1
|
Zhu Y, Li R, Zhao Z, Liu Z. Headspace separation-combined fluorescence strategy for highly selective detection of hydrogen sulfide using silver nanocluster assemblies as a probe via a self-made device. Analyst 2025. [PMID: 40261154 DOI: 10.1039/d5an00220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Hydrogen sulfide (H2S) is a poisonous gas and endogenously produced signaling molecule in mammalian systems, and its highly selective and rapid monitoring is urgently desired. Nevertheless, the performance of nearly all the fluorescence probes for H2S detection is limited by interferences caused by other non-volatile thiol-containing species. To address this issue, herein, a headspace separation-combined fluorescence strategy was attempted by utilizing thiosalicylic acid (TSA)-capped silver nanoclusters (AgNCs@TSA) as probes. AgNCs@TSA showed a significant aggregation-induced emission (AIE) phenomenon; Moreover, upon the introduction of H2S, the responsive disassembly of its aggregates occurred due to the competitive Ag-sulfur bond formation between H2S and TSA molecules on the surface of the AgNCs, accompanied by a distinctive luminescence quenching. Using hybrid analysis, superior selectivity could be obtained, and the signal change (ΔI) of AgNCs@TSA showed good linearity at an H2S concentration of 0.1-100 μM with a detection limit (3σ) of 72.2 nM. In monitoring sulfide levels in real samples, the approach yielded recoveries from 98.3% to 103.7% with a relative standard deviation (RSD) of less than 3.1%. The approach described here may be readily extended to the analysis of other volatile components, with the advantage of easy elimination of interferences. Furthermore, the hybrid optical strategy is expected to be a flexible and versatile platform for the on-site detection of volatile components.
Collapse
Affiliation(s)
- Ying Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Ran Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongshuai Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
2
|
Wang K, Bi C, Zelenkov L, Liu X, Song M, Wang W, Makarov S, Yin W. Fluorescent Sensing for the Detection and Quantification of Sulfur-Containing Gases. ACS Sens 2024; 9:5708-5727. [PMID: 39533887 DOI: 10.1021/acssensors.4c02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Sulfur-containing gases, such as H2S and SO2, play significant roles in a multitude of biological processes affecting human life and health. Precise and efficient detection of these gases is therefore crucial for advancing one's understanding of their biological roles and developing effective diagnostic strategies. Fluorescent sensing offers a highly sensitive and versatile approach for detecting these gases. This Review examines the recent advances in the fluorescent detection of H2S and SO2, highlighting the key mechanisms involved in fluorescence signal transduction, including changes in intensity and wavelength shifts. The diverse array of probe molecules employed for this purpose, including those utilizing mechanisms such as nucleophilic reactions, Förster resonance energy transfer (FRET), and sulfur affinity interactions are explored. In additional to organic sensors, the focus of the Review is particularly directed toward quantum dot (QD) systems, emphasizing their tunable optical properties that hold immense potential for fluorescence sensing. Beyond the traditional III-V QDs, we delve into the emerging fluorescence sensors based on halide perovskite QDs, upconversion nanocrystals, and other novel materials. These advanced QD systems hold promise for the development of highly sensitive and cost-effective gas detectors, paving the way for significant advances in biomedical and environmental monitoring. This Review provides a comprehensive overview of the current state-of-the-art in QD-based fluorescence sensing of sulfur-containing gases and provides a multifaceted discussion comparing organic fluorescent sensors with QD sensors, highlighting the key challenges and opportunities for the integration of fluorescence sensing as it evolves. The Review aims to facilitate further research and development of innovative sensing platforms to enable more accurate and sensitive detection of these important gases.
