1
|
Klabenkova K, Zakhryamina A, Burakova E, Bizyaev S, Fokina A, Stetsenko D. Synthesis of New Polyfluoro Oligonucleotides via Staudinger Reaction. Int J Mol Sci 2024; 26:300. [PMID: 39796153 PMCID: PMC11719919 DOI: 10.3390/ijms26010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme. Polyfluoro compounds are characterized by unique properties that have prompted their extensive application both in industry and in scientific research. We report herein the synthesis and isolation of novel oligodeoxyribonucleotides incorporating internucleotidic perfluoro-1-octanesulfonyl phosphoramidate or 2,2,2-trifluoroethanesulfonyl phosphoramidate groups. In addition, novel oligonucleotide derivatives with fluorinated zwitterionic phosphate mimics were synthesized by a tandem methodology, which involved (a) the introduction of a carboxylic ester group at the internucleotidic position via the Staudinger reaction with methyl 2,2-difluoro-3-azidosulfonylacetate; and (b) treatment with an aliphatic diamine, e.g., 1,1-dimethylethylenediamine or 1,3-diaminopropane. It was further shown that the polyfluoro oligonucleotides obtained were able to form complementary duplexes with either DNA or RNA, which were not significantly differing in stability from the natural counterparts. Long-chain perfluoroalkyl oligonucleotides were taken up into cultured human cells in the absence of a transfection agent. It may be concluded that the polyfluoro oligonucleotides described here can represent a useful platform for designing oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alyona Zakhryamina
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia;
| | - Ekaterina Burakova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergei Bizyaev
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alesya Fokina
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry Stetsenko
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Shao S, Du W, Liu S, Hu C, Zhang C, Li L, Yang F, Liu Q, Tan W. Reconfigurable Amphiphilic DNA Nanotweezer for Targeted Delivery of Therapeutic Oligonucleotides. ACS CENTRAL SCIENCE 2024; 10:2338-2345. [PMID: 39735310 PMCID: PMC11672532 DOI: 10.1021/acscentsci.4c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
Amphiphilic lipid oligonucleotide conjugates are powerful molecular-engineering materials that have been used for delivery of therapeutic oligonucleotides. However, conventional lipid oligonucleotide conjugates suffer from poor selectivity to target cells due to the nonspecific interaction between lipid tails and cell membranes. Herein, a reconfigurable DNA nanotweezer consisting of a c-Met aptamer and bischolesterol-modified antisense oligonucleotide was designed for c-Met-targeted delivery of therapeutic antisense oligonucleotides. The c-Met aptamer is used to keep the DNA nanotweezer in a "closed" state, which enables the hydrophobic interaction within bischolesterol moieties. As a result, the amphiphilic DNA nanotweezer shows only a weak interaction with the cell membrane. Upon the release of the c-Met aptamer, the DNA nanotweezer converts to an "open" state, which facilitates the insertion of a cholesterol moiety into the cell membrane. Thus, the reconfigurable DNA nanotweezer enables the selective membrane anchoring of the DNA nanotweezer in cancerous cells that highly expressed c-Met protein. Moreover, this amphiphilic DNA nanotweezer shows enhanced accumulation at the tumor site and the inhibition of tumor growth. Taking advantage of the stimuli-responsive membrane anchoring capability, this reconfigurable DNA nanotweezer could be further explored as a smart multifunctional platform for cancer therapy.
Collapse
Affiliation(s)
- Shuxuan Shao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wei Du
- Department
of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s
Hospital of Changde City), Changde, Hunan 415000, China
| | - Shuang Liu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Canqiong Hu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Cao Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lexun Li
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Fan Yang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Qiaoling Liu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine
and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School
of Materials Science and Engineering, Institute of Molecular Medicine
(IMM), Renji Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Wang C, Wang S, Xue Y, Zhong Y, Li H, Hou X, Kang DD, Liu Z, Tian M, Wang L, Cao D, Yu Y, Liu J, Cheng X, Markovic T, Hashemi A, Kopell BH, Charney AW, Nestler EJ, Dong Y. Intravenous administration of blood-brain barrier-crossing conjugates facilitate biomacromolecule transport into central nervous system. Nat Biotechnol 2024:10.1038/s41587-024-02487-7. [PMID: 39587229 DOI: 10.1038/s41587-024-02487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Delivery of biomacromolecules to the central nervous system (CNS) remains challenging because of the restrictive nature of the blood-brain barrier (BBB). We developed a BBB-crossing conjugate (BCC) system that facilitates delivery into the CNS through γ-secretase-mediated transcytosis. Intravenous administration of a BCC10-oligonucleotide conjugate demonstrated effective transportation of the oligonucleotide across the BBB and gene silencing in wild-type mice, human brain tissues and an amyotrophic lateral sclerosis mouse model.
Collapse
Affiliation(s)
- Chang Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyu Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonger Xue
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yichen Zhong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana D Kang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- College of Pharmacy, The Ohio State University, Columbus, Columbus, OH, USA
| | - Zhengwei Liu
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Tian
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leiming Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dinglingge Cao
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yang Yu
- College of Pharmacy, The Ohio State University, Columbus, Columbus, OH, USA
| | - Jayce Liu
- College of Pharmacy, The Ohio State University, Columbus, Columbus, OH, USA
| | - Xiaolin Cheng
- College of Pharmacy, The Ohio State University, Columbus, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Tamara Markovic
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Hashemi
- Charles Bronfman Institute for Personalized Medicine, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Kopell
- Charles Bronfman Institute for Personalized Medicine, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander W Charney
- Charles Bronfman Institute for Personalized Medicine, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yizhou Dong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Malinowska AL, Huynh HL, Correa-Sánchez AF, Bose S. Thiol-Specific Linkers for the Synthesis of Oligonucleotide Conjugates via Metal-Free Thiol-Ene Click Reaction. Bioconjug Chem 2024; 35. [PMID: 39264307 PMCID: PMC11487498 DOI: 10.1021/acs.bioconjchem.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Chemical conjugation of oligonucleotides is widely used to improve their delivery and therapeutic potential. A variety of strategies are implemented to efficiently modify oligonucleotides with conjugating partners. The linkers typically used for oligonucleotide conjugation have limitations in terms of stability or ease of synthesis, which generates the need for providing new improved linkers for oligonucleotide conjugation. Herein, we report the synthesis of novel vinylpyrimidine phosphoramidite building blocks, which can be incorporated into an oligonucleotide by standard solid-phase synthesis in an automated synthesizer. These linker-bearing oligonucleotides can be easily conjugated in a biocompatible manner with thiol-functionalized molecules leading to the efficient generation of oligonucleotide conjugates.
