1
|
Santangelo MC, Lucchesi L, Papa L, Rossi A, Egizzo G, Fratello GL, Favero L, Pineschi M, Di Bussolo V, Di Pietro S. Smart Applications of Lanthanide Chelates-based Luminescent Probes in Bio-imaging. Mini Rev Med Chem 2025; 25:505-520. [PMID: 39886779 DOI: 10.2174/0113895575350677250101060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025]
Abstract
Luminescent Lanthanide (III) (Ln (III)) bioprobes (LLBs) have been extensively used in the last two decades as intracellular molecular probes in bio-imaging for the efficient revelation of analytes, to signal intracellular events (enzymes/protein activity, antigen-antibody interaction), target specific organelles, and determine parameters of particular biophysical interest, to gain important insights on pathologies or diseases. The choice of using a luminescent Ln (III) coordination compound with respect to a common organic fluorophore is intimately connected to how their photophysical sensitization (antenna effect) can be finely tuned and especially triggered to respond (even quantitatively) to a certain biophysical event, condition or analyte. While there are other reviews focused on how to design chromophoric ligands for an efficient sensitization of Ln (III) ions, both in the visible and NIR region, this mini-review is application-driven: it is a small collection of particularly interesting examples where the LLB's emissive information is acquired by imaging the emission intensity and/or the fluorescence lifetime (fluorescence lifetime imaging microscopy, FLIM).
Collapse
Affiliation(s)
| | - Leonardo Lucchesi
- Dipartimento di Biotecnologie, Chimica e Farmacia, dell'Università di Siena, Via Aldo Moro 2, 53100, Siena, Italia
| | - Leonardo Papa
- Laboratoire de Chimie de l'ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, F-69342, France
| | - Annachiara Rossi
- R&D, Fresenius Kabi Ipsum, Via S. Leonardo 23, 45010, Villadose, Italia
| | - Gaia Egizzo
- Institut Català d´Investigació Química (ICIQ), Avinguda dels Països Catalans, 16, Tarragona, 43007, Spagna
| | - Giusy Laura Fratello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| | - Lucilla Favero
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| | - Mauro Pineschi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| | - Valeria Di Bussolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| | - Sebastiano Di Pietro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| |
Collapse
|
2
|
Zou J, Song B, Kong D, Dong Z, Liu Q, Yuan J. Responsive β-Diketonate-europium(III) Complex-Based Probe for Time-Gated Luminescence Detection and Imaging of Hydrogen Sulfide In Vitro and In Vivo. Inorg Chem 2024; 63:13244-13252. [PMID: 38981109 DOI: 10.1021/acs.inorgchem.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
As a crucial biological gasotransmitter, hydrogen sulfide (H2S) plays important roles in many pathological and physiological processes. Highly selective and sensitive detection of H2S is significant for the precise diagnosis and evaluation of diverse diseases. Nevertheless, challenges remain in view of the interference of autofluorescence in organisms and the stronger reactivity of H2S itself. Herein, we report the design and synthesis of a novel H2S-responsive β-diketonate-europium(III) complex-based probe, [Eu(DNB-Npketo)3(terpy)], for background-free time-gated luminescence (TGL) detection and imaging of H2S in autofluorescence-rich biological samples. The probe, consisting of a 2,4-dinitrobenzenesulfonyl (DNB) group coupled to a β-diketonate-europium(III) complex, shows almost no luminescence owing to the existence of intramolecular photoinduced electron transfer. The cleavage of the DNB group by a H2S-triggered reaction results in the recovery of the long-lived luminescence of the Eu3+ complex, allowing the detection of H2S in complicated biological samples to be performed in TGL mode. The probe showed a fast response, high specificity, and high sensitivity toward H2S, which enabled it to be successfully used for the quantitative TGL detection of H2S in tissue homogenates of mouse organs. Additionally, the low cytotoxicity of the probe allowed it to be further used for the TGL imaging of H2S in living cells and mice under different stimuli. All of the results suggested the potential of the probe for the investigation and diagnosis of H2S-related diseases.