Collapse
Affiliation(s)
- Kehang Wang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Chenghao Bi
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Lev Zelenkov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russia
| | - Xiuzhen Liu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Mingzhao Song
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Wenxin Wang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Sergey Makarov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russia
| | - Wenping Yin
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| |
Collapse
|
3
|
Chen Z, Li L, Zhao Z, Zhu Y, Liu Z. Responsive luminescent silver-based metal-organic frameworks for highly sensitive and selective detection of hydrogen sulfide in biological system via a self-assembled headspace separation device. Talanta 2024; 267:125170. [PMID: 37690415 DOI: 10.1016/j.talanta.2023.125170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
As a highly toxic gas pollutant and also an endogenous gaseous signaling molecule existing in a variety of physiological processes, the rapid and accurate in-field detection of hydrogen sulfide is of great concern. Nevertheless, two drawbacks as for the optical probes for H2S detection, taking about a long time to reach the optical signal balance or the low selectivity, always exist. Herein, by using a highly photoluminescent and H2S-stimuli responsive silver-based metal-organic frameworks (MOFs): Ag-BDC (BDC = 1, 4-benzene dicarboxylate), we demonstrated that the luminescence intensity of Ag-BDC MOFs was inversely proportional to the concentration of H2S due to the Ag-S coordination and the obstruction of ligand-to-metal charge transfer (LMCT) transition process, and there was a quick response time of below 3.0 min. Combined with a simple customized device to separate H2S from the sample, the selectivity of the method for H2S detection could be greatly improved, and no interference would be caused even if the other sulfur-containing species coexisted. The luminescence probe presented a favorable sensitivity within a linear range of 0.1-1000 μM along with a detection limit of 23.7 nM. When employed to assay the endogenous sulfide level in the human serum and mouse brain tissue, the approach showed recoveries from 96.3% to 102% with relative standard derivation (RSD) less than 2.0%. By the integration of the responsive luminescent silver-based MOFs with a simple self-assembled headspace separation device, obviously the present strategy could be beneficial to the development and design of the in-field fast H2S measurement, possessing particular advantages in biological systems to eliminate the potential interferences.
Collapse
Affiliation(s)
- Zhongxiu Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ling Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongshuai Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Xiao X, Shen Y, Zhou X, Sun B, Wang Y, Cao J. Innovative nanotechnology-driven fluorescence assays for reporting hydrogen sulfide in food-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Li D, Wang J. Semiconductor/Carbon Quantum Dot-based Hue Recognition Strategy for Point of Need Testing: A Review. ChemistryOpen 2023; 12:e202200165. [PMID: 36891621 PMCID: PMC10068770 DOI: 10.1002/open.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
The requirement to establish novel methods for visual detection is attracting attention in many application fields of analytical chemistry, such as, healthcare, environment, agriculture, and food. The research around subjects like "point-of-need", "hue recognition", "paper-based sensor", "fluorescent sensor", etc. has been always aimed at the opportunity to manufacture convenient and fast-response devices to be used by non-specialists. It is possible to achieve economic rationality and technical simplicity for optical sensing toward target analytes through introduction of fluorescent semiconductor/carbon quantum dot (QD) and paper-based substrates. In this Review, the mechanisms of anthropic visual recognition and fluorescent visual assays, characteristics of semiconductor/carbon QDs and ratiometric fluorescence test paper, and strategies of semiconductor/carbon QD-based hue recognition are described. We cover latest progress in the development and application of point-of-need sensors for visual detection, which is based on a semiconductor/carbon quantum dot-based hue recognition strategy generated by ratiometric fluorescence technology.
Collapse
Affiliation(s)
- Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
6
|
Wei N, Liang ZY, Fang WL, Guo XF, Wang H, Zhang HX. Facile synthesis of non-modified yellow emission silicon quantum dots and their visualization of hydrogen sulfide in living cells and onion tissues. J Colloid Interface Sci 2023; 642:145-153. [PMID: 37001453 DOI: 10.1016/j.jcis.2023.03.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Yellow fluorescent silicon quantum dots (y-SiQDs) with 22.2% fluorescence quantum yield were synthesized by a simple hydrothermal method using 3-glycidoxypropyl triethoxysilane (GOTS) and m-aminophenol. The excitation wavelength is 550 nm with an emission wavelength of 574 nm, which effectively avoids the interference of biological autofluorescence. Notably, the synthesis approach does not require any post-modification and the y-SiQDs can be directly used for hydrogen sulfide (H2S) quantification due to static quenching. It exhibits high sensitivity and excellent selectivity for H2S with a 0.2-10 μM (R2 = 0.9953) linear range and detection limit of 54 nM. y-SiQDs have excellent stability and biocompatibility and can be used for H2S imaging in living cells and onion tissues.