Collapse
Affiliation(s)
- Anna L. Malinowska
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Harley L. Huynh
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Andrés F. Correa-Sánchez
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Sritama Bose
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| |
Collapse
|
5
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
6
|
Sarli SL, Fakih HH, Kelly K, Devi G, Rembetsy-Brown J, McEachern H, Ferguson C, Echeverria D, Lee J, Sousa J, Sleiman H, Khvorova A, Watts J. Quantifying the activity profile of ASO and siRNA conjugates in glioblastoma xenograft tumors in vivo. Nucleic Acids Res 2024; 52:4799-4817. [PMID: 38613388 PMCID: PMC11109979 DOI: 10.1093/nar/gkae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Glioblastoma multiforme is a universally lethal brain tumor that largely resists current surgical and drug interventions. Despite important advancements in understanding GBM biology, the invasiveness and heterogeneity of these tumors has made it challenging to develop effective therapies. Therapeutic oligonucleotides-antisense oligonucleotides and small-interfering RNAs-are chemically modified nucleic acids that can silence gene expression in the brain. However, activity of these oligonucleotides in brain tumors remains inadequately characterized. In this study, we developed a quantitative method to differentiate oligonucleotide-induced gene silencing in orthotopic GBM xenografts from gene silencing in normal brain tissue, and used this method to test the differential silencing activity of a chemically diverse panel of oligonucleotides. We show that oligonucleotides chemically optimized for pharmacological activity in normal brain tissue do not show consistent activity in GBM xenografts. We then survey multiple advanced oligonucleotide chemistries for their activity in GBM xenografts. Attaching lipid conjugates to oligonucleotides improves silencing in GBM cells across several different lipid classes. Highly hydrophobic lipid conjugates cholesterol and docosanoic acid enhance silencing but at the cost of higher neurotoxicity. Moderately hydrophobic, unsaturated fatty acid and amphiphilic lipid conjugates still improve activity without compromising safety. These oligonucleotide conjugates show promise for treating glioblastoma.
Collapse
Affiliation(s)
- Samantha L Sarli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hassan H Fakih
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gitali Devi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Julia M Rembetsy-Brown
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Holly R McEachern
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chantal M Ferguson
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, Montréal, Québec, Canada
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
7
|
Klabenkova KV, Zhdanova PV, Burakova EA, Bizyaev SN, Fokina AA, Stetsenko DA. A Convenient Oligonucleotide Conjugation via Tandem Staudinger Reaction and Amide Bond Formation at the Internucleotidic Phosphate Position. Int J Mol Sci 2024; 25:2007. [PMID: 38396686 PMCID: PMC10889076 DOI: 10.3390/ijms25042007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Staudinger reaction on the solid phase between an electronodeficit organic azide, such as sulfonyl azide, and the phosphite triester formed upon phosphoramidite coupling is a convenient method for the chemical modification of oligonucleotides at the internucleotidic phosphate position. In this work, 4-carboxybenzenesulfonyl azide, either with a free carboxy group or in the form of an activated ester such as pentafluorophenyl, 4-nitrophenyl, or pentafluorobenzyl, was used to introduce a carboxylic acid function to the terminal or internal internucleotidic phosphate of an oligonucleotide via the Staudinger reaction. A subsequent treatment with excess primary alkyl amine followed by the usual work-up, after prior activation with a suitable peptide coupling agent such as a uronium salt/1-hydroxybenzotriazole in the case of a free carboxyl, afforded amide-linked oligonucleotide conjugates in good yields including multiple conjugations of up to the exhaustive modification at each phosphate position for a weakly activated pentafluorobenzyl ester, whereas more strongly activated and, thus, more reactive aryl esters provided only single conjugations at the 5'-end. The conjugates synthesized include those with di- and polyamines that introduce a positively charged side chain to potentially assist the intracellular delivery of the oligonucleotide.
Collapse
Affiliation(s)
- Kristina V. Klabenkova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia;
| | - Ekaterina A. Burakova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergei N. Bizyaev
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alesya A. Fokina
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry A. Stetsenko
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Solanki R, Shankar A, Modi U, Patel S. New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention. MATERIALS TODAY. CHEMISTRY 2023; 29:101478. [PMID: 36950312 PMCID: PMC9981536 DOI: 10.1016/j.mtchem.2023.101478] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 05/14/2023]
Abstract
The recent outbreak of SARS-CoV-2 resulted into the deadly COVID-19 pandemic, which has made a profound impact on mankind and the world health care system. SARS-CoV-2 is mainly transmitted within the population via symptomatic carriers, enters the host cell via ACE2 and TMPSSR2 receptors and damages the organs. The standard diagnostic tests and treatment methods implemented lack required efficiency to beat SARS-CoV-2 in the race of its spreading. The most prominently used diagnostic test,reverse transcription-polymerase chain reaction (a nucleic acid-based method), has limitations including a prolonged time taken to reveal results, limited sensitivity, a high rate of false negative results, and lacking specificity due to a homology with other viruses. Furthermore, as part of the treatment, antiviral drugs such as remdesivir, favipiravir, lopinavir/ritonavir, chloroquine, daclatasvir, atazanavir, and many more have been tested clinically to check their potency for the treatment of SARS-CoV-2 but none of these antiviral drugs are the definitive cure or suitable prophylaxis. Thus, it is always required to combat SARS-CoV-2 spread and infection for a better and precise prognosis. This review answers the above mentioned challenges by employing nanomedicine for the development of improved detection, treatment, and prevention strategies for SARS-CoV-2. In this review, nanotechnology-based detection methods such as colorimetric assays, photothermal biosensors, molecularly imprinted nanoparticles sensors, electrochemical nanoimmunosensors, aptamer-based biosensors have been discussed. Furthermore, nanotechnology-based treatment strategies involving polymeric nanoparticles, metallic nanoparticles, lipid nanoparticles, and nanocarrier-based antiviral siRNA delivery have been depicted. Moreover, SARS-CoV-2 prevention strategies, which include the nanotechnology for upgrading personal protective equipment, facemasks, ocular protection gears, and nanopolymer-based disinfectants, have been also reviewed. This review will provide a one-site informative platform for researchers to explore the crucial role of nanomedicine in managing the COVID-19 curse more effectively.
Collapse
Affiliation(s)
- R Solanki
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - A Shankar
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - U Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - S Patel
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| |
Collapse
|
9
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
10
|
Pontarelli A, Liu JT, Oh JK, Wilds CJ. Preparation of a Convertible Spacer Containing a Disulfide Group for Versatile Functionalization of Oligonucleotides. Curr Protoc 2023; 3:e691. [PMID: 36840706 DOI: 10.1002/cpz1.691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The protocols described in this article provide details regarding the synthesis and characterization of a disulfide containing linker phosphoramidite for terminal functionalization of synthetic oligonucleotides. The linker is first synthesized from 6-mercaptohexanol in two steps and is incorporated at the 5' end of short DNA oligonucleotides using automated solid-phase synthesis. The linker contains a terminal tosylate group which is post-synthetically displaced by altering the deprotection conditions to yield a variety of functional handles (N3 , NH2 , OMe, SH) or alternatively, the tosylate can be displaced directly with primary amines such as tert-butylamine. The linker system is also compatible with RNA oligonucleotides enabling the introduction of various functional handles (N3 , NH2 ). The protocol outlined in this procedure provides access to a versatile linker for the terminal functionalization of oligonucleotides containing a disulfide bond which may serve useful in the synthesis of reduction-responsive oligonucleotide conjugates. As a proof of concept, in this protocol the linker is used to modify a dT10 oligonucleotide and then conjugated by copper(I)-mediated azide-alkyne cycloaddition (CuAAC) to an alkyne-modified poly(ethylene glycol) which shows concentration dependent release of the oligonucleotide upon treatment with 1,4-dithiothreitol, a reducing agent. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of disulfide linker phosphoramidite 3 Basic Protocol 2: Synthesis, functionalization, and characterization of DNA oligonucleotides containing disulfide linker phosphoramidite 3 Basic Protocol 3: Displacement of terminal tosylate functionalized DNA with primary aliphatic amines Basic Protocol 4: Synthesis of oligonucleotide-PEG conjugate Support Protocol: Preparation of PEG-alkyne.