Collapse
Affiliation(s)
- Jinhua Zou
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Qi Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian 116600, China
| |
Collapse
|
3
|
Dong Z, Song B, Ma H, Gao X, Zhang W, Yuan J. A strategy to enhance the water solubility of luminescent β-diketonate-Europium(III) complexes for time-gated luminescence bioassays. Talanta 2024; 274:126000. [PMID: 38608630 DOI: 10.1016/j.talanta.2024.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Luminescent β-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent β-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of β-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.
Collapse
Affiliation(s)
- Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
4
|
Su F, Chen S, Liu Y, Zhou J, Du Z, Luo X, Wen S, Jin D. Lanthanide Complex for Single-Molecule Fluorescent in Situ Hybridization and Background-Free Imaging. Anal Chem 2024; 96:4430-4436. [PMID: 38447029 DOI: 10.1021/acs.analchem.3c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Traditional single-molecule fluorescence in situ hybridization (smFISH) methods for RNA detection often face sensitivity challenges due to the low fluorescence intensity of the probe. Also, short-lived autofluorescence complicates obtaining clear signals from tissue sections. In response, we have developed an smFISH probe using highly grafted lanthanide complexes to address both concentration quenching and autofluorescence background. Our approach involves an oligo PCR incorporating azide-dUTP, enabling conjugation with lanthanide complexes. This method has proven to be stable, convenient, and cost-effective. Notably, for the mRNA detection in SKBR3 cells, the lanthanide probe group exhibited 2.5 times higher luminescence intensity and detected 3 times more signal points in cells compared with the Cy3 group. Furthermore, we successfully applied the probe to image HER2 mRNA molecules in breast cancer FFPE tissue sections, achieving a 2.7-fold improvement in sensitivity compared to Cy3-based probes. These results emphasize the potential of time-resolved smFISH as a highly sensitive method for nucleic acid detection, free of background fluorescence interference.
Collapse
Affiliation(s)
- Fei Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
| | - Shiyu Chen
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yuanhua Liu
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
| | - Zhongbo Du
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiongjian Luo
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China
| |
Collapse
|
5
|
Su F, Luo X, Du Z, Chen Z, Liu Y, Jin X, Guo Z, Lu J, Jin D. High-Contrast Luminescent Immunohistochemistry Using PEGylated Lanthanide Complexes. Anal Chem 2022; 94:17587-17594. [PMID: 36464815 DOI: 10.1021/acs.analchem.2c04058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunohistochemistry (IHC) using fluorescent probes provides high resolution with multiplexing capability, but the imaging contrast is limited by the brightness of the fluorescent probe and the intrinsic autofluorescence background from tissues. Herein, we improved the contrast by high-density labeling of long-lifetime lanthanide complexes and time-gated imaging. As the large (∼280 nm) Stokes shift of lanthanide complexes effectively prevents the issue of concentration quenching, we succeeded in conjugating seven europium complexes to an eight-arm hydrophilic poly(ethylene glycol) (PEG) linker for signal amplification with improved water solubility to the level of up to 10 mg/mL. Moreover, we demonstrated that both human epidermal growth factor receptor 2 (HER2) in a formalin-fixed paraffin-embedded (FFPE) tissue section and cytokeratin 18 (CK18) in a frozen section can be resolved with the enhanced contrast by 2-fold and 3-fold, respectively. Furthermore, we show that the PEGylation of multiple lanthanide complexes is compatible with tyramide signal amplification (TSA). This work suggests new opportunities for sensitive imaging of low-abundance biomarkers in a tissue matrix.
