1
|
Abstract
Atom pairwise potential functions make up an essential part of many scoring functions for protein decoy detection. With the development of machine learning (ML) tools, there are multiple ways to combine potential functions to create novel ML models and methods. Potential function parameters can be easily extracted; however, it is usually hard to directly obtain the calculated atom pairwise energies from scoring functions. Amber, as one of the most popular suites of modeling programs, has an extensive history and library of force field potential functions. In this work, we directly used the force field parameters in ff94 and ff14SB from Amber and encoded them to calculate atom pairwise energies for different interactions. Two sets of structures (single amino acid set and a dipeptide set) were used to evaluate the performance of our encoded Amber potentials. From the comparison results between energy terms obtained from our encoding and Amber, we find energy difference within ±0.06 kcal/mol for all tested structures. Previously we have shown that the Random Forest (RF) model can help to emphasize more important atom pairwise interactions and ignore insignificant ones [Pei, J.; Zheng, Z.; Merz, K. M. J. Chem. Inf. Model. 2019, 59, 1919-1929]. Here, as an example of combining ML methods with traditional potential functions, we followed the same work flow to combine the RF models with force field potential functions from Amber. To determine the performance of our RF models with force field potential functions, 224 different protein native-decoy systems were used as our training and testing sets We find that the RF models with ff94 and ff14SB force field parameters outperformed all other scoring functions (RF models with KECSA2, RWplus, DFIRE, dDFIRE, and GOAP) considered in this work for native structure detection, and they performed similarly in detecting the best decoy. Through inclusion of best decoy to decoy comparisons in building our RF models, we were able to generate models that outperformed the score functions tested herein both on accuracy and best decoy detection, again showing the performance and flexibility of our RF models to tackle this problem. Finally, the importance of the RF algorithm and force field parameters were also tested and the comparison results suggest that both the RF algorithm and force field potentials are important with the ML scoring function achieving its best performance only by combining them together. All code and data used in this work are available at https://github.com/JunPei000/FFENCODER_for_Protein_Folding_Pose_Selection.
Collapse
Affiliation(s)
- Jun Pei
- Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Lin Frank Song
- Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Kenneth M Merz
- Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Xu G, Ma T, Wang Q, Ma J. OPUS-SSF: A side-chain-inclusive scoring function for ranking protein structural models. Protein Sci 2019; 28:1157-1162. [PMID: 30919509 DOI: 10.1002/pro.3608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022]
Abstract
We introduce a side-chain-inclusive scoring function, named OPUS-SSF, for ranking protein structural models. The method builds a scoring function based on the native distributions of the coordinate components of certain anchoring points in a local molecular system for peptide segments of 5, 7, 9, and 11 residues in length. Differing from our previous OPUS-CSF [Xu et al., Protein Sci. 2018; 27: 286-292], which exclusively uses main chain information, OPUS-SSF employs anchoring points on side chains so that the effect of side chains is taken into account. The performance of OPUS-SSF was tested on 15 decoy sets containing totally 603 proteins, and 571 of them had their native structures recognized from their decoys. Similar to OPUS-CSF, OPUS-SSF does not employ the Boltzmann formula in constructing scoring functions. The results indicate that OPUS-SSF has achieved a significant improvement on decoy recognition and it should be a very useful tool for protein structural prediction and modeling.
Collapse
Affiliation(s)
- Gang Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tianqi Ma
- Applied Physics Program, Rice University, Houston, Texas 77005.,Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Qinghua Wang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jianpeng Ma
- School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China.,Applied Physics Program, Rice University, Houston, Texas 77005.,Department of Bioengineering, Rice University, Houston, Texas 77005.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
3
|
Pei J, Zheng Z, Merz KM. Random Forest Refinement of the KECSA2 Knowledge-Based Scoring Function for Protein Decoy Detection. J Chem Inf Model 2019; 59:1919-1929. [DOI: 10.1021/acs.jcim.8b00734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Pei
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zheng Zheng
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Cyber Enabled Research, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Xu G, Ma T, Zang T, Wang Q, Ma J. OPUS-CSF: A C-atom-based scoring function for ranking protein structural models. Protein Sci 2017; 27:286-292. [PMID: 29047165 PMCID: PMC5734313 DOI: 10.1002/pro.3327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022]
Abstract
We report a C‐atom‐based scoring function, named OPUS‐CSF, for ranking protein structural models. Rather than using traditional Boltzmann formula, we built a scoring function (CSF score) based on the native distributions (derived from the entire PDB) of coordinate components of mainchain C (carbonyl) atoms on selected residues of peptide segments of 5, 7, 9, and 11 residues in length. In testing OPUS‐CSF on decoy recognition, it maximally recognized 257 native structures out of 278 targets in 11 commonly used decoy sets, significantly outperforming other popular all‐atom empirical potentials. The average correlation coefficient with TM‐score was also comparable with those of other potentials. OPUS‐CSF is a highly coarse‐grained scoring function, which only requires input of partial mainchain information, and very fast. Thus, it is suitable for applications at early stage of structural building.
