1
|
Yarnall MT, Kim SH, Korntner S, Bishop AC. Destabilization of the SHP2 and SHP1 protein tyrosine phosphatase domains by a non-conserved "backdoor" cysteine. Biochem Biophys Rep 2022; 32:101370. [PMID: 36275931 PMCID: PMC9578986 DOI: 10.1016/j.bbrep.2022.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are critical regulators of cellular signal transduction that catalyze the hydrolytic dephosphorylation of phosphotyrosine in substrate proteins. Among several conserved features in classical PTP domains are an active-site cysteine residue that is necessary for catalysis and a "backdoor" cysteine residue that can serve to protect the active-site cysteine from irreversible oxidation. Curiously, two biologically important phosphatases, Src homology domain-containing PTPs 2 and 1 (SHP2 and SHP1), each contain an additional backdoor cysteine residue at a position of the PTP domain that is occupied by proline in almost all other classical PTPs (position 333 in human SHP2 numbering). Here we show that the presence of cysteine 333 significantly destabilizes the fold of the PTP domains in the SHPs. We find that replacement of cysteine 333 with proline confers increased thermal stability on the SHP2 and SHP1 PTP domains, as measured by temperature-dependent activity assays and differential scanning fluorimetry. Conversely, we show that substantial destabilization of the PTP-domain fold is conferred by introduction of a non-natural cysteine residue in a non-SHP PTP that contains proline at the 333 position. It has previously been suggested that the extra backdoor cysteine of the SHP PTPs may work in tandem with the conserved backdoor cysteine to provide protection from irreversible oxidative enzyme inactivation. If so, our current results suggest that, during the course of mammalian evolution, the SHP proteins have developed extra protection from oxidation at the cost of the thermal instability that is conferred by the presence of their PTP domains' second backdoor cysteine.
Collapse
Affiliation(s)
| | - Sean H. Kim
- Amherst College, Department of Chemistry, Amherst, MA, 01002, USA
| | - Samuel Korntner
- Amherst College, Department of Chemistry, Amherst, MA, 01002, USA
| | | |
Collapse
|
2
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
3
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
4
|
Kim JY, Plaman BA, Bishop AC. Targeting a Pathogenic Cysteine Mutation: Discovery of a Specific Inhibitor of Y279C SHP2. Biochemistry 2020; 59:3498-3507. [PMID: 32871078 PMCID: PMC7891893 DOI: 10.1021/acs.biochem.0c00471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
An
intriguing challenge of drug discovery is targeting pathogenic
mutant proteins that differ from their wild-type counterparts by only
a single amino acid. In particular, pathogenic cysteine mutations
afford promising opportunities for mutant-specific drug discovery,
due to the unique reactivity of cysteine’s sulfhydryl-containing
side chain. Here we describe the first directed discovery effort targeting
a pathogenic cysteine mutant of a protein tyrosine phosphatase (PTP),
namely Y279C Src-homology-2-containing PTP 2 (SHP2), which has been
causatively linked to the developmental disorder Noonan syndrome with
multiple lentigines (NSML). Through a screen of commercially available
compounds that contain cysteine-reactive functional groups, we have
discovered a small-molecule inhibitor of Y279C SHP2 (compound 99; IC50 ≈ 6 μM) that has no appreciable
effect on the phosphatase activity of wild-type SHP2 or that of other
homologous PTPs (IC50 ≫ 100 μM). Compound 99 exerts its specific inhibitory effect through irreversible
engagement of Y279C SHP2’s pathogenic cysteine residue in a
manner that is time-dependent, is substrate-independent, and persists
in the context of a complex proteome. To the best of our knowledge, 99 is the first specific ligand of a disease-causing PTP mutant
to be identified. This study therefore provides both a starting point
for the development of NSML-directed therapeutic agents and a precedent
for the identification of mutant-specific inhibitors of other pathogenic
PTP mutants.