Collapse
Affiliation(s)
- Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Jiang Tian Liu
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Sequence-specific eDNA extraction using hydrophobic magnetic ionic liquids attached with oligonucleotide strand. Anal Chim Acta 2023; 1239:340612. [PMID: 36628697 DOI: 10.1016/j.aca.2022.340612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Isolation of high-purity nucleic acids, especially sequence-specific DNA, from complex samples is critical to the downstream nucleic acid analysis. In this work, an oligonucleotide strand-attached magnetic ionic liquid (OSMIL) was designed and prepared for DNA extraction. The attached oligonucleotide strand has a sequence complementary to that of a specific DNA to be extracted. The OSMIL has good hydrophobicity and magnetic response properties. At the extraction temperature, OSMIL was in a liquid state, which was favorable for maximizing the adsorption of DNA; while at the separation temperature, OSMIL was in a solid state (with an average particle size of 897 nm) and could be attracted by an external magnet in 3s, which was favorable for the separation and recovery of DNA. The sequence-specific DNA extraction process with OSMIL is simple and fast. After extraction, the DNA-enriched OSMILs were quickly attracted and separated by an external magnetic field. The extracted DNA was evaluated by a NanoDrop (wavelength detection at 260-280 nm) and the OSMIL can be recycled and reused. The enrichment factor was 0.81. Through single-factor experimental analysis, the effects of OSMIL extraction volume, thermal excitation temperature, thermal excitation time, pH, and other factors on the DNA extraction process were systematically investigated. The RSD of repeatability experiment was 1.19% (n = 3), showing the method has good repeatability. The extraction method presented here has been shown to extract DNA with specific sequences from mixtures containing DNA of different sequences and from mixtures containing proteins, respectively. In addition, the OSMIL has been applied to extract target environmental DNA with specific sequences from different water environments with high extraction efficiency. In the long run, OSMIL has great potential for identifying existing organisms in environmental samples or exploring unknown organisms.
Collapse
|
12
|
Kupihár Z, Ferenc G, Petrovicz VL, Fáy VR, Kovács L, Martinek TA, Hegedüs Z. Improved Metal-Free Approach for the Synthesis of Protected Thiol Containing Thymidine Nucleoside Phosphoramidite and Its Application for the Synthesis of Ligatable Oligonucleotide Conjugates. Pharmaceutics 2023; 15:pharmaceutics15010248. [PMID: 36678876 PMCID: PMC9865093 DOI: 10.3390/pharmaceutics15010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Oligonucleotide conjugates are versatile scaffolds that can be applied in DNA-based screening platforms and ligand display or as therapeutics. Several different chemical approaches are available for functionalizing oligonucleotides, which are often carried out on the 5' or 3' end. Modifying oligonucleotides in the middle of the sequence opens the possibility to ligate the conjugates and create DNA strands bearing multiple different ligands. Our goal was to establish a complete workflow that can be applied for such purposes from monomer synthesis to templated ligation. To achieve this, a monomer is required with an orthogonal functional group that can be incorporated internally into the oligonucleotide sequence. This is followed by conjugation with different molecules and ligation with the help of a complementary template. Here, we show the synthesis and the application of a thiol-modified thymidine nucleoside phosphoramidite to prepare ligatable oligonucleotide conjugates. The conjugations were performed both in solution and on solid phase, resulting in conjugates that can be assembled into multivalent oligonucleotides decorated with tissue-targeting peptides using templated ligation.
Collapse
Affiliation(s)
- Zoltán Kupihár
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, H-6726 Szeged, Hungary
| | - Vencel L. Petrovicz
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
| | - Viktória R. Fáy
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
| | - Lajos Kovács
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
| | - Tamás A. Martinek
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network, H-6720 Szeged, Hungary
- Correspondence: (T.A.M.); (Z.H.)
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
- Correspondence: (T.A.M.); (Z.H.)
| |
Collapse
|
13
|
Palai BB, Panda SS, Sharma NK. Synthesis of Aminotroponyl-/Difluoroboronyl Aminotroponyl Deoxyuridine Phosphoramidites. Curr Protoc 2022; 2:e609. [PMID: 36541868 DOI: 10.1002/cpz1.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This report describes the chemical synthesis of aminotroponyl-conjugated deoxyuridine analog (at-dU) and its difluoroboron complex (dfbat-dU) and their phosphoramidites by using the versatile phosphorylating reagent 2-Cyanoethyl N,N-diisopropylchlorophosphoramidite. Tropolone is a non-benzenoid aromatic bioactive natural fluorescent molecule, possessing intramolecular charge transfer and metal chelating properties with transition metal ions such as Cu2+/ Zn2+/ Ni2+ . Its synthetic derivatives, 2-aminotropones also exhibit unique bioactivities and are considered potential therapeutic drug candidate. Recently, the fluorescence properties of aminotropone has improved by complexing with difluoroboron residue that generates aminotroponyl-BODIPY analog. These could be employed for the synthesis of at-dU/dfbat-dU containing DNA oligonucleotides for designing the 11 B/19 F-NMR/fluorescence-based DNA probes. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of N-propargyl-2-aminotropone (2) and difluoroboronyl N-propargyl-2-aminotropone (3) molecules. Basic Protocol 2: Synthesis of N-propargyl-2-aminotroponyl deoxyuridinyl (at-dU) phosphoramidites (7). Basic Protocol 3: Synthesis of difluoroboronyl N-propargyl-2-aminotroponyl deoxyuridinyl (dfbat-dU) phosphoramidites (10).