Collapse
Affiliation(s)
- Gang Xu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianqi Ma
- Applied Physics Program, Rice University, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Tianwu Zang
- Applied Physics Program, Rice University, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas
| | - Jianpeng Ma
- School of Life Sciences, Tsinghua University, Beijing, China.,Applied Physics Program, Rice University, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas
| |
Collapse
|
5
|
Xu G, Ma T, Zang T, Sun W, Wang Q, Ma J. OPUS-DOSP: A Distance- and Orientation-Dependent All-Atom Potential Derived from Side-Chain Packing. J Mol Biol 2017; 429:3113-3120. [PMID: 28864201 DOI: 10.1016/j.jmb.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/27/2017] [Accepted: 08/22/2017] [Indexed: 01/18/2023]
Abstract
We report a new distance- and orientation-dependent, all-atom statistical potential derived from side-chain packing, named OPUS-DOSP, for protein structure modeling. The framework of OPUS-DOSP is based on OPUS-PSP, previously developed by us [JMB (2008), 376, 288-301], with refinement and new features. In particular, distance or orientation contribution is considered depending on the range of contact distance. A new auxiliary function in energy function is also introduced, in addition to the traditional Boltzmann term, in order to adjust the contributions of extreme cases. OPUS-DOSP was tested on 11 decoy sets commonly used for statistical potential benchmarking. Among 278 native structures, 239 and 249 native structures were recognized by OPUS-DOSP without and with the auxiliary function, respectively. The results show that OPUS-DOSP has an increased decoy recognition capability comparing with those of other relevant potentials to date.
Collapse
Affiliation(s)
- Gang Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianqi Ma
- Applied Physics Program, Rice University, Houston, TX 77005, United States; Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Tianwu Zang
- Applied Physics Program, Rice University, Houston, TX 77005, United States; Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Weitao Sun
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Qinghua Wang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Jianpeng Ma
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Applied Physics Program, Rice University, Houston, TX 77005, United States; Department of Bioengineering, Rice University, Houston, TX 77005, United States; Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
6
|
Spiriti J, Zuckerman DM. Tunable Coarse Graining for Monte Carlo Simulations of Proteins via Smoothed Energy Tables: Direct and Exchange Simulations. J Chem Theory Comput 2014; 10:5161-5177. [PMID: 25400525 PMCID: PMC4230378 DOI: 10.1021/ct500622z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 12/03/2022]
Abstract
Many commonly used coarse-grained models for proteins are based on simplified interaction sites and consequently may suffer from significant limitations, such as the inability to properly model protein secondary structure without the addition of restraints. Recent work on a benzene fluid (Lettieri S.; Zuckerman D. M.J. Comput. Chem.2012, 33, 268-275) suggested an alternative strategy of tabulating and smoothing fully atomistic orientation-dependent interactions among rigid molecules or fragments. Here we report our initial efforts to apply this approach to the polar and covalent interactions intrinsic to polypeptides. We divide proteins into nearly rigid fragments, construct distance and orientation-dependent tables of the atomistic interaction energies between those fragments, and apply potential energy smoothing techniques to those tables. The amount of smoothing can be adjusted to give coarse-grained models that range from the underlying atomistic force field all the way to a bead-like coarse-grained model. For a moderate amount of smoothing, the method is able to preserve about 70-90% of the α-helical structure while providing a factor of 3-10 improvement in sampling per unit computation time (depending on how sampling is measured). For a greater amount of smoothing, multiple folding-unfolding transitions of the peptide were observed, along with a factor of 10-100 improvement in sampling per unit computation time, although the time spent in the unfolded state was increased compared with less smoothed simulations. For a β hairpin, secondary structure is also preserved, albeit for a narrower range of the smoothing parameter and, consequently, for a more modest improvement in sampling. We have also applied the new method in a "resolution exchange" setting, in which each replica runs a Monte Carlo simulation with a different degree of smoothing. We obtain exchange rates that compare favorably to our previous efforts at resolution exchange (Lyman E.; Zuckerman D. M.J. Chem. Theory Comput.2006, 2, 656-666).
