that coexist in the apparently disordered assemblies and detect transitions in the symmetries upon increase in the number of small particles. As the concentration of small particles increases, large particle arrangements become more dilute and a transition from hexagonal to rhombic and square symmetries occurs, accompanied also by an increase in clusters of small particles; the relative weight of each specific symmetry can be controlled by varying the composition of the assemblies. The demonstration of the possibility to control the morphology of apparently disordered binary colloidal assemblies by varying experimental conditions and the definition of a route for the investigation of disordered assemblies are important for future studies of complex colloidal patterns to understand self-assembly mechanisms and to tailor the physical properties of colloidal assemblies.
Collapse
Affiliation(s)
- Valeria Lotito
- Laboratory of Biosensors and Bioelectronics , Institute for Biomedical Engineering, ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics , Institute for Biomedical Engineering, ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| |
Collapse
|
13
|
Yao L, Li Q, Guan Y, Zhu XX, Zhang Y. Tetrahedral, Octahedral, and Triangular Dipyramidal Microgel Clusters with Thermosensitivity Fabricated from Binary Colloidal Crystals Template and Thiol-Ene Reaction. ACS Macro Lett 2018; 7:80-84. [PMID: 35610921 DOI: 10.1021/acsmacrolett.7b00935] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A template-based strategy to fabricate soft colloidal clusters with distinct symmetries of tetrahedra, octahedra, and triangular dipyramid is described. We use binary microgel colloidal crystals as a template, in which the large microgels with surface thiol groups are arranged into a close-packed lattice and a few small microgels with surface vinyl groups occupy the tetrahedral or octahedral interstitial sites, and then immobilize the structure via in situ thiol-ene reaction under UV irradiation. Both 2D cross sections and reconstructed 3D morphology of these clusters are clearly characterized by confocal laser scanning microscopy. The formation mechanism of microgel clusters is discussed, which is closely related to the microgel soft properties, size ratio, and colloidal crystal packing structure. The resulting clusters inherit the thermosensitivity and defects tolerance of poly(N-isopropylacrylamide) (PNIPAM) microgel, which would facilitate their self-assembly into more complex structures.
Collapse
Affiliation(s)
- Lijuan Yao
- Key
Laboratory of Functional Polymer Materials, State Key Laboratory of
Medicinal Chemical Biology, The Co-Innovation Center of Chemistry
and Chemical Engineering of Tianjin, Institute of Polymer Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Li
- Key
Laboratory of Functional Polymer Materials, State Key Laboratory of
Medicinal Chemical Biology, The Co-Innovation Center of Chemistry
and Chemical Engineering of Tianjin, Institute of Polymer Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Guan
- Key
Laboratory of Functional Polymer Materials, State Key Laboratory of
Medicinal Chemical Biology, The Co-Innovation Center of Chemistry
and Chemical Engineering of Tianjin, Institute of Polymer Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - X. X. Zhu
- Department
of Chemistry, Université de Montréal, C. P. 6128, Succursale Centreville, Montreal, Québec H3C 3J7, Canada
| | - Yongjun Zhang
- Key
Laboratory of Functional Polymer Materials, State Key Laboratory of
Medicinal Chemical Biology, The Co-Innovation Center of Chemistry
and Chemical Engineering of Tianjin, Institute of Polymer Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Gabriëlse A, Löwen H, Smallenburg F. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1280. [PMID: 29112168 PMCID: PMC5706227 DOI: 10.3390/ma10111280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/22/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023]
Abstract
In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.