Collapse
Affiliation(s)
- Bibhuti Bhusana Palai
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, Odisha, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | - Subhashree S Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, Odisha, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, Odisha, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| |
Collapse
|
14
|
Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorg Med Chem 2022; 72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
15
|
Kreda SM. Oligonucleotide-based therapies for cystic fibrosis. Curr Opin Pharmacol 2022; 66:102271. [PMID: 35988291 DOI: 10.1016/j.coph.2022.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
In the clinically successful era of CFTR modulators and Theratyping, 10-20% of individuals with cystic fibrosis (CF) may develop disease due to CFTR mutations that remain undruggable. These individuals produce low levels of CFTR mRNA and/or not enough protein to be rescued with modulator drugs. Alternative therapeutic approaches to correct the CFTR defect at the mRNA level using nucleic acid technologies are currently feasible; e.g., oligonucleotides platforms, which are being rapidly developed to correct genetic disorders. Drug-like properties, great specificity, and predictable off-target effects by design make oligonucleotides a valuable approach with fewer clinical and ethical challenges than genomic editing strategies. Together with personalized and precision medicine approaches, oligonucleotides are ideal therapeutics to target CF-causing mutations that affect only a few individuals resilient to modulator therapies.
Collapse
Affiliation(s)
- Silvia M Kreda
- Marsico Lung Institute / Cystic Fibrosis Center, University of North Carolina at Chapel Hill, 6009 Thurston Bowles Bldg, Chapel Hill, NC, 27599-7248, USA; Department of Medicine, University of North Carolina at Chapel Hill, NC, 27599-7248, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
16
|
Cornier PG, Delpiccolo CM, Martiren NL, Mata EG, Mendez L, Permingeat Squizatto C, Pizzio MG. Transition Metal‐Catalyzed Reactions and Solid‐Phase Synthesis: A Convenient Blend. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patricia G. Cornier
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Carina M.L. Delpiccolo
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Nadia L. Martiren
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| | - Ernesto G Mata
- Instituto de Química Rosario Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Luciana Mendez
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 ROSARIO ARGENTINA
| | | | - Marianela G. Pizzio
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| |
Collapse
|
17
|
Wang X, Liu M, Ding X. Guanidinium Hydrophobic Magnetic Ionic Liquid-Based Dispersive Droplet Extraction for the Selective Extraction of DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11665-11675. [PMID: 34581577 DOI: 10.1021/acs.langmuir.1c01567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six hydrophobic magnetic guanidinium ionic liquids (HMILs) were designed and prepared for the extraction of DNA. The physical and thermal properties of the HMILs were characterized using vibrating sample magnetometry, density meter, rotational rheometer, Karl Fischer moisture, Fourier transform infrared spectrometry, and thermogravimetric analysis. Single-stranded DNA and duplex DNA extracted by HMILs can be rapidly collected by a magnet. Three assisted extraction methods, including vortex extraction, mechanical shaking extraction, and ultrasonic extraction, were introduced to extract DNA with HMILs and the extraction efficiencies were evaluated using NanoDrop. Influencing factors of the DNA extraction were comprehensively evaluated, involving the HMIL volume, extraction time, pH, and extraction temperature. The HMIL-based extraction method can well extract DNA from complex matrices and Escherichia coli cell lysates.
Collapse
Affiliation(s)
- Xuelian Wang
- School of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mei Liu
- School of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xueqin Ding
- School of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
18
|
Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021; 26:5420. [PMID: 34500849 PMCID: PMC8434111 DOI: 10.3390/molecules26175420] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alesya Fokina
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Stetsenko
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Zhang P, Liu X, Abegg D, Tanaka T, Tong Y, Benhamou RI, Baisden J, Crynen G, Meyer SM, Cameron MD, Chatterjee AK, Adibekian A, Childs-Disney JL, Disney MD. Reprogramming of Protein-Targeted Small-Molecule Medicines to RNA by Ribonuclease Recruitment. J Am Chem Soc 2021; 143:13044-13055. [PMID: 34387474 DOI: 10.1021/jacs.1c02248] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reprogramming known medicines for a novel target with activity and selectivity over the canonical target is challenging. By studying the binding interactions between RNA folds and known small-molecule medicines and mining the resultant dataset across human RNAs, we identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21). Dovitinib was rationally reprogrammed for pre-miR-21 by using it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation. By enhancing the inherent RNA-targeting activity and decreasing potency against canonical RTK protein targets in cells, the chimera shifted selectivity for pre-miR-21 by 2500-fold, alleviating disease progression in mouse models of triple-negative breast cancer and Alport Syndrome, both caused by miR-21 overexpression. Thus, targeted degradation can dramatically improve selectivity even across different biomolecules, i.e., protein versus RNA.
Collapse
Affiliation(s)
- Peiyuan Zhang
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Xiaohui Liu
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Daniel Abegg
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Toru Tanaka
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Raphael I Benhamou
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Jared Baisden
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Gogce Crynen
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Michael D Cameron
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (CALIBR), Scripps Research, La Jolla, California 92037, United States
| | - Alexander Adibekian
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | | | - Matthew D Disney
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| |
Collapse
|
20
|
Abstract
RNAs are involved in an enormous range of cellular processes, including gene regulation, protein synthesis, and cell differentiation, and dysfunctional RNAs are associated with disorders such as cancers, neurodegenerative diseases, and viral infections. Thus, the identification of compounds with the ability to bind RNAs and modulate their functions is an exciting approach for developing next-generation therapies. Numerous RNA-binding agents have been reported over the past decade, but the design of synthetic molecules with selectivity for specific RNA sequences is still in its infancy. In this perspective, we highlight recent advances in targeting RNAs with synthetic molecules, and we discuss the potential value of this approach for the development of innovative therapeutic agents.
Collapse
Affiliation(s)
- Farzad Zamani
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
21
|
Honcharenko M, Honcharenko D, Stromberg R. Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition Tailored for Phosphorothioate Oligonucleotides. ACTA ACUST UNITED AC 2021; 80:e102. [PMID: 31884728 DOI: 10.1002/cpnc.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient method for attachment of a variety of reporter groups to oligonucleotides (ONs) is copper (I) [Cu(I)]-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition ("click reaction"). However, in the case of ONs with phosphorothioate modifications as internucleosidic linkages (PS-ONs), this conjugation method has to be adjusted to be compatible with the sulfur-containing groups. The method described here is adapted for PS-ONs, utilizes solid-supported ONs, and implements the Cu(I) bromide dimethyl sulfide complex (CuBr × Me2 S) as a mediator for the click reaction. The solid-supported ONs can be readily transformed into "clickable ONs" by on-line addition of an alkyne-containing linker that subsequently can react with an azido-containing moiety (e.g., a peptide) in the presence of CuBr × Me2 S. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Conjugation on solid support Support Protocol: Removal of 4,4'-dimethoxytrityl group from amino linker Basic Protocol 2: Removal of protecting groups and cleavage from solid support Basic Protocol 3: HPLC purification.
Collapse
Affiliation(s)
| | - Dmytro Honcharenko
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Roger Stromberg
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| |
Collapse
|
22
|
Patil NA. Conjugation Approaches for Peptide-Mediated Delivery of Oligonucleotides Therapeutics. Aust J Chem 2021. [DOI: 10.1071/ch21131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Lartia R, Vallée C, Defrancq E. Post-synthetic transamination at position N4 of cytosine in oligonucleotides assembled with routinely used phosphoramidites. Org Biomol Chem 2020; 18:9632-9638. [PMID: 33206749 DOI: 10.1039/d0ob02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The commercially available and cheap nucleotide phosphoramidites are routinely used for the oligonucleotide (ODN) assembly. T, isobutyryl-dG (iBudG), benzoyl-dA (BzdA), acetyl-dC (AcdC) and benzoyl-dC (BzdC) derivatives are sufficient to produce orthogonally protected ODNs. Clean and efficient (ca. 30%-70% yield) post-synthetic amination of an ODN assembled with such phosphoramidites was selectively achieved at the N4 position of a singly introduced BzdC. Such a method represents a novel and cheap strategy for the user-friendly post-modification of oligonucleotides at the internal position.