Collapse
Affiliation(s)
- Justin Spiriti
- Department of Computational
and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Daniel M. Zuckerman
- Department of Computational
and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Petrella RJ. OPTIMIZATION BIAS IN ENERGY-BASED STRUCTURE PREDICTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013; 12:1341014. [PMID: 25552783 PMCID: PMC4278582 DOI: 10.1142/s0219633613410149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Physics-based computational approaches to predicting the structure of macromolecules such as proteins are gaining increased use, but there are remaining challenges. In the current work, it is demonstrated that in energy-based prediction methods, the degree of optimization of the sampled structures can influence the prediction results. In particular, discrepancies in the degree of local sampling can bias the predictions in favor of the oversampled structures by shifting the local probability distributions of the minimum sampled energies. In simple systems, it is shown that the magnitude of the errors can be calculated from the energy surface, and for certain model systems, derived analytically. Further, it is shown that for energy wells whose forms differ only by a randomly assigned energy shift, the optimal accuracy of prediction is achieved when the sampling around each structure is equal. Energy correction terms can be used in cases of unequal sampling to reproduce the total probabilities that would occur under equal sampling, but optimal corrections only partially restore the prediction accuracy lost to unequal sampling. For multiwell systems, the determination of the correction terms is a multibody problem; it is shown that the involved cross-correlation multiple integrals can be reduced to simpler integrals. The possible implications of the current analysis for macromolecular structure prediction are discussed.
Collapse
Affiliation(s)
- Robert J. Petrella
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
8
|
Li Z, Yang Y, Zhan J, Dai L, Zhou Y. Energy functions in de novo protein design: current challenges and future prospects. Annu Rev Biophys 2013; 42:315-35. [PMID: 23451890 DOI: 10.1146/annurev-biophys-083012-130315] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past decade, a concerted effort to successfully capture specific tertiary packing interactions produced specific three-dimensional structures for many de novo designed proteins that are validated by nuclear magnetic resonance and/or X-ray crystallographic techniques. However, the success rate of computational design remains low. In this review, we provide an overview of experimentally validated, de novo designed proteins and compare four available programs, RosettaDesign, EGAD, Liang-Grishin, and RosettaDesign-SR, by assessing designed sequences computationally. Computational assessment includes the recovery of native sequences, the calculation of sizes of hydrophobic patches and total solvent-accessible surface area, and the prediction of structural properties such as intrinsic disorder, secondary structures, and three-dimensional structures. This computational assessment, together with a recent community-wide experiment in assessing scoring functions for interface design, suggests that the next-generation protein-design scoring function will come from the right balance of complementary interaction terms. Such balance may be found when more negative experimental data become available as part of a training set.