Collapse
|
7
|
Xie L, Fan T, Yao R, Mu Y, Wang R, Fan C, Pu S. Highly selective near-infrared fluorescent probe with large Stokes shift and sensitivity for H2S detection in water, foodstuff and imaging in living cells. DYES AND PIGMENTS 2023; 208:110828. [DOI: 10.1016/j.dyepig.2022.110828] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Li Z, Feng G, Zhai P, Jiang Y, Fan M, Zhao C, Xu Z, Wang X, Ying M, Yong KT, Dong B, Xu G. A biocompatible ratiometric fluorescent nanoprobe for intracellular hydrogen sulfide accurate detection based on rare earth nanoparticle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121532. [PMID: 35752038 DOI: 10.1016/j.saa.2022.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S) is an important signal molecule involved in intracellular activities. To understand the role of H2S in cellular physiological and pathological process, the development of sensitive and selective methods, especially biocompatible assays, for efficient monitoring the level of H2S is necessary. Herein, we modified novel rare earth element europium (EU) based fluorescent nanospheres with azide (-N3) based sensor to construct an ingenious ratiometric fluorescent nanoprobe EU-N3. This nanoprobe showed excellent water solubility and high biocompatibility for intracellular H2S accurate detection. Nanoprobe EU-N3 had two obvious emission peaks, the green fluorescence peak at 540 nm increased according to the increasing of H2S concentration and the red fluorescence peak at 616 nm was stable as ratiometric reference. The fluorescence intensity ratio (I540/I616) displayed good linear response (R = 0.99136) in H2S range of 0.5 ∼ 30 μM. The analytes response assay demonstrated that the nanoprobe EU-N3 possessed a better specificity for H2S, compared with other 9 anions and 3 cations. The cell viability assay indicated the nanoprobe EU-N3 had an excellent biocompatibility. The cell imaging showed that the proposed nanoprobe could be applied for detecting the intracellular H2S changes accurately in live cells. Such nanoprobe provided a safe and accurate strategy for intracellular H2S detection, which is helpful for the real-time H2S visualization in the live cell activities.
Collapse
Affiliation(s)
- Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Peng Zhai
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Cong Zhao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Xiaomei Wang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Ming Ying
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Ken-Tye Yong
- School of Biomedical Engineering The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China.
| |
Collapse
|
9
|
Zhou Y, Mazur F, Fan Q, Chandrawati R. Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. VIEW 2022. [DOI: 10.1002/viw.20210008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| |
Collapse
|
10
|
Yang Y, Li R, Zhang S, Zhang X. A fluorescent nanoprobe based on cell-penetrating peptides and quantum dots for ratiometric monitoring of pH fluctuation in lysosomes. Talanta 2021; 227:122208. [PMID: 33714476 DOI: 10.1016/j.talanta.2021.122208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
A lysosome-targeting ratiometric fluorescent nanoprobe based on cell-penetrating peptides (CPPs) and quantum dots (QDs) has been developed for monitoring pH fluctuation in living cells. The as-prepared nanoprobe is constructed by Rhodamine B labeled R9RGD CPPs as H+ response unit and the red fluorescent QDs as reference unit to achieve ratiometric pH measurement. With the help of RhB-R9RGD CPPs, the nanoprobe efficiently stains lysosomes and enables discernment of lysosomal pH fluctuation in cells treated with different pH buffers and drug stimulation. The method of using dye labeled CPPs to realize functionalization of nanoparticle in one-step reported herein is expected to obtain wider applications in the detection of subcellular active substances by combining different small molecular probes and functional peptides.
Collapse
Affiliation(s)
- Yan Yang
- College of Chemical Engineering, Qinghai University, Xining, 810016, China; Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Rui Li
- College of Chemical Engineering, Qinghai University, Xining, 810016, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Du F, Guo Z, Cheng Z, Kremer M, Shuang S, Liu Y, Dong C. Facile synthesis of ultrahigh fluorescence N,S-self-doped carbon nanodots and their multiple applications for H 2S sensing, bioimaging in live cells and zebrafish, and anti-counterfeiting. NANOSCALE 2020; 12:20482-20490. [PMID: 33026004 DOI: 10.1039/d0nr04649c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Green-emissive N,S-self-doped carbon nanodots (N,S-self-CNDs) with an ultrahigh fluorescence (FL) quantum yield (QY) of 60% were synthesized using methyl blue as the only source by a facile hydrothermal approach. The -NH- and -SOx- groups of methyl blue were simultaneously used as nitrogen and sulfur co-dopants to dope into CNDs. The prepared N,S-self-CNDs have an extremely large Stokes shift (∼130 nm) and excitation-independent fluorescence, and are demonstrated to have multiple applications for H2S sensing, bioimaging and anti-counterfeiting. Taking advantage of their excellent optical properties, N,S-self-CNDs could act as a label-free nanoprobe for the detection of H2S. The FL of N,S-self-CNDs could be significantly quenched by H2S because of dynamic quenching, along with excellent selectivity toward H2S from 0.5-15 μM with a detection limit of 46.8 nM. They were successfully employed for the analysis of H2S content in actual samples. Additionally, the nanoprobe was extended to bioimaging in both living PC12 cells and zebrafish, and monitoring H2S in live cells. Furthermore, N,S-self-CNDs have been used to prepare highly fluorescent polymer films by incorporating N,S-self-CNDs in polyvinyl alcohol (PVA). The as-prepared N,S-self-CNDs/PVA films show a prominent dual-mode FL property, implying that they are potential nanomaterials in the anti-counterfeiting field.