Collapse
Affiliation(s)
- Fei Su
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiongjian Luo
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhongbo Du
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zelyu Chen
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuanhua Liu
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuan Jin
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiyong Guo
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Lu
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dayong Jin
- UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
6
|
Song B, Li M, Ren J, Liu Q, Wen X, Zhang W, Yuan J. A multifunctional nanoprobe based on europium( iii) complex–Fe 3O 4 nanoparticles for bimodal time-gated luminescence/magnetic resonance imaging of cancer cells in vitro and in vivo. NEW J CHEM 2022. [DOI: 10.1039/d2nj00511e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multifunctional nanoprobe for tumor-targeting time-gated luminescence and magnetic resonance imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Mengyan Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Junyu Ren
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinyi Wen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
7
|
ŞEN YUVAYAPAN S, ÇOLAK AT, ŞAHİN O, CELIK C. Synthesis, Characterization, and Use of Lanthanide Chelate of β-Diketonate Based Ligand as a Luminescent Biolabel. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.949970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Song B, Wen X, Zhang X, Liu Q, Ma H, Tan M, Yuan J. Bioconjugates of versatile β-diketonate-lanthanide complexes as probes for time-gated luminescence and magnetic resonance imaging of cancer cells in vitro and in vivo. J Mater Chem B 2021; 9:3161-3167. [PMID: 33885620 DOI: 10.1039/d1tb00144b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic resonance imaging (MRI) and optical imaging (OI) are attractive for constructing bimodal probes due to their complementary imaging characteristics. The combination of these two techniques could be a useful tool to simultaneously obtain both anatomical and molecular information as well as to significantly improve the accuracy of detection. In this study, we found that β-diketonate-lanthanide complexes, BHHBCB-Ln3+, could covalently bind to proteins to exhibit long-lived and intense luminescence (Ln3+ = Eu3+, τ = 0.52 ms, Φ = 0.40) and remarkably high relaxivity (Ln3+ = Gd3+, r1 = 35.67 mM-1 s-1, r2 = 43.25 mM-1 s-1) with excellent water solubility, stability and biocompatibility. Hence, we conjugated BHHBCB-Ln3+ with a tumor-targetable biomacromolecule, transferrin (Tf), to construct the probes, Tf-BHHBCB-Ln3+, for time-gated luminescence (TGL, Ln3+ = Eu3+) and MR (Ln3+ = Gd3+) imaging of cancerous cells in vitro and in vivo. As expected, the as-prepared probes showed high specificity to bind with the transferrin receptor-overexpressed cancerous cells, to enable the probe molecules to be accumulated in these cells. Using Tf-BHHBCB-Ln3+ as probes, the cultured cancerous cells and the tumors in tumor-bearing mice have been clearly visualized by background-free TGL and in vivo MR imaging. The research outcomes suggested the potential of β-diketonate-lanthanide complexes for use in constructing bimodal TGL/MR imaging bioprobes.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Al-Enezi E, Vakurov A, Eades A, Ding M, Jose G, Saha S, Millner P. Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers. SENSORS 2021; 21:s21030831. [PMID: 33513673 PMCID: PMC7865513 DOI: 10.3390/s21030831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
The protein biomarker measurement has been well-established using ELISA (enzyme-linked immunosorbent assay), which offers good sensitivity and specificity, but remains slow and expensive. Certain clinical conditions, where rapid measurement or immediate confirmation of a biomarker is paramount for treatment, necessitate more rapid analysis. Biosensors offer the prospect of reagent-less, processing-free measurements at the patient's bedside. Here, we report a platform for biosensing based on chelated Eu3+ against a range of proteins including biomarkers of cardiac injury (human myoglobin), stroke (glial fibrillary acidic protein (GFAP)), inflammation (C-reactive protein (CRP)) and colorectal cancer (carcinoembryonic antigen (CEA)). The Eu3+ ions are chelated by modified synthetic binding proteins (Affimers), which offer an alternative targeting strategy to existing antibodies. The fluorescence characteristics of the Eu3+ complex with modified Affimers against human myoglobin, GFAP, CRP and CEA were measured in human serum using λex = 395 nm, λem = 590 and 615 nm. The Eu3+-Affimer based complex allowed sensitive detection of human myoglobin, GFAP, CRP and CEA proteins as low as 100 fM in (100-fold) diluted human serum samples. The unique dependence on Eu3+ fluorescence in the visible region (590 and 615 nm) was exploited in this study to allow rapid measurement of the analyte concentration, with measurements in 2 to 3 min. These data demonstrate that the Affimer based Eu3+ complexes can function as nanobiosensors with potential analytical and diagnostic applications.