Collapse
Affiliation(s)
- Zhixiu Li
- School of Informatics, Indiana University-Purdue University, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
9
|
Koppole S, Schaefer M. A discriminative Ramachandran potential of mean force aimed at minimizing secondary structure bias. J Comput Chem 2012; 33:791-9. [DOI: 10.1002/jcc.22908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/24/2011] [Accepted: 11/20/2011] [Indexed: 11/12/2022]
|
10
|
Zhou H, Skolnick J. GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys J 2012; 101:2043-52. [PMID: 22004759 DOI: 10.1016/j.bpj.2011.09.012] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 12/18/2022] Open
Abstract
An accurate scoring function is a key component for successful protein structure prediction. To address this important unsolved problem, we develop a generalized orientation and distance-dependent all-atom statistical potential. The new statistical potential, generalized orientation-dependent all-atom potential (GOAP), depends on the relative orientation of the planes associated with each heavy atom in interacting pairs. GOAP is a generalization of previous orientation-dependent potentials that consider only representative atoms or blocks of side-chain or polar atoms. GOAP is decomposed into distance- and angle-dependent contributions. The DFIRE distance-scaled finite ideal gas reference state is employed for the distance-dependent component of GOAP. GOAP was tested on 11 commonly used decoy sets containing 278 targets, and recognized 226 native structures as best from the decoys, whereas DFIRE recognized 127 targets. The major improvement comes from decoy sets that have homology-modeled structures that are close to native (all within ∼4.0 Å) or from the ROSETTA ab initio decoy set. For these two kinds of decoys, orientation-independent DFIRE or only side-chain orientation-dependent RWplus performed poorly. Although the OPUS-PSP block-based orientation-dependent, side-chain atom contact potential performs much better (recognizing 196 targets) than DFIRE, RWplus, and dDFIRE, it is still ∼15% worse than GOAP. Thus, GOAP is a promising advance in knowledge-based, all-atom statistical potentials. GOAP is available for download at http://cssb.biology.gatech.edu/GOAP.
Collapse
Affiliation(s)
- Hongyi Zhou
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
11
|
Zhou Y, Duan Y, Yang Y, Faraggi E, Lei H. Trends in template/fragment-free protein structure prediction. Theor Chem Acc 2011; 128:3-16. [PMID: 21423322 PMCID: PMC3030773 DOI: 10.1007/s00214-010-0799-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/15/2010] [Indexed: 12/13/2022]
Abstract
Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward.
Collapse
Affiliation(s)
- Yaoqi Zhou
- School of Informatics, Indiana Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indiana University Purdue University, 719 Indiana Ave #319, Walker Plaza Building, Indianapolis, IN 46202 USA
| | - Yong Duan
- UC Davis Genome Center and Department of Applied Science, University of California, One Shields Avenue, Davis, CA USA
- College of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, China
| | - Yuedong Yang
- School of Informatics, Indiana Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indiana University Purdue University, 719 Indiana Ave #319, Walker Plaza Building, Indianapolis, IN 46202 USA
| | - Eshel Faraggi
- School of Informatics, Indiana Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indiana University Purdue University, 719 Indiana Ave #319, Walker Plaza Building, Indianapolis, IN 46202 USA
| | - Hongxing Lei
- UC Davis Genome Center and Department of Applied Science, University of California, One Shields Avenue, Davis, CA USA
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100029 Beijing, China
| |
Collapse
|
12
|
Zhang J, Zhang Y. A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction. PLoS One 2010; 5:e15386. [PMID: 21060880 PMCID: PMC2965178 DOI: 10.1371/journal.pone.0015386] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/01/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND An accurate potential function is essential to attack protein folding and structure prediction problems. The key to developing efficient knowledge-based potential functions is to design reference states that can appropriately counteract generic interactions. The reference states of many knowledge-based distance-dependent atomic potential functions were derived from non-interacting particles such as ideal gas, however, which ignored the inherent sequence connectivity and entropic elasticity of proteins. METHODOLOGY We developed a new pair-wise distance-dependent, atomic statistical potential function (RW), using an ideal random-walk chain as reference state, which was optimized on CASP models and then benchmarked on nine structural decoy sets. Second, we incorporated a new side-chain orientation-dependent energy term into RW (RWplus) and found that the side-chain packing orientation specificity can further improve the decoy recognition ability of the statistical potential. SIGNIFICANCE RW and RWplus demonstrate a significantly better ability than the best performing pair-wise distance-dependent atomic potential functions in both native and near-native model selections. It has higher energy-RMSD and energy-TM-score correlations compared with other potentials of the same type in real-life structure assembly decoys. When benchmarked with a comprehensive list of publicly available potentials, RW and RWplus shows comparable performance to the state-of-the-art scoring functions, including those combining terms from multiple resources. These data demonstrate the usefulness of random-walk chain as reference states which correctly account for sequence connectivity and entropic elasticity of proteins. It shows potential usefulness in structure recognition and protein folding simulations. The RW and RWplus potentials, as well as the newly generated I-TASSER decoys, are freely available in http://zhanglab.ccmb.med.umich.edu/RW.
Collapse
Affiliation(s)
- Jian Zhang
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yang Zhang
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|