Collapse
Affiliation(s)
- Fangfang Du
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Zhonghui Guo
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Zhe Cheng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Marius Kremer
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
The role of Fe3+ ions in fluorescence detection of H2S by a bimetallic metal-organic framework. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Hu L, Zhong H, He Z. Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11116-11126. [PMID: 31955336 DOI: 10.1007/s11356-019-07468-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Quantum dots (QDs) have caused large challenges in clinical tests and biomedical applications due to their potential toxicity from nanosize effects and heavy metal components. In this study, the physiological responses of Phanerochaete chrysosporium (P. chrysosporium) to CdSe/ZnS QDs with either an inorganic sulfide NaHS or an organic sulfide cysteine as antidote have been investigated. Scanning electron microscope analysis showed that the hyphal structure and morphology of P. chrysosporium have obviously changed after exposure to 100 nM of COOH CdSe/ZnS 505, NH2 CdSe/ZnS 505, NH2 CdSe/ZnS 565, or NH2 CdSe/ZnS 625. Fourier transform infrared spectroscopy analysis indicated that the existence of hydroxyl, amino, and carboxyl groups on cell surface could possibly conduct the stabilization of QDs in an aqueous medium. However, after NaHS or cysteine treatment, the cell viability of P. chrysosporium exposed to CdSe/ZnS QDs increased as compared to control group, since NaHS and cysteine have assisted P. chrysosporium to alleviate oxidative damage by regulating lipid peroxidation and superoxide production. Meanwhile, NaHS and cysteine have also stimulated P. chrysosporium to produce more antioxidant enzymes (superoxide dismutase and catalase), which played significant roles in the defense system. In addition, NaHS and cysteine were used by P. chrysosporium as sulfide sources to promote the glutathione biosynthesis to relieve CdSe/ZnS QDs-induced oxidative stress. This work revealed that sulfide sources (NaHS and cysteine) exerted a strong positive effect in P. chrysosporium against the toxicity induced by CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
14
|
Liu J, Duan C, Zhang W, Ta HT, Yuan J, Zhang R, Xu ZP. Responsive nanosensor for ratiometric luminescence detection of hydrogen sulfide in inflammatory cancer cells. Anal Chim Acta 2020; 1103:156-163. [DOI: 10.1016/j.aca.2019.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 02/02/2023]
|
15
|
Chen C, Cai Q, Luo F, Dong N, Guo L, Qiu B, Lin Z. Sensitive Fluorescent Sensor for Hydrogen Sulfide in Rat Brain Microdialysis via CsPbBr3 Quantum Dots. Anal Chem 2019; 91:15915-15921. [DOI: 10.1021/acs.analchem.9b04387] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chaoqun Chen
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen, Fujian 361005, China
| | - Qing Cai
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen, Fujian 361005, China
| | | | - Nuo Dong
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|
16
|
Amilan Jose D, Sharma N, Sakla R, Kaushik R, Gadiyaram S. Fluorescent nanoprobes for the sensing of gasotransmitters hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO). Methods 2019; 168:62-75. [DOI: 10.1016/j.ymeth.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022] Open
|
17
|
Luo Y, Zhu C, Du D, Lin Y. A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Anal Chim Acta 2019; 1061:1-12. [DOI: 10.1016/j.aca.2019.02.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
|
18
|
Yan Y, Chen L, Liu R, Zheng Y, Wang S. A turn-on fluorescent probe with a dansyl fluorophore for hydrogen sulfide sensing. RSC Adv 2019; 9:27652-27658. [PMID: 35529213 PMCID: PMC9070855 DOI: 10.1039/c9ra04790e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is a biologically relevant molecule that has been newly identified as a gasotransmitter and is also a toxic gaseous pollutant. In this study, we report on a metal complex fluorescent probe to achieve the sensitive detection of H2S in a fluorescent “turn-on” mode. The probe bears a dansyl fluorophore with multidentate ligands for coordination with copper ions. The fluorescent “turn-on” mode is facilitated by the strong bonding between H2S and the Cu(ii) ions to form insoluble copper sulfide, which leads to the release of a strongly fluorescent product. The H2S limit of detection (LOD) for the proposed probe is estimated to be 11 nM in the aqueous solution, and the utilization of the probe is demonstrated for detecting H2S in actual lake and mineral water samples with good reproducibility. Furthermore, we designed detector vials and presented their successful application for the visual detection of gaseous H2S. H2S turn on the fluorescence of DNS–Cu complex probe.![]()