Collapse
Affiliation(s)
- Rémy Lartia
- Univ. Grenoble Alpes, CNRS, DCM UMR5250, F-38000 Grenoble, France.
| | | | | |
Collapse
|
24
|
|
25
|
Clavé G, Dursun E, Vasseur JJ, Smietana M. An Entry of the Chemoselective Sulfo-Click Reaction into the Sphere of Nucleic Acids. Org Lett 2020; 22:1914-1918. [DOI: 10.1021/acs.orglett.0c00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume Clavé
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Enes Dursun
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
26
|
Yang L, Ma F, Liu F, Chen J, Zhao X, Xu Q. Efficient Delivery of Antisense Oligonucleotides Using Bioreducible Lipid Nanoparticles In Vitro and In Vivo. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1357-1367. [PMID: 32160706 PMCID: PMC7036716 DOI: 10.1016/j.omtn.2020.01.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/30/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
The efficient delivery of antisense oligonucleotides (ASOs) to the targeted cells and organs remains a challenge, in particular, in vivo. Here, we investigated the ability of a library of biodegradable lipid nanoparticles (LNPs) in delivering ASO to both cultured human cells and animal models. We first identified three top-performing lipids through in vitro screening using GFP-expressing HEK293 cells. Next, we explored these three candidates for delivering ASO to target proprotein convertase subtilisin/kexin type 9 (PCSK9) mRNA in mice. We found that lipid 306-O12B-3 showed efficiency with the median effective dose (ED50) as low as 0.034 mg·kg-1, which is a notable improvement over the efficiency reported in the literature. No liver or kidney toxicity was observed with a dose up to 5 mg·kg-1 of this ASO/LNP formulation. The biodegradable LNPs are efficient and safe in the delivery of ASO and pave the way for clinical translation.
Collapse
Affiliation(s)
- Liu Yang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Feihe Ma
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Fang Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jinjin Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Xuewei Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
27
|
Yan H, Liang FS. miRNA inhibition by proximity-enabled Dicer inactivation. Methods 2019; 167:117-123. [PMID: 31077820 DOI: 10.1016/j.ymeth.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/22/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022] Open
Abstract
microRNAs (miRNAs) are considered as master regulators of biological processes. Dysregulation of miRNA expression has been implicated in many human diseases. Driven by the key biological roles and the therapeutic potential, developing methods for miRNA regulation has become an intense research area. Due to favorable pharmacological properties, small molecule-based miRNA inhibition emerges as a promising strategy and significant progresses have been made. However, it remains challenging to regulate miRNA using small molecules because of the inherent difficulty in RNA targeting and inhibition. Herein we outline the workflow of generating bifunctional small molecule inhibitors blocking miRNA biogenesis through proximity-enabled inactivation of Dicer, an enzyme required for the processing of precursor miRNA (pre-miRNA) into mature miRNA. By conjugating a weak Dicer inhibitor with a pre-miRNA binder, the inhibitor can be delivered to the Dicer processing site associated with the targeted pre-miRNA, and as a result inhibiting Dicer-mediated pre-miRNA processing. This protocol can be applicable in producing bifunctional inhibitors for different miRNAs.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
28
|
Tan X, Lu H, Sun Y, Chen X, Wang D, Jia F, Zhang K. Expanding the materials space of DNA via organic-phase ring-opening metathesis polymerization. Chem 2019; 5:1584-1596. [PMID: 31903440 DOI: 10.1016/j.chempr.2019.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we develop a facile route to bring DNA to the organic phase, which greatly expands the types of structures accessible using DNA macromonomers. Phosphotriester- and exocyclic amine-protected DNA was synthesized and further modified with a norbornene moiety, which enables homopolymerization via ring-opening metathesis to produce brush-type DNA graft polymers in high yields. Subsequent deprotection cleanly reveals the natural phosphodiester DNA. The method not only achieves high molecular weight DNA graft polymers but when carried out at low monomer:catalyst ratios, yields oligomers that can be further fractionated to molecularly pure, monodisperse entities with one through ten DNA strands per molecule. In addition, we demonstrate substantial simplification in the preparation of traditionally difficult DNA-containing structures, such as DNA/poly(ethylene glycol) diblock graft copolymers and DNA amphiphiles. We envision that the marriage of oligonucleotides with the vast range of organic-phase polymerizations will result in many new classes of materials with yet unknown properties.
Collapse
Affiliation(s)
- Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Hao Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Yehui Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Xiaoying Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Dali Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
29
|
Zhou X, Pathak P, Jayawickramarajah J. Design, synthesis, and applications of DNA-macrocyclic host conjugates. Chem Commun (Camb) 2018; 54:11668-11680. [PMID: 30255866 DOI: 10.1039/c8cc06716c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With this Feature Article we review, for the first time, the development of DNA-host conjugates-a nascent yet rapidly growing research focus within the ambit of DNA supramolecular chemistry. Synthetic hosts (such as cyclodextrins, cucurbiturils, and calixarenes) are well-suited to be partnered with DNA, since DNA assembly and host-guest binding both thrive in aqueous media, are largely orthogonal, and exhibit controllable and input-responsive properties. The covalent braiding of these two supramolecular synthons thus leads to advanced self-assemblies and nanostructures with exciting function that range from drug delivery agents to input-triggered switches. The latter class of DNA-host conjugates have been demonstrated to precisely control protein activity, and have also been used as modulable catalysts and versatile biosensors.
Collapse
Affiliation(s)
- X Zhou
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, USA.
| | | | | |
Collapse
|
30
|
Ibrahim N, Alami M, Messaoudi S. Recent Advances in Transition-Metal-Catalyzed Functionalization of 1-Thiosugars. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nada Ibrahim
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|
31
|
Winkler J. Extrahepatic Targeting of Oligonucleotides with Receptor-Binding Non-Immunoglobulin Scaffold Proteins. Nucleic Acid Ther 2018; 28:137-145. [PMID: 29733239 DOI: 10.1089/nat.2017.0713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although recent clinical successes of antisense, splice-switching, and siRNA oligonucleotides have established the therapeutic utility of this novel class of medicines, the efficient systemic application for non-liver targets remains elusive. Exploitation of active receptor-mediated targeting followed by efficient and productive cellular uptake is required for enabling the therapy of extrahepatic diseases on the expressional level. Evasion of liver accumulation and organ-specific targeting and also efficient cytosolic delivery after endosomal internalization are currently insufficiently solved issues. Lipid and polymer-based nanoparticles can be engineered for efficient cellular uptake and enhancement of endosomal escape, but are characterized by preferential liver accumulation based on biodistribution largely determined by particle size and biophysical properties. Oligonucleotide bioconjugates with receptor-binding ligands have been evolved for highly efficient targeting, but frequently result in a large extent of endosomal entrapment and consequently a lack of sufficient cytosolic concentrations. Non-immunoglobulin protein-based receptor recognition affords high cell-type selectivity and is promising for achieving nonhepatic oligonucleotide targeting. The use of such novel protein scaffolds, including designed ankyrin repeat proteins (DARPins), for oligonucleotide delivery is attractive for achieving effective tissue targeting. Issues for further development and optimization to advance approaches for extrahepatic oligonucleotide delivery by nanoparticles or bioconjugates are discussed.