Collapse
Affiliation(s)
- Jenny Y Kim
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Bailey A Plaman
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Anthony C Bishop
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
5
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
6
|
Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity's Involvement and Herbal Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2037484. [PMID: 31781260 PMCID: PMC6874989 DOI: 10.1155/2019/2037484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is considered a major cause of disability around the globe. This handicapping disease causes important cartilage and bone alteration that is associated with serious pains and loss of joint function. Despite its frequent association with obesity, the aetiology of OA is not fully understood. In this review, the different aspects of OA and its correlation with obesity were analysed. Through examining different mechanisms by which obesity may trigger and/or exacerbate OA, we point out some relevant signalling pathways that may evolve as candidates for pharmacological drug development. As such, we also suggest a review of different herbal medicines (HMs) and their main compounds, which specifically interfere with the identified pathways. We have shown that obesity's involvement in OA is not only limited to the mechanical weight exerted on the joints (mechanical hypothesis), but also induces an inflammatory state by different mechanisms, including increased leptin expression, compromised gut mucosa, and/or gut microbiota disruption. The main signalling pathways involved in OA inflammation, which are associated with obesity, are protein tyrosine phosphatase 1B (PTP1B) and TLR4 or DAP12. Moreover, we also underline the contamination of plant extracts with LPS as an important factor to consider when studying HM's effects on articular cells. By summarizing recent publications, this review aims at highlighting newly established aspects of obesity involvement in OA other than the mechanical one.
Collapse
|
7
|
Korntner S, Pomorski A, Krężel A, Bishop AC. Optimized allosteric inhibition of engineered protein tyrosine phosphatases with an expanded palette of biarsenical small molecules. Bioorg Med Chem 2018; 26:2610-2620. [PMID: 29673715 DOI: 10.1016/j.bmc.2018.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023]
Abstract
Protein tyrosine phosphatases (PTPs), which catalyze the dephosphorylation of phosphotyrosine in protein substrates, are important cell-signaling regulators, as well as potential drug targets for a range of human diseases. Chemical tools for selectively targeting the activities of individual PTPs would help to elucidate PTP signaling roles and potentially expedite the validation of PTPs as therapeutic targets. We have recently reported a novel strategy for the design of non-natural allosteric-inhibition sites in PTPs, in which a tricysteine moiety is engineered within the PTP catalytic domain at a conserved location outside of the active site. Introduction of the tricysteine motif, which does not exist in any wild-type PTP, serves to sensitize target PTPs to inhibition by a biarsenical compound, providing a generalizable strategy for the generation of allosterically sensitized (as) PTPs. Here we show that the potency, selectivity, and kinetics of asPTP inhibition can be significantly improved by exploring the inhibitory action of a range of biarsenical compounds that differ in interarsenical distance, steric bulk, and electronic structure. By investigating the inhibitor sensitivities of five asPTPs from four different subfamilies, we have found that asPTP catalytic domains can be broadly divided into two groups: one that is most potently inhibited by biarsenical compounds with large interarsenical distances, such as AsCy3-EDT2, and one that is most potently inhibited by compounds with relatively small interarsenical distances, such as FlAsH-EDT2. Moreover, we show that a tetrachlorinated derivative of FlAsH-EDT2, Cl4FlAsH-EDT2, targets asPTPs significantly more potently than the parent compound, both in vitro and in asPTP-expressing cells. Our results show that biarsenicals with altered interarsenical distances and electronic properties are important tools for optimizing the control of asPTP activity and, more broadly, suggest that diversification of biarsenical libraries can serve to increase the efficacy of these compounds in targeted control of protein function.
Collapse
Affiliation(s)
- Samuel Korntner
- Amherst College, Department of Chemistry, Amherst, MA 01002, USA
| | - Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Anthony C Bishop
- Amherst College, Department of Chemistry, Amherst, MA 01002, USA.
| |
Collapse
|
8
|
Toward the identification of a reliable 3D-QSAR model for the protein tyrosine phosphatase 1B inhibitors. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Chan WC, Knowlton GS, Bishop AC. Activation of Engineered Protein Tyrosine Phosphatases with the Biarsenical Compound AsCy3-EDT 2. Chembiochem 2017; 18:1950-1958. [PMID: 28745017 PMCID: PMC5923034 DOI: 10.1002/cbic.201700253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/22/2022]
Abstract
Methods for activating signaling enzymes hold significant potential for the study of cellular signal transduction. Here we present a strategy for engineering chemically activatable protein tyrosine phosphatases (actPTPs). To generate actPTP1B, we introduced three cysteine point mutations in the enzyme's WPD loop. Biarsenical compounds were screened for the capability to bind actPTP1B's WPD loop and increase its phosphatase activity. We identified AsCy3-EDT2 as a robust activator that selectively targets actPTP1B in proteomic mixtures and intact cells. Introduction of the corresponding mutations in T-cell PTP also generates an enzyme (actTCPTP) that is strongly activated by AsCy3-EDT2 . Given the conservation of WPD-loop structure among the classical PTPs, our results potentially provide the groundwork of a widely generalizable approach for generating actPTPs as tools for elucidating PTP signaling roles as well as connections between dysregulated PTP activity and human disease.