Collapse
Affiliation(s)
| | | | | | | | - Suhua Wang
- School of Environmental Science and Engineering
- North China Electric Power University
- Beijing 102206
- China
| |
Collapse
|
19
|
Zhang L, Wang Z, Zhang J, Jia J, Zhao D, Fan Y. Phenanthroline-Derivative Functionalized Carbon Dots for Highly Selective and Sensitive Detection of Cu 2+ and S 2- and Imaging inside Live Cells. NANOMATERIALS 2018; 8:nano8121071. [PMID: 30572668 PMCID: PMC6315650 DOI: 10.3390/nano8121071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 11/18/2022]
Abstract
Developing effective methods for the instant detection of Cu2+ and S2− is highly desired in the biological and environmental fields. Herein, a novel fluorescent nanoprobe was elaborately designed and synthesized by grafting a phenanthroline derivative onto the surface of carbon dots (CDs). The obtained functionalized CDs (FCDs) exhibited blue fluorescence (FL) with excellent photostability and possessed a mean diameter around 4 nm. Cu2+ can be selectively captured by the phenanthroline group of FCDs to generate an absorptive complex in situ, leading to obvious quenching of the FCDs’ FL signal through an inner filter effect. Furthermore, the FL of the FCD–Cu2+ can be effectively recovered by S2− anions due to the release of FCDs from the FCD–Cu2+ complex owing to the formation of stable CuS (Ksp = 1.27 × 10−36) between S2− and Cu2+. The detection limits of the FCDs were determined to be 40.1 nM and 88.9 nM for Cu2+ and S2−, respectively. Moreover, this nanoprobe can also be used for the imaging of intracellular Cu2+ and S2−, which shows strong application prospects in the field of biology.
Collapse
Affiliation(s)
- Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China.
| | - Zhanwei Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Jingbo Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Jianbo Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Dan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Yunchang Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| |
Collapse
|
20
|
A Paper-Supported Photoelectrochemical Sensing Platform Based on Surface Plasmon Resonance Enhancement for Real-Time H2S Determination. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0070-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Chen Z, Chen C, Huang H, Luo F, Guo L, Zhang L, Lin Z, Chen G. Target-Induced Horseradish Peroxidase Deactivation for Multicolor Colorimetric Assay of Hydrogen Sulfide in Rat Brain Microdialysis. Anal Chem 2018; 90:6222-6228. [DOI: 10.1021/acs.analchem.8b00752] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhonghui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chaoqun Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huawei Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | | |
Collapse
|
22
|
Yang L, Su Y, Sha Z, Geng Y, Qi F, Song X. A red-emitting fluorescent probe for hydrogen sulfide in living cells with a large Stokes shift. Org Biomol Chem 2018; 16:1150-1156. [DOI: 10.1039/c7ob02641b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An azido-based fluorescent probe was developed for the sensitive and selective detection of H2S with a red emission and a large Stokes shift. The probe was successfully applied to detect H2S both in aqueous solution and in living cells.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Yuanan Su
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Zhankui Sha
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- P.R. China 430074
| | - Yani Geng
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Fengpei Qi
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
- Department of Chemistry and Environmental Engineering
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| |
Collapse
|
23
|
Guria UN, Maiti K, Ali SS, Samanta SK, Mandal D, Sarkar R, Datta P, Ghosh AK, Mahapatra AK. Reaction-based bi-signaling chemodosimeter probe for selective detection of hydrogen sulfide and cellular studies. NEW J CHEM 2018. [DOI: 10.1039/c7nj04632d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new quinoline-indolium-based chemical probe (DPQI) was synthesized and characterized for selective detection of hydrogen sulphide (H2S).