Collapse
Affiliation(s)
- Alexander Gabriëlse
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Frank Smallenburg
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Bommineni PK, Punnathanam SN. Molecular simulation of homogeneous crystal nucleation of AB2 solid phase from a binary hard sphere mixture. J Chem Phys 2017; 147:064504. [DOI: 10.1063/1.4997432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
16
|
Zhang Y, Zhao W, Wen J, Li J, Yang Z, Wang D, Cao H, Quan M. Tunable reflectance of an inverse opal-chiral nematic liquid crystal multilayer device by electric- or thermal-control. Phys Chem Chem Phys 2017; 19:12425-12430. [PMID: 28470255 DOI: 10.1039/c7cp01634d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of electric- or thermal-responsive multilayer device composed of SiO2 bilayer inverse opal (IOP) and chiral nematic liquid crystals (N*LCs) was developed. Bilayer IOP was fabricated by layer-by-layer assembly of polystyrene (PS) spheres with two different sizes and showed a reflectance in an extended range of the near-infrared region. Furthermore, the electrically or thermally tunable reflectance of the bilayer-IOP-N*LC device was investigated. The device exhibited the photonic bandgap (PBG) of the N*LC-IOP composite structure with the application of an electric field (voltage-on), while it presented the reflectance of N*LCs without an electric field (voltage-off) and the electrically-responsive behaviour could be reversibly switched. Besides, the device exhibited a gradient redshift of reflectance as temperature increased below the clearing point (TC) while it showed the PBG of the N*LC-IOP composite structure when the temperature was above TC.
Collapse
Affiliation(s)
- Yuxian Zhang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gold Nanoparticles in Photonic Crystals Applications: A Review. MATERIALS 2017; 10:ma10020097. [PMID: 28772458 PMCID: PMC5459143 DOI: 10.3390/ma10020097] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/28/2022]
Abstract
This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.
Collapse
|
18
|
Wang B, Liu F, Yang X, Guan Y, Ma C, Hao X, Liang X, Liu F, Sun P, Zhang T, Lu G. Fabrication of Well-Ordered Three-Phase Boundary with Nanostructure Pore Array for Mixed Potential-Type Zirconia-Based NO2 Sensor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16752-16760. [PMID: 27294685 DOI: 10.1021/acsami.6b04219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A well-ordered porous three-phase boundary (TPB) was prepared with a polystyrene sphere as template and examined to improve the sensitivity of yttria-stabilized zirconia (YSZ)-based mixed-potential-type NO2 sensor due to the increase of the electrochemical reaction active sites. The shape of pore array on the YSZ substrate surface can be controlled through changing the concentration of the precursor solution (Zr(4+)/Y(3+) = 23 mol/L/4 mol/L) and treatment conditions. An ordered hemispherical array was obtained when CZr(4+) = 0.2 mol/L. The processed YSZ substrates were used to fabricate the sensors, and different sensitivities caused by different morphologies were tested. The sensor with well-ordered porous TPB exhibited the highest sensitivity to NO2 with a response value of 105 mV to 100 ppm of NO2, which is approximately twice as much as the smooth one. In addition, the sensor also showed good stability and speedy response kinetics. All these enhanced sensing properties might be due to the structure and morphology of the enlarged TPB.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Fangmeng Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Xue Yang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Yehui Guan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Ce Ma
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Xidong Hao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Xishuang Liang
- State Key Laboratory of Automotive Simulation and Control, Jilin University , 5988 Renmin Avenue, Changchun, Jilin 130012, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Fengmin Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Peng Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Tong Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Geyu Lu
- State Key Laboratory of Automotive Simulation and Control, Jilin University , 5988 Renmin Avenue, Changchun, Jilin 130012, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun, Jilin 130012, China
| |
Collapse
|
19
|
Morisada S, Kojima S, Sumi T, Kawakita H, Ohto K. Fabrication of non-close-packed colloidal monolayers by convective self-assembly using cationic polyelectrolyte-grafted silica particles. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3706-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Lash MH, Jordan JC, Blevins LC, Fedorchak MV, Little SR, McCarthy JJ. Non-Brownian Particle-Based Materials with Microscale and Nanoscale Hierarchy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Lash MH, Jordan JC, Blevins LC, Fedorchak MV, Little SR, McCarthy JJ. Non-Brownian Particle-Based Materials with Microscale and Nanoscale Hierarchy. Angew Chem Int Ed Engl 2015; 54:5854-8. [DOI: 10.1002/anie.201500273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 11/12/2022]
|