Collapse
Affiliation(s)
- Wai Cheung Chan
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | | | - Anthony C. Bishop
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| |
Collapse
|
10
|
Verma M, Gupta SJ, Chaudhary A, Garg VK. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents - A brief review. Bioorg Chem 2016; 70:267-283. [PMID: 28043717 DOI: 10.1016/j.bioorg.2016.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 01/16/2023]
Abstract
Diabetes mellitus and obesity are one of the most common health issues spread throughout world and raised the medical attention to find the new effective agents to treat these disease state. Occurrence of the drug resistance to the insulin and leptin receptor is also challenging major issues. The molecules that can overcome this resistance problem could be effective for the treatment of both type II diabetes and obesity. Protein Tyrosine Phosphatase (PTP) has emerged as new promising targets for therapeutic purpose in recent years. Protein Tyrosine Phosphatase 1B (PTP 1B) act as a negative regulator of insulin and leptin receptor signalling pathways. Several approaches have been successfully applied to find out potent and selective inhibitors. This article reviews PTP 1B inhibitors; natural, synthetic and semi-synthetic that showed inhibition towards enzyme as a major target for the management of type II diabetes. These studies could be contributing the future development of PTP 1B inhibitors as drugs.
Collapse
Affiliation(s)
- Mansi Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Baghpat By-pass Crossing, NH-58, Delhi-Haridwar Highway, Meerut 250005, India.
| | - Shyam Ji Gupta
- Department of Chemistry, Indian Institute of Chemical Biology (CSIR), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, W.B., India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Baghpat By-pass Crossing, NH-58, Delhi-Haridwar Highway, Meerut 250005, India
| | - Vipin K Garg
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Baghpat By-pass Crossing, NH-58, Delhi-Haridwar Highway, Meerut 250005, India
| |
Collapse
|
11
|
Walker AS, Rablen PX, Schepartz A. Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH. J Am Chem Soc 2016; 138:7143-50. [PMID: 27163487 PMCID: PMC5381806 DOI: 10.1021/jacs.6b03422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorogenic dyes such as FlAsH and ReAsH are used widely to localize, monitor, and characterize proteins and their assemblies in live cells. These bis-arsenical dyes can become fluorescent when bound to a protein containing four proximal Cys thiols-a tetracysteine (Cys4) motif. Yet the mechanism by which bis-arsenicals become fluorescent upon binding a Cys4 motif is unknown, and this nescience limits more widespread application of this tool. Here we probe the origins of ReAsH fluorogenicity using both computation and experiment. Our results support a model in which ReAsH fluorescence depends on the relative orientation of the aryl chromophore and the appended arsenic chelate: the fluorescence is rotamer-restricted. Our results do not support a model in which fluorogenicity arises from the relief of ring strain. The calculations identify those As-aryl rotamers that support fluorescence and those that do not and correlate well with prior experiments. The rotamer-restricted model we propose is supported further by biophysical studies: the excited-state fluorescence lifetime of a complex between ReAsH and a protein bearing a high-affinity Cys4 motif is longer than that of ReAsH-EDT2, and the fluorescence intensity of ReAsH-EDT2 increases in solvents of increasing viscosity. By providing a higher resolution view of the structural basis for fluorogenicity, these results provide a clear strategy for the design of more selective bis-arsenicals and better-optimized protein targets, with a concomitant improvement in the ability to characterize previously invisible protein conformational changes and assemblies in live cells.