Collapse
Affiliation(s)
- Uday Narayan Guria
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Kalipada Maiti
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Syed Samim Ali
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Sandip Kumar Samanta
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Debasish Mandal
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala
- India
| | - Ripon Sarkar
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Shibpur
- India
| | - Pallab Datta
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Shibpur
- India
| | | | - Ajit Kumar Mahapatra
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| |
Collapse
|
24
|
Yan Y, Zhang K, Yu H, Zhu H, Sun M, Hayat T, Alsaedi A, Wang S. Sensitive detection of sulfide based on the self-assembly of fluorescent silver nanoclusters on the surface of silica nanospheres. Talanta 2017; 174:387-393. [DOI: 10.1016/j.talanta.2017.06.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/04/2017] [Accepted: 06/10/2017] [Indexed: 12/25/2022]
|
25
|
Liang D, Bian J, Deng LW, Huang D. Cyclic polysulphide 1,2,4-trithiolane from stinky bean (Parkia speciosa seeds) is a slow releasing hydrogen sulphide (H2S) donor. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
26
|
Ning D, He C, Liu Z, Liu C, Wu Q, Zhao T, Liu R. A dual-colored ratiometric-fluorescent oligonucleotide probe for the detection of human telomerase RNA in cell extracts. Analyst 2017; 142:1697-1702. [DOI: 10.1039/c7an00150a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-colored ratiometric-fluorescent oligonucleotide probe is designed for the detection of human telomerase RNA (hTR) in cell extracts.
Collapse
Affiliation(s)
- Dianhua Ning
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Changtian He
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Zhengjie Liu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Cui Liu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Qilong Wu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - TingTing Zhao
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- State Key Laboratory of Transducer Technology
| | - Renyong Liu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| |
Collapse
|
27
|
Jin X, Wu S, She M, Jia Y, Hao L, Yin B, Wang L, Obst M, Shen Y, Zhang Y, Li J. Novel Fluorescein-Based Fluorescent Probe for Detecting H 2S and Its Real Applications in Blood Plasma and Biological Imaging. Anal Chem 2016; 88:11253-11260. [PMID: 27780356 DOI: 10.1021/acs.analchem.6b04087] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A broad-spectrum fluorescent probe, which can be applied to monitoring H2S in various biological systems, has been rationally designed and synthesized. This specific probe was applied to localize the endogenous H2S in living Raw264.7 macrophage cells, HepG2 cells, and H9C2 cells. At the same time, the probe has successfully visualized CBS- and CSE-induced endogenous H2S production and monitored CBS and CSE activity in H9C2 cells. This probe could serve as a powerful molecular imaging tool to further explore the physiological function and the molecular mechanisms of endogenous H2S in living animal systems.
Collapse
Affiliation(s)
- Xilang Jin
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an, Shaanxi 710127, P. R. China.,School of Materials and Chemical Engineering, Xi'an Technological University , Xi'an 710032, Shaanxi P. R. China
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province, Northwest University , Xi'an, Shaanxi 710069, P. R. China
| | - Mengyao She
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an, Shaanxi 710127, P. R. China
| | - Yifan Jia
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an, Shaanxi 710127, P. R. China
| | - Likai Hao
- Center for Applied Geoscience, Institute for Geoscience, Eberhard-Karls University Tübingen , Hölderlinstr. 12, Tübingen 72074, Germany
| | - Bing Yin
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an, Shaanxi 710127, P. R. China
| | - Lanying Wang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an, Shaanxi 710127, P. R. China
| | - Martin Obst
- Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth , Dr.-Hans-Frisch-Str. 1-3, Bayreuth 95448, Germany
| | - Yehua Shen
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an, Shaanxi 710127, P. R. China
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province, Northwest University , Xi'an, Shaanxi 710069, P. R. China
| | - Jianli Li
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
28
|