Collapse
Affiliation(s)
- Johannes Winkler
- Department of Cardiology, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
32
|
Wu C, Xiang X, Yue Y, Li L, Li Y, Zhang C, Xu Y. CpG-PEG Conjugates and their Immune Modulating Effects after Systemic Administration. Pharm Res 2018; 35:80. [PMID: 29500548 DOI: 10.1007/s11095-018-2355-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs were found to be able to target cells that express Toll-like receptor 9 to modulate innate and adaptive immune reactions. But their in vivo application in immunotherapy against cancer has not been successful. We attempted in this study to examine polyethylene-glycol (PEG) conjugated CpG ODNs and investigated their mechanism of immune modulation in anti-cancer therapy. METHODS CpG-PEG conjugates with different PEG lengths were synthesized. In vitro activity as well as in vivo pharmacokinetics and pharmacodynamics properties were evaluated. RESULTS CpG-PEG20Ks were found to be able to persist longer in circulation and activate various downstream effector cells. After intravenous injection, they resulted in higher levels of IL-12p70 in the circulation and lower M-MDSC infiltrates in the tumor microenvironment. Such activities were different from those of CpG ODNs without PEGylation, suggesting different PK-PD profiles systemically and locally. CONCLUSIONS Our data support the development of CpG-PEGs as a new therapeutic agent that can be systemically administered to modulate immune responses and the microenvironment in tumor tissues.
Collapse
Affiliation(s)
- Caixing Wu
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Xiaofei Xiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yue
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yesen Li
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Chong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Xu
- College of Pharmacy and Chemistry, Dali University, Dali, China.
| |
Collapse
|
33
|
Chu CC, Silverman SK. Assessing histidine tags for recruiting deoxyribozymes to catalyze peptide and protein modification reactions. Org Biomol Chem 2018; 14:4697-703. [PMID: 27138704 DOI: 10.1039/c6ob00716c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We evaluate the ability of hexahistidine (His6) tags on peptide and protein substrates to recruit deoxyribozymes for modifying those substrates. For two different deoxyribozymes, one that creates tyrosine-RNA nucleopeptides and another that phosphorylates tyrosine side chains, we find substantial improvements in yield, kobs, and Km for peptide substrates due to recruiting by His6/Cu(2+). However, the recruiting benefits of the histidine tag are not observed for larger protein substrates, likely because the tested deoxyribozymes either cannot access the target peptide segments or cannot function when these segments are presented in a structured protein context.
Collapse
Affiliation(s)
- Chih-Chi Chu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| |
Collapse
|
34
|
Probst N, Lartia R, Théry O, Alami M, Defrancq E, Messaoudi S. Efficient Buchwald-Hartwig-Migita Cross-Coupling for DNA Thioglycoconjugation. Chemistry 2018; 24:1795-1800. [PMID: 29205564 DOI: 10.1002/chem.201705371] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/11/2022]
Abstract
An efficient method for the thioglycoconjugation of iodinated oligonucleotides by Buchwald-Hartwig-Migita cross-coupling under mild conditions is reported. The method enables divergent synthesis of many different functionalized thioglycosylated ODNs in good yields, without affecting the integrity of the other A, C, and G nucleobases.
Collapse
Affiliation(s)
- Nicolas Probst
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Rémy Lartia
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Océane Théry
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Mouâd Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Eric Defrancq
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| |
Collapse
|
35
|
Pavlova AS, Dyudeeva ES, Kupryushkin MS, Amirkhanov NV, Pyshnyi DV, Pyshnaya IA. SDS-PAGE procedure: Application for characterization of new entirely uncharged nucleic acids analogs. Electrophoresis 2017; 39:670-674. [PMID: 29112277 DOI: 10.1002/elps.201700415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
SDS-PAGE is considered to be a universal method for size-based separation and analysis of proteins. In this study, we applied the principle of SDS-PAGE to the analysis of new entirely uncharged nucleic acid (NA) analogues, - phosphoryl guanidine oligonucleotides (PGOs). The procedure was also shown to be suitable for morpholino oligonucleotides (PMOs) and peptide nucleic acids (PNAs). It was demonstrated that SDS can establish hydrophobic interactions with these types of synthetic NAs, giving them a net negative charge and thus making these molecules mobile in polyacrylamide slab gels under the influence of an electric field.
Collapse
Affiliation(s)
- Anna S Pavlova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russian Federation
| | - Evgeniya S Dyudeeva
- Department of Natural sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russian Federation
| | - Nariman V Amirkhanov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russian Federation
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russian Federation.,Department of Natural sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Inna A Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
36
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
37
|
Huang D, Fletcher S, Wilton SD, Palmer N, McLenachan S, Mackey DA, Chen FK. Inherited Retinal Disease Therapies Targeting Precursor Messenger Ribonucleic Acid. Vision (Basel) 2017; 1:vision1030022. [PMID: 31740647 PMCID: PMC6836112 DOI: 10.3390/vision1030022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Inherited retinal diseases are an extremely diverse group of genetically and phenotypically heterogeneous conditions characterized by variable maturation of retinal development, impairment of photoreceptor cell function and gradual loss of photoreceptor cells and vision. Significant progress has been made over the last two decades in identifying the many genes implicated in inherited retinal diseases and developing novel therapies to address the underlying genetic defects. Approximately one-quarter of exonic mutations related to human inherited diseases are likely to induce aberrant splicing products, providing opportunities for the development of novel therapeutics that target splicing processes. The feasibility of antisense oligomer mediated splice intervention to treat inherited diseases has been demonstrated in vitro, in vivo and in clinical trials. In this review, we will discuss therapeutic approaches to treat inherited retinal disease, including strategies to correct splicing and modify exon selection at the level of pre-mRNA. The challenges of clinical translation of this class of emerging therapeutics will also be discussed.