Collapse
Affiliation(s)
- Eiman Al-Enezi
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
| | - Alexandre Vakurov
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
| | - Amy Eades
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
| | - Mingyu Ding
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
| | - Gin Jose
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Sikha Saha
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - Paul Millner
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
- Correspondence:
| |
Collapse
|
10
|
Zhang R, Yuan J. Responsive Metal Complex Probes for Time-Gated Luminescence Biosensing and Imaging. Acc Chem Res 2020; 53:1316-1329. [PMID: 32574043 DOI: 10.1021/acs.accounts.0c00172] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of reliable bioanalytical probes for selective and sensitive detection of particular analytes in biological systems is essential for better understanding the roles of the analytes in their native contexts. In the last two decades, luminescent metal complexes have greatly contributed to the development of such probes for biosensing and imaging due to their unique spectral and temporal properties, controllable cell membrane permeability, and cytotoxicity. Conjugating an analyte-activatable moiety to the metal complex luminophores allows the production of responsive metal complex probes for this analyte detection. Owing to their long-lifetime emissions, the responsive metal complex probes are accessible to the technique of time-gated luminescence (TGL) detection and imaging. With a delay time after pulsed excitation, the TGL technique allows for collection of only long-lived luminescence from responsive metal complex probes, while filtering out short-lived background autofluorescence, providing a background-free approach for the detection and imaging of the analyte at subcellular and/or molecular levels. Responsive metal complex probes, therefore, have emerged as complementary sensing and imaging tools of organic dye-based fluorescent probes for the in situ detection of analytes in complicated biological environments.In this Account, we describe the advances in the development of metal complex probes and their applications for TGL bioassays with particular focus on our efforts made in this field. We first introduce the photophysical/-chemical properties of luminescent metal complexes, including lanthanide (europium and terbium) and transition metal (ruthenium and iridium) complexes. The luminescence lifetimes (τ) of lanthanide and transition metal complexes are at micro/millisecond (μs/ms) and hundreds/thousands nanosecond (ns) levels, respectively. The emission lifetimes are significantly longer than the autofluorescence lifetime (τ < 10 ns) of biological samples. Such long-lived luminescence of these metal complexes enables our research on demonstrating responsive probes for background-free TGL detection of some reactive biomolecules, such as reactive oxygen/nitrogen species (ROS/RNS) and biothiols.We conclude this Account by outlining the future directions to further develop new generation responsive TGL probes for promoting their practical applications. The responsive TGL probes are expected to be translated for biomedical and/or (pre)clinical investigations of biomolecules in situ. Reversibility, lower toxicity, ability of excitation at longer wavelength, and potential to be translated are key criteria for the development of next-generation probes. We also anticipate that further development of responsive TGL probes will contribute to the bioassay in more challenging biological systems, such as plants that have significant higher background autofluorescence than animals.
Collapse
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
A folic acid-functionalized dual-emissive nanoprobe for “double-check” luminescence imaging of cancer cells. Methods 2019; 168:102-108. [DOI: 10.1016/j.ymeth.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 01/24/2023] Open
|
12
|
Pugachyov DE, Kostryukova TS, Ivanovskaya NP, Lyamin AI, Romanov DV, Moiseyev SV, Zatonskii GV, Osin NS, Vasilyev NV. Fused Fluorinated Bis-β-diketones and Luminescent-Spectral Properties of Their Complexes with Europium. