1
|
Zhang Z, Fan K, Liu Y, Xia S. A review on polyester and polyester-amide thin film composite nanofiltration membranes: Synthesis, characteristics and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159922. [PMID: 36336064 DOI: 10.1016/j.scitotenv.2022.159922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) membranes have been widely used in various fields including water treatment and other separation processes, while conventional thin film composite (TFC) membranes with polyamide (PA) selective layers suffer the problems of fouling and chlorine intolerance. Due to the abundant hydrophilic hydroxyl groups and ester bonds free from chlorine attack, the TFC membranes composed of polyester (PE) or polyester-amide (PEA) selective layers have been proven to possess enhanced anti-fouling properties and superior chlorine resistance. In this review, the research progress of PE and PEA nanofiltration membranes is systematically summarized according to the variety of hydroxyl-containing monomers for membrane fabrication by the interfacial polymerization (IP) reaction. The synthesis strategies as well as the mechanisms for tailoring properties and performance of PE and PEA membranes are analyzed, and the membrane application advantages are demonstrated. Moreover, current challenges and future perspectives of the development of PE and PEA nanofiltration membranes are proposed. This review can offer guidance for designing high-performance PE and PEA membranes, thereby further promoting the efficacy of nanofiltration.
Collapse
Affiliation(s)
- Ziyan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| |
Collapse
|
2
|
Mazzoleni A, Real‐Fernandez F, Nuti F, Lanzillo R, Brescia Morra V, Dambruoso P, Bertoldo M, Rovero P, Mallet J, Papini AM. Selective Capture of Anti-N-glucosylated NTHi Adhesin Peptide Antibodies by a Multivalent Dextran Conjugate. Chembiochem 2022; 23:e202100515. [PMID: 34761861 PMCID: PMC9300045 DOI: 10.1002/cbic.202100515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Tentacle-like polymers decorated with several copies of peptide antigens can be interesting tools for increasing the ability to capture circulating antibodies in patient sera, using cooperative effects for stronger avidity. We previously showed that antibodies from multiple sclerosis (MS) patient sera preferentially recognize hyperglucosylated adhesin protein HMW1ct of non-typeable Haemophilus influenzae (NTHi). We selected the C-terminal HMW1ct(1347-1354) minimal epitope and prepared the diglucosylated analogue Ac-KAN(Glc)VTLN(Glc)TTG-K(N3 )-NH2 to graft a 40 kDa dextran scaffold modified with glycidyl-propargyl moieties to perform a copper catalyzed alkyne-azide coupling reaction (CuAAC). Quantitative NMR measurements allowed the characterization of the peptide loading (19.5 %) on the multivalent dextran conjugate. This novel polymeric structure displayed optimal capturing properties of both IgG and, more interestingly, IgM antibodies in MS sera. Specific antibodies from a representative MS serum, were successfully depleted using a Sepharose resin bearing the new glucosylated multivalent conjugate, as confirmed by ELISA. These results may offer a promising proof-of-concept for the selective purification of high affinity autoantibodies from sera of autoimmune patients, in general, and of specific high affinity antibodies against a minimally glcosylated epitope Asn(Glc) from sera of multiple sclerosis (MS) patients, in particular.
Collapse
Affiliation(s)
- Antonio Mazzoleni
- Laboratoire des BiomoléculesDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS24 rue Lhomond75005ParisFrance
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Feliciana Real‐Fernandez
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research CentreDepartment of NeurosciencesReproductive Sciences and OdontostomatologyFederico II UniversityVia Pancini 580131NaplesItaly
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research CentreDepartment of NeurosciencesReproductive Sciences and OdontostomatologyFederico II UniversityVia Pancini 580131NaplesItaly
| | - Paolo Dambruoso
- ISOF – Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
| | - Monica Bertoldo
- Dipartimento di Scienze chimiche, farmaceutiche ed agrarieUniversità di FerraraVia Fossato di Mortara 1744121FerraraItaly
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Neurosciences, Psychology, Drug Research and Child HealthSection of Pharmaceutical Sciences and NutraceuticsUniversity of FlorenceVia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Jean‐Maurice Mallet
- Laboratoire des BiomoléculesDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS24 rue Lhomond75005ParisFrance
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| |
Collapse
|
3
|
Dual-functionalization of polymeric membranes via cyclodextrin-based host-guest assembly for biofouling control. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Moreno-Couranjou M, Mauchauffé R, Bonot S, Detrembleur C, Choquet P. Anti-biofouling and antibacterial surfaces via a multicomponent coating deposited from an up-scalable atmospheric-pressure plasma-assisted CVD process. J Mater Chem B 2018; 6:614-623. [PMID: 32254490 DOI: 10.1039/c7tb02473h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prevention of bacterial adhesion and biofilm formation on the surfaces of materials is a topic of major medical and societal importance. In this study, an up-scalable atmospheric-pressure plasma assisted deposition method is introduced to produce a multicomponent coating towards the elaboration of antibacterial and anti-biofilm surfaces. Interestingly, from a single catechol-based monomer, high deposition rates of highly chemically reactive functional thin films bearing catechol as well as quinone groups are achieved. The catechol-bearing thin film allows the in situ silver nanoparticle formation, assessed by scanning electron microscopy and EDX, whilst the enriched-quinone thin film is exploited for immobilizing dispersine B, an enzyme. In vitro functional assays demonstrated the dual antibacterial and anti-biofouling resistance properties of the coatings due to the antibacterial effect of silver and the fouling resistance of grafted dispersine B, respectively. Surfaces coated only with silver provide an antibacterial effect but fail to inhibit bacterial attachment, highlighting the usefulness of such dual-action surfaces. The approach presented here provides a simple and effective chemical pathway to construct powerful antibacterial surfaces for various industrial applications.
Collapse
Affiliation(s)
- Maryline Moreno-Couranjou
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | | | | | | | | |
Collapse
|
5
|
Bai S, Zhang X, Ma X, Chen J, Chen Q, Shi X, Hou M, Xue P, Kang Y, Xu Z. Acid-active supramolecular anticancer nanoparticles based on cyclodextrin polyrotaxanes damaging both mitochondria and nuclei of tumor cells. Biomater Sci 2018; 6:3126-3138. [DOI: 10.1039/c8bm01020j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acid-active supramolecular theranostics based on cyclodextrin polyrotaxanes for enhanced cancer therapy.
Collapse
|
6
|
Brofelth M, Städe LW, Ekstrand AI, Edfeldt LP, Kovačič R, Nielsen TT, Larsen KL, Duroux L, Wingren C. Site-specific photocoupling of p Bpa mutated scFv antibodies for use in affinity proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:985-996. [DOI: 10.1016/j.bbapap.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/26/2022]
|
7
|
Cai XY, Li NN, Chen JC, Kang ET, Xu LQ. Biomimetic anchors applied to the host-guest antifouling functionalization of titanium substrates. J Colloid Interface Sci 2016; 475:8-16. [DOI: 10.1016/j.jcis.2016.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/11/2023]
|