Collapse
Affiliation(s)
- Di Huang
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Sue Fletcher
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Norman Palmer
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth 6000, Australia
- Correspondence: ; Tel.: +61-8-9381-0817
| |
Collapse
|
38
|
Wang L, Ariyarathna Y, Ming X, Yang B, James LI, Kreda SM, Porter M, Janzen W, Juliano RL. A Novel Family of Small Molecules that Enhance the Intracellular Delivery and Pharmacological Effectiveness of Antisense and Splice Switching Oligonucleotides. ACS Chem Biol 2017; 12:1999-2007. [PMID: 28703575 DOI: 10.1021/acschembio.7b00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pharmacological effectiveness of oligonucleotides has been hampered by their tendency to remain entrapped in endosomes, thus limiting their access to cytosolic or nuclear targets. We have previously reported a group of small molecules that enhance the effects of oligonucleotides by causing their release from endosomes. Here, we describe a second novel family of oligonucleotide enhancing compounds (OECs) that is chemically distinct from the compounds reported previously. We demonstrate that these molecules substantially augment the actions of splice switching oligonucleotides (SSOs) and antisense oligonucleotides (ASOs) in cell culture. We also find enhancement of SSO effects in a murine model. These new compounds act by increasing endosome permeability and causing partial release of entrapped oligonucleotides. While they also affect the permeability of lysosomes, they are clearly different from typical lysosomotropic agents. Current members of this compound family display a relatively narrow window between effective dose and toxic dose. Thus, further improvements are necessary before these agents can become suitable for therapeutic use.
Collapse
Affiliation(s)
- Ling Wang
- Initos Pharmaceuticals LLC, Eshelman Institute for Innovation MicroIncubator, CB# 7564, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yamuna Ariyarathna
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Xin Ming
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Bing Yang
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Lindsey I. James
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Silvia M. Kreda
- UNC Cystic Fibrosis Center and Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Melissa Porter
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - William Janzen
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Rudolph L. Juliano
- Initos Pharmaceuticals LLC, Eshelman Institute for Innovation MicroIncubator, CB# 7564, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
39
|
Taskova M, Mantsiou A, Astakhova K. Synthetic Nucleic Acid Analogues in Gene Therapy: An Update for Peptide-Oligonucleotide Conjugates. Chembiochem 2017; 18:1671-1682. [PMID: 28614621 DOI: 10.1002/cbic.201700229] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 12/29/2022]
Abstract
The main objective of this work is to provide an update on synthetic nucleic acid analogues and nanoassemblies as tools in gene therapy. In particular, the synthesis and properties of peptide-oligonucleotide conjugates (POCs), which have high potential in research and as therapeutics, are described in detail. The exploration of POCs has already led to fruitful results in the treatment of neurological diseases, lung disorders, cancer, leukemia, viral, and bacterial infections. However, delivery and in vivo stability are the major barriers to the clinical application of POCs and other analogues that still have to be overcome. This review summarizes recent achievements in the delivery and in vivo administration of synthetic nucleic acid analogues, focusing on POCs, and compares their efficiency.
Collapse
Affiliation(s)
- Maria Taskova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Anna Mantsiou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Kira Astakhova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
40
|
Jin CE, Lee TY, Koo B, Choi KC, Chang S, Park SY, Kim JY, Kim SH, Shin Y. Use of Dimethyl Pimelimidate with Microfluidic System for Nucleic Acids Extraction without Electricity. Anal Chem 2017. [PMID: 28633525 DOI: 10.1021/acs.analchem.7b01193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The isolation of nucleic acids in the lab on a chip is crucial to achieve the maximal effectiveness of point-of-care testing for detection in clinical applications. Here, we report on the use of a simple and versatile single-channel microfluidic platform that combines dimethyl pimelimidate (DMP) for nucleic acids (both RNA and DNA) extraction without electricity using a thin-film system. The system is based on the adaption of DMP into nonchaotropic-based nucleic acids and the capture of reagents into a low-cost thin-film platform for use as a microfluidic total analysis system, which can be utilized for sample processing in clinical diagnostics. Moreover, we assessed the use of the DMP system for the extraction of nucleic acids from various samples, including mammalian cells, bacterial cells, and viruses from human disease, and we also confirmed that the quality and quantity of the nucleic acids extracted were sufficient to allow for the robust detection of biomarkers and/or pathogens in downstream analysis. Furthermore, this DMP system does not require any instruments and electricity, and has improved time efficiency, portability, and affordability. Thus, we believe that the DMP system may change the paradigm of sample processing in clinical diagnostics.
Collapse
Affiliation(s)
- Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center , 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Tae Yoon Lee
- Department of Technology Education and Department of Biomedical Engineering, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center , 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea
| | - Se Yoon Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea.,Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine , Seoul 140-743, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center , 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
41
|
Kulik K, Kaczmarek R, Baraniak J, Ślepokura K, Gryaznov S. Novel method for the synthesis of dinucleoside-(N3′ →P5′)-phosphoramidothioates. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Shinkai Y, Kashihara S, Minematsu G, Fujii H, Naemura M, Kotake Y, Morita Y, Ohnuki K, Fokina AA, Stetsenko DA, Filichev VV, Fujii M. Silencing ofBCR/ABLChimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates. Nucleic Acid Ther 2017; 27:168-175. [DOI: 10.1089/nat.2016.0647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yasuhiro Shinkai
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Shinichi Kashihara
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Go Minematsu
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Hirofumi Fujii
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Madoka Naemura
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Yojiro Kotake
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Yasutaka Morita
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Koichiro Ohnuki
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Alesya A. Fokina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry A. Stetsenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Masayuki Fujii
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| |
Collapse
|
43
|
Tat-Tagged and Folate-Modified N-Succinyl-chitosan (Tat-Suc-FA) Self-assembly Nanoparticle for Therapeutic Delivery OGX-011 to A549 Cells. Mol Pharm 2017; 14:1898-1905. [PMID: 28464609 DOI: 10.1021/acs.molpharmaceut.6b01167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The objective of this study was to develop a novel type of an antisense oligonucleotide (OGX-011) loaded Tat-tagged and folate-modified N-succinyl-chitosan (Tat-Suc-FA) nanoparticles (NPs) for improving tumor targetability. In this study, Tat-Suc-FA/OGX-011NPs were prepared and its physicochemical characterizations were also evaluated. The nanoparticles showed an average diameter of 73 ± 16.6 nm, the zeta potential of +23.6 ± 0.3 mV, and a high entrapment efficiency of 89.6 ± 6.6%. Transmission electron microscopy analysis showed the nanoparticles were mostly spherical and well dispersed. The delivery efficiency of this system was investigated both in vitro and in vivo. In comparison with nontargeted Lipofectamin2000/OGX-011 and free OGX-011, Tat-Suc-FA/GOX-011 showed the highest apoptosis rate of 14.2% ± 1.8% and significant uptake in A549 cells. Tat-Suc-FA NPs loaded with GOX-011 induced significant down-regulation of s-CLU mRNA and protein levels in A549 cells. In A549 tumor-bearing mice model, Tat-Suc-FA/GOX-011 produced a more efficient down-regulation of s-CLU compared to Lipofectamin2000/OGX-011. Furthermore, the combined use of Tat-Suc-FA/OGX-011 with DDP chemotherapy showed a most significant inhibition of tumor growth and greatly enhanced the survival rate of A549 tumor-bearing mice. These findings suggested successful application of Tat-Suc-FA NPs for the high efficiency and specificity in therapeutic delivery of OGX-011 to A549 cells.