Wu P, Hou X, Xu JJ, Chen HY. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. NANOSCALE 2016; 8:8427-42. [PMID: 27056088 DOI: 10.1039/c6nr01912a] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ratiometric fluorescent sensors, which can provide built-in self-calibration for correction of a variety of analyte-independent factors, have attracted particular attention for analytical sensing and optical imaging with the potential to provide a precise and quantitative analysis. A wide variety of ratiometric sensing probes using small fluorescent molecules have been developed. Compared with organic dyes, exploiting semiconductor quantum dots (QDs) in ratiometric fluorescence sensing is even more intriguing, owing to their unique optical and photophysical properties that offer significant advantages over organic dyes. In this review, the main photophysical mechanism for generating dual-emission from QDs for ratiometry is discussed and categorized in detail. Typically, dual-emission can be obtained either with energy transfer from QDs to dyes or with independent dual fluorophores of QDs and dye/QDs. The recent discovery of intrinsic dual-emission from Mn-doped QDs offers new opportunities for ratiometric sensing. Particularly, the signal transduction of QDs is not restricted to fluorescence, and electrochemiluminescence and photoelectrochemistry from QDs are also promising for sensing, which can be made ratiometric for correction of interferences typically encountered in electrochemistry. All these unique photophysical properties of QDs lead to a new avenue of ratiometry, and the recent progress in this area is addressed and summarized here. Several interesting applications of QD-based ratiometry are presented for the determination of metal ions, temperature, and biomolecules, with specific emphasis on the design principles and photophysical mechanisms of these probes.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
29
|
Tang L, Zheng Z, Zhong K, Bian Y. A 2,5-diaryl-1,3,4-oxadiazole-based fluorescent probe for rapid and highly selective recognition of hydrogen sulfide with a large Stokes shift through switching on ESIPT. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Guo Z, Chen G, Liu L, Zeng G, Huang Z, Chen A, Hu L. Activity Variation of Phanerochaete chrysosporium under Nanosilver Exposure by Controlling of Different Sulfide Sources. Sci Rep 2016; 6:20813. [PMID: 26864597 PMCID: PMC4749979 DOI: 10.1038/srep20813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/08/2016] [Indexed: 01/20/2023] Open
Abstract
Due to the particular activation and inhibition behavior of silver nanoparticles (AgNPs) on microbes at various concentrations, it’s crucial to exploit the special concentration effect in environment. Here, we studied the viability variation of Phanerochaete chrysosporium (P. chrysosporium) under exposure to citrate-coated AgNPs (Citrate-AgNPs) in the presence of different sulfide sources (an inorganic sulfide, NaHS and an organic sulfide, thioacetamide (TAA)). The results indicated that both NaHS and TAA can promote activation of P. chrysosporium by Citrate-AgNPs at a higher concentration, which was initial at toxic level. Treatment with various concentrations of Citrate-AgNPs (0–9 mg/L) demonstrated a maximum activation concentration (MAC) at 3 mg/L. With the increase in sulfide concentration, MAC transferred to higher concentration significantly, indicating the obvious “toxicity to activation” transformation at a higher concentration. Ag+ testing exhibited that variations in sulfide-induced Ag+ concentration (3−7 μg/L Ag+) accounted for the “toxicity to activation” transformation. In addition, the similar results were observed on antibacterial application using Escherichia coli as the model species. Based on the research results, the application of this transformation in improving antibacterial activity was proposed. Therefore, the antibacterial activity of AgNPs can be controlled, even at concentration, via adjusting for the sulfide concentration.
Collapse
Affiliation(s)
- Zhi Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Lingzhi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
31
|
Wang J, Jiang C, Yang F, Chen A, Wang L, Hu J. Controlled synthesis of a dual-emission hierarchical quantum dot hybrid nanostructure as a robust ratiometric fluorescent sensor. RSC Adv 2016. [DOI: 10.1039/c5ra24805a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A highly stable and biocompatible CdTe@SiO2@CdTe@SiO2 dual-emission hierarchical hybrid nanostructure was synthesized and used as a robust ratiometric fluorescent sensor.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Chenxing Jiang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Fang Yang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P.R. China
| | - Aimin Chen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Ligeng Wang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Jun Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| |
Collapse
|
32
|
Guo Z, Chen G, Zeng G, Liu L, Zhang C. Metal oxides and metal salt nanostructures for hydrogen sulfide sensing: mechanism and sensing performance. RSC Adv 2015. [DOI: 10.1039/c5ra10394k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metal oxides and metal salt nanostructures for hydrogen sulfide sensing based on conductivity response.
Collapse
Affiliation(s)
- Zhi Guo
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Guiqiu Chen
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Guangming Zeng
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Lingzhi Liu
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Chang Zhang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| |
Collapse
|