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219050165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Song B, Shi W, Shi W, Qin X, Ma H, Tan M, Zhang W, Guo L, Yuan J. A dual-modal nanoprobe based on Eu(iii) complex-MnO 2 nanosheet nanocomposites for time-gated luminescence-magnetic resonance imaging of glutathione in vitro and in vivo. NANOSCALE 2019; 11:6784-6793. [PMID: 30907913 DOI: 10.1039/c9nr00838a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dual-modal fluorescence-magnetic resonance imaging (MRI) techniques have gained great interest in biomedical research and clinical practice, since they integrate the advantages of both imaging techniques and provide a useful approach to simultaneously investigate both molecular and anatomical information at the same biological structures. Herein, we report the construction of a dual-modal time-gated luminescence (TGL)/MRI nanoprobe, BHHBB-Eu3+@MnO2, for glutathione (GSH) by anchoring luminescent β-diketone-Eu3+ complexes on layered MnO2 nanosheets. The fabricated nanoprobe exhibited very week luminescence and MR signals since the luminescence of the Eu3+ complex was quenched by MnO2 nanosheets and Mn atoms were isolated from water. Upon exposure to GSH, the MnO2 nanosheets were rapidly and selectively reduced to Mn2+ ions, resulting in remarkable enhancements of TGL and MR signals simultaneously. The combination of TGL and MR detection modes enables the nanoprobe to be used for detecting GSH in a wide concentration range (1-1000 μM) and imaging GSH at different resolutions and depths ranging from the subcellular level to the whole body. Furthermore, the as-prepared nanoprobe exhibited a low cytotoxicity and good biocompatibility, rapid response rate, long-lived luminescence, and high sensitivity and selectivity for responding to GSH. These features allowed it to be successfully used for the TGL detection of GSH in human sera, TGL imaging of GSH in living cells and zebrafish, as well as dual-modal TGL/MR imaging of GSH in tumor-bearing mice. All of these results highlighted the applicability and advantages of the nanoprobe for detecting GSH in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kai T, Kishimoto M, Akita M, Yoshizawa M. Encapsulation-induced emission enhancement (EIEE) of Eu(iii)-complexes by aromatic micelles in water. Chem Commun (Camb) 2018; 54:956-959. [PMID: 29319083 DOI: 10.1039/c7cc09450g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eu(iii)-complexes emit highly pure and intense red luminescence in aprotic organic solvents, yet the emission is usually quenched completely in the presence of aqueous solvents. Here we report that typical Eu(iii)-complexes are readily encapsulated in the hydrophobic cavities of aromatic micelles, composed of amphiphilic molecules with bent aromatic frameworks. Whereas the emissivity of the Eu(iii)-complexes themselves is zero in aqueous solutions, the resultant host-guest nanocomposites exhibit relatively strong red emission (up to Φ = 48%) with long emission lifetimes (up to τ = 1.05 ms) even in water. Thus, encapsulation-induced emission enhancement (EIEE) of the otherwise water-deactivated luminescent compounds is demonstrated by the aromatic micelle.
Collapse
Affiliation(s)
- Tomokuni Kai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | |
Collapse
|
15
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
16
|
Qin X, Wang Y, Song B, Wang X, Ma H, Yuan J. Homogeneous time-resolved fluoroimmunoassay of microcystin-LR using layered WS 2 nanosheets as a transducer. Methods Appl Fluoresc 2017; 5:024007. [PMID: 28387214 DOI: 10.1088/2050-6120/aa6c00] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A homogeneous time-resolved fluoroimmunoassay method for rapid and sensitive detection of microcystin-LR (MC-LR) in water samples was developed based on the interaction between water-soluble WS2 nanosheets and the conjugate of MC-LR with a luminescent Eu3+ complex BHHBCB-Eu3+ (BHHBCB: 1,2-bis[4'-(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedion-6″-yl)- benzyl]-4-chlorosulfobenzene). The large lateral dimensions and high surface areas of two-dimensional layered WS2 nanosheets enable easy adsorption of the MC-LR-BHHBCB-Eu3+ conjugate, that lead to efficient quenching of the luminescence of Eu3+ complex via energy transfer or electron transfer process. However, the addition of monoclonal anti-MC-LR antibody can induce the formation of MC-LR-BHHBCB-Eu3+/antibody immune complex, which prevents the interaction between WS2 nanosheets and MC-LR-BHHBCB-Eu3+ to result in the restoration of Eu3+ luminescence. This signal transduction mechanism made it possible for analysis of the target MC-LR in a homogeneous system. The present method has advantages of rapidity and simplicity since the B/F (bound reagent/free reagent) separation steps, the solid-phase carrier and antibody labeling or modification process are not necessary. The proposed immunosensing system displayed a wide linear range, good precision and accuracy, and comparable sensitivity with a detection limit of 0.3 μg l-1, which satisfied the World Health Organization (WHO) provisional guideline limit of 1.0 μg l-1 for MC-LR in drinking water.