Collapse
Affiliation(s)
- Allison S. Walker
- Department of Chemistry, Yale University, 225 Prospect St., New Haven CT 06520
| | - Paul X. Rablen
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA 19081
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect St., New Haven CT 06520
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 225 Prospect St., New Haven CT 06520
| |
Collapse
|
12
|
Chio CM, Yu X, Bishop AC. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases. Bioorg Med Chem 2015; 23:2828-38. [PMID: 25828055 PMCID: PMC4451255 DOI: 10.1016/j.bmc.2015.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Protein tyrosine phosphatases (PTPs), which catalyze the dephosphorylation of phosphotyrosine in protein substrates, are critical regulators of metazoan cell signaling and have emerged as potential drug targets for a range of human diseases. Strategies for chemically targeting the function of individual PTPs selectively could serve to elucidate the signaling roles of these enzymes and would potentially expedite validation of the therapeutic promise of PTP inhibitors. Here we report a novel strategy for the design of non-natural allosteric-inhibition sites in PTPs; these sites, which can be introduced into target PTPs through protein engineering, serve to sensitize target PTPs to potent and selective inhibition by a biarsenical small molecule. Building on the recent discovery of a naturally occurring cryptic allosteric site in wild-type Src-homology-2 domain containing PTP (Shp2) that can be targeted by biarsenical compounds, we hypothesized that Shp2's unusual sensitivity to biarsenicals could be strengthened through rational design and that the Shp2-specific site could serve as a blueprint for the introduction of non-natural inhibitor sensitivity in other PTPs. Indeed, we show here that the strategic introduction of a cysteine residue at a position removed from the Shp2 active site can serve to increase the potency and selectivity of the interaction between Shp2's allosteric site and the biarsenical inhibitor. Moreover, we find that 'Shp2-like' allosteric sites can be installed de novo in PTP enzymes that do not possess naturally occurring sensitivity to biarsenical compounds. Using primary-sequence alignments to guide our enzyme engineering, we have successfully introduced allosteric-inhibition sites in four classical PTPs-PTP1B, PTPH-1, FAP-1, and HePTP-from four different PTP subfamilies, suggesting that our sensitization approach can likely be applied widely across the classical PTP family to generate biarsenical-responsive PTPs.
Collapse
Affiliation(s)
- Cynthia M Chio
- Amherst College, Department of Chemistry, Amherst, MA 01002, United States
| | - Xiaoling Yu
- Amherst College, Department of Chemistry, Amherst, MA 01002, United States
| | - Anthony C Bishop
- Amherst College, Department of Chemistry, Amherst, MA 01002, United States.
| |
Collapse
|
13
|
Camacho-Soto K, Castillo-Montoya J, Tye B, Ogunleye LO, Ghosh I. Small molecule gated split-tyrosine phosphatases and orthogonal split-tyrosine kinases. J Am Chem Soc 2014; 136:17078-86. [PMID: 25409264 DOI: 10.1021/ja5080745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinases phosphorylate client proteins, while protein phosphatases catalyze their dephosphorylation and thereby in concert exert reversible control over numerous signal transduction pathways. We have recently reported the design and validation of split-protein kinases that can be conditionally activated by an added small molecule chemical inducer of dimerization (CID), rapamycin. Herein, we provide the rational design and validation of three split-tyrosine phosphatases (PTPs) attached to FKBP and FRB, where catalytic activity can be modulated with rapamycin. We further demonstrate that the orthogonal CIDs, abscisic acid and gibberellic acid, can be used to impart control over the activity of split-tyrosine kinases (PTKs). Finally, we demonstrate that designed split-phosphatases and split-kinases can be activated by orthogonal CIDs in mammalian cells. In sum, we provide a methodology that allows for post-translational orthogonal small molecule control over the activity of user defined split-PTKs and split-PTPs. This methodology has the long-term potential for both interrogating and redesigning phosphorylation dependent signaling pathways.
Collapse
Affiliation(s)
- Karla Camacho-Soto
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Shengwen Shen
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Xing-Fang Li
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - William R. Cullen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada, V6T 1Z1
| | - Michael Weinfeld
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | - X. Chris Le
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|
15
|
Fu N, Su D, Cort JR, Chen B, Xiong Y, Qian WJ, Konopka AE, Bigelow DJ, Squier TC. Synthesis and Application of an Environmentally Insensitive Cy3-Based Arsenical Fluorescent Probe To Identify Adaptive Microbial Responses Involving Proximal Dithiol Oxidation. J Am Chem Soc 2013; 135:3567-75. [DOI: 10.1021/ja3117284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Na Fu
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dian Su
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John R. Cort
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Baowei Chen
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yijia Xiong
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Allan E. Konopka
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Diana J. Bigelow
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas C. Squier
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|