Collapse
|
44
|
Yan H, Bhattarai U, Guo ZF, Liang FS. Regulating miRNA-21 Biogenesis By Bifunctional Small Molecules. J Am Chem Soc 2017; 139:4987-4990. [PMID: 28287718 DOI: 10.1021/jacs.7b00610] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new strategy to regulate microRNAs (miRNAs) biogenesis by using bifunctional small molecules that consist of a pre-miRNA binding unit connected by a linker to a Dicer inhibiting unit. In this effort, fluorescence polarization-based screening was used to identify neomycin as a pre-miR-21 binding ligand. Although neomycin cannot inhibit miR-21 maturation, linking it to the RNase inhibitor 1 forms the bifunctional conjugate 7A, which inhibits the production of miR-21. We expect that this strategy will be applicable to design other molecules for miRNA regulation.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry and Chemical Biology, University of New Mexico , 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Umesh Bhattarai
- Department of Chemistry and Chemical Biology, University of New Mexico , 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Zhi-Fo Guo
- Department of Chemistry and Chemical Biology, University of New Mexico , 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Fu-Sen Liang
- Department of Chemistry and Chemical Biology, University of New Mexico , 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
45
|
Defrancq E, Messaoudi S. Palladium-Mediated Labeling of Nucleic Acids. Chembiochem 2017; 18:426-431. [PMID: 28000981 DOI: 10.1002/cbic.201600599] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/11/2022]
Abstract
New applications of Pd-catalyzed coupling reactions (Suzuki-Miyaura, Sonogashira, and Stille-Migita coupling) for post-conjugation of nucleic acids have been developed recently. Breakthroughs in this area might now pave the way for the development of sophisticated DNA probes, which might be of great interest in chemical biology, nanotechnology, and bioanalysis, as well as in diagnostic domains.
Collapse
Affiliation(s)
- Eric Defrancq
- Université Grenoble Alpes, CNRS, Département de Chimie Moléculaire, UMR 5250, B. P. 53, 38041, Grenoble Cedex 9, France
| | - Samir Messaoudi
- Université Paris-Sud, CNRS, BioCIS-UMR 8076, Laboratoire CoSMIT, Equipe Labellisée Ligue Contre Le Cancer, LabEx LERMIT, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| |
Collapse
|
46
|
Goodman AM, Hogan NJ, Gottheim S, Li C, Clare SE, Halas NJ. Understanding Resonant Light-Triggered DNA Release from Plasmonic Nanoparticles. ACS NANO 2017; 11:171-179. [PMID: 28114757 DOI: 10.1021/acsnano.6b06510] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticle-based platforms for gene therapy and drug delivery are gaining popularity for cancer treatment. To improve therapeutic selectivity, one important strategy is to remotely trigger the release of a therapeutic cargo from a specially designed gene- or drug-laden near-infrared (NIR) absorbing gold nanoparticle complex with NIR light. While there have been multiple demonstrations of NIR nanoparticle-based release platforms, our understanding of how light-triggered release works in such complexes is still limited. Here, we investigate the specific mechanisms of DNA release from plasmonic nanoparticle complexes using continuous wave (CW) and femtosecond pulsed lasers. We find that the characteristics of nanoparticle-based DNA release vary profoundly from the same nanoparticle complex, depending on the type of laser excitation. CW laser illumination drives the photothermal release of dehybridized single-stranded DNA, while pulsed-laser excitation results in double-stranded DNA release by cleavage of the Au-S bond, with negligible local heating. This dramatic difference in DNA release from the same DNA-nanoparticle complex has very important implications in the development of NIR-triggered gene or drug delivery nanocomplexes.
Collapse
Affiliation(s)
| | | | | | | | - Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
| | | |
Collapse
|
47
|
Saneyoshi H, Yamamoto Y, Kondo K, Hiyoshi Y, Ono A. Conjugatable and Bioreduction Cleavable Linker for the 5'-Functionalization of Oligonucleotides. J Org Chem 2017; 82:1796-1802. [PMID: 28112510 DOI: 10.1021/acs.joc.6b02527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient conjugatable and bioreduction cleavable linker was designed and synthesized for the 5'-terminal ends of oligonucleotides. A phosphoramidite reagent bearing this linker was successfully applied to solid phase synthesis and incorporated at the 5'-terminal ends of oligonucleotides. The controlled pore glass (CPG)-supported oligonucleotides were subsequently conjugated to a diverse range of functional molecules using a CuAAC reaction. The synthesized oligonucleotide conjugates were then cleaved using a nitroreductase/NADH bioreduction system to release the naked oligonucleotides.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yuta Yamamoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kazuhiko Kondo
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yuki Hiyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
48
|
Fokina AA, Chelobanov BP, Fujii M, Stetsenko DA. Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials. Expert Opin Drug Deliv 2016; 14:1077-1089. [PMID: 27892730 DOI: 10.1080/17425247.2017.1266326] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Development of efficient in vivo delivery systems remains a major challenge en route to clinical application of antisense technology, including RNA-cleaving molecules such as deoxyribozymes (DNAzymes). The mechanisms of oligonucleotide uptake and trafficking are clearly dependent on cell type and the type of oligonucleotide analogue. It appears likely that each particular disease target would pose its own specific requirements for a delivery method. Areas covered. In this review we will discuss the available options for DNAzyme delivery in vitro and in vivo, outline various exogenous and endogenous strategies that have been, or are still being, developed and ascertain their applicability with emphasis on those methods that are currently being used in clinical trials. Expert opinion. The available information suggests that a practical system for in vivo delivery has to be biodegradable, as to minimize concerns over long-term toxicity, it should not accumulate in the organism. Extracellular vesicles may offer the most organic way for drug delivery especially as they can be fused with artificial liposomes to produce hybrid nanoparticles. Chemical modification of DNAzymes holds great potential to apply oligonucleotide analogs that would not only be resistant to nuclease digestion, but also able to penetrate cells without external delivery agents.
Collapse
Affiliation(s)
- Alesya A Fokina
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Boris P Chelobanov
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Masayuki Fujii
- b Department of Biological & Environmental Chemistry , Kindai University , Iizuka, Fukuoka , Japan
| | - Dmitry A Stetsenko
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| |
Collapse
|
49
|
Lipid-modified oligonucleotide conjugates: Insights into gene silencing, interaction with model membranes and cellular uptake mechanisms. Bioorg Med Chem 2016; 25:175-186. [PMID: 27810441 DOI: 10.1016/j.bmc.2016.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022]
Abstract
The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies.
Collapse
|
50
|
Brun O, Agramunt J, Raich L, Rovira C, Pedroso E, Grandas A. Selective Derivatization of N-Terminal Cysteines Using Cyclopentenediones. Org Lett 2016; 18:4836-4839. [DOI: 10.1021/acs.orglett.6b02301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | - Carme Rovira
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | | | | |
Collapse
|