Collapse
Affiliation(s)
- Xiaodan Qin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Sayyadi N, Justiniano I, Connally RE, Zhang R, Shi B, Kautto L, Everest-Dass AV, Yuan J, Walsh BJ, Jin D, Willows RD, Piper JA, Packer NH. Sensitive Time-Gated Immunoluminescence Detection of Prostate Cancer Cells Using a TEGylated Europium Ligand. Anal Chem 2016; 88:9564-9571. [DOI: 10.1021/acs.analchem.6b02191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nima Sayyadi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Irene Justiniano
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Minomic International Ltd., Macquarie Park, Sydney, New South Wales 2113, Australia
| | - Russell E. Connally
- Department
of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Run Zhang
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Liisa Kautto
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Arun V. Everest-Dass
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jingli Yuan
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning Province 116024, China
| | - Bradley J. Walsh
- Minomic International Ltd., Macquarie Park, Sydney, New South Wales 2113, Australia
| | - Dayong Jin
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- School of
Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Robert D. Willows
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - James A. Piper
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Department
of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
18
|
Ma H, Song B, Wang Y, Cong D, Jiang Y, Yuan J. Dual-emissive nanoarchitecture of lanthanide-complex-modified silica particles for in vivo ratiometric time-gated luminescence imaging of hypochlorous acid. Chem Sci 2016; 8:150-159. [PMID: 28451159 PMCID: PMC5308275 DOI: 10.1039/c6sc02243j] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022] Open
Abstract
A dual-emissive nanoarchitecture of lanthanide-complex-modified silica particles was developed for real-time ratiometric time-gated luminescence imaging of HClO in vivo.
We have developed a ratiometric time-gated luminescence sensory system for in vivo imaging of hypochlorous acid (HClO) by preparing a dual-emissive nanoarchitecture of europium- and terbium-complex-modified silica nanoparticles. The design of this nanoarchitecture is based on our new finding that the strong, long-lived luminescence of the β-diketonate–Eu3+ complex can be rapidly and selectively quenched by HClO. Therefore, the β-diketonate–Eu3+ complex was decorated on the surface of the silica nanoparticles for responding to HClO, while a HClO-insensitive luminescent terbium complex was immobilized in the inner solid core of the nanoparticles to serve as an internal standard. This nanosensing probe combines the advantages of both ratiometric and time-gated detection modes to afford high accuracy and sensitivity. Upon exposure to HClO, the nanoprobe displayed a remarkable luminescence color change from red to green, and the intensity ratio of the green over the red luminescence (I539/I607) showed a rapid, sensitive and selective response to HClO. Additionally, the feasibility of using the nanoprobe for intracellular detection of exogenous and endogenous HClO and for real-time mapping of HClO in small laboratory animals has been demonstrated via ratiometric time-gated luminescence imaging microscopy. The results reveal that the constructed nanoarchitecture cloud is a favorable and useful sensing probe for the real-time imaging of HClO in vivo with high specificity and contrast.
Collapse
Affiliation(s)
- Hua Ma
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| | - Bo Song
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| | - Yuanxiu Wang
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| | - Deyuan Cong
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| | - Yufei Jiang
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| |
Collapse
|
19
|
A Novel Universal Detection Agent for Time-Gated Luminescence Bioimaging. Sci Rep 2016; 6:27564. [PMID: 27282464 PMCID: PMC4901361 DOI: 10.1038/srep27564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 11/08/2022] Open
Abstract
Luminescent lanthanide chelates have been used to label antibodies in time-gated luminescence (TGL) bioimaging. However, it is a challenging task to label directly an antibody with lanthanide-binding ligands and achieve control of the target ligand/protein ratios whilst ensuring that affinity and avidity of the antibody remain uncompromised. We report the development of a new indirect detection reagent to label antibodies with detectable luminescence that circumvents this problem by labelling available lysine residues in the linker portion of the recombinant fusion protein Linker-Protein G (LPG). Succinimide-activated lanthanide chelating ligands were attached to lysine residues in LPG and Protein G (without Linker) and the resulting Luminescence-Activating (LA-) conjugates were compared for total incorporation and conjugation efficiency. A higher and more efficient incorporation of ligands at three different molar ratios was observed for LPG and this effect was attributed to the presence of eight readily available lysine residues in the linker region of LPG. These Luminescence-Activating (LA-) complexes were subsequently shown to impart luminescence (upon formation of europium(III) complexes) to cell-specific antibodies within seconds and without the need for any complicated bioconjugation procedures. The potential of this technology was demonstrated by direct labelling of Giardia cysts and Cryptosporidium oocysts in TGL bioimaging.
Collapse
|
20
|
Sayyadi N, Connally RE, Try A. A novel biocompatible europium ligand for sensitive time-gated immunodetection. Chem Commun (Camb) 2016; 52:1154-7. [DOI: 10.1039/c5cc06811h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the synthesis of a novel hydrophilic derivative of a tetradentate β-diketone europium ligand that was used to prepare an immunoconjugate probe against Giardia lamblia cysts. We used a Gated Autosynchronous Luminescence Detector (GALD) to obtain high quality delayed luminescence images of cells 30-fold faster than ever previously reported.
Collapse
Affiliation(s)
- Nima Sayyadi
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP)
- Macquarie University
- Sydney
- Australia
- Department of Chemistry and Biomolecular Sciences Macquarie University
| | | | - Andrew Try
- Department of Chemistry and Biomolecular Sciences Macquarie University
- Sydney
- Australia
| |
Collapse
|
21
|
Sun J, Song B, Ye Z, Yuan J. Mitochondria Targetable Time-Gated Luminescence Probe for Singlet Oxygen Based on a β-Diketonate–Europium Complex. Inorg Chem 2015; 54:11660-8. [DOI: 10.1021/acs.inorgchem.5b02458] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jingyan Sun
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Bo Song
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Zhiqiang Ye
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jingli Yuan
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
22
|
Synthesis of a di(2-picolyl)amino-β-diketone dual-functional ligand that can coordinate to europium(III) for responding to copper(II) and sulfide ions. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Song B, Ye Z, Yang Y, Ma H, Zheng X, Jin D, Yuan J. Background-free in-vivo Imaging of Vitamin C using Time-gateable Responsive Probe. Sci Rep 2015; 5:14194. [PMID: 26373894 PMCID: PMC4570993 DOI: 10.1038/srep14194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Sensitive optical imaging of active biomolecules in the living organism requires both a molecular probe specifically responsive to the target and a high-contrast approach to remove the background interference from autofluorescence and light scatterings. Here, a responsive probe for ascorbic acid (vitamin C) has been developed by conjugating two nitroxide radicals with a long-lived luminescent europium complex. The nitroxide radical withholds the probe on its “off” state (barely luminescent), until the presence of vitamin C will switch on the probe by forming its hydroxylamine derivative. The probe showed a linear response to vitamin C concentration with a detection limit of 9.1 nM, two orders of magnitude lower than that achieved using electrochemical methods. Time-gated luminescence microscopy (TGLM) method has further enabled real-time, specific and background-free monitoring of cellular uptake or endogenous production of vitamin C, and mapping of vitamin C in living Daphnia magna. This work suggests a rational design of lanthanide complexes for background-free small animal imaging of biologically functional molecules.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry,Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiqing Ye
- State Key Laboratory of Fine Chemicals, School of Chemistry,Dalian University of Technology, Dalian 116024, P. R. China
| | - Yajie Yang
- State Key Laboratory of Fine Chemicals, School of Chemistry,Dalian University of Technology, Dalian 116024, P. R. China
| | - Hua Ma
- State Key Laboratory of Fine Chemicals, School of Chemistry,Dalian University of Technology, Dalian 116024, P. R. China
| | - Xianlin Zheng
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP),Macquarie University, NSW 2109, Sydney, Australia
| | - Dayong Jin
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP),Macquarie University, NSW 2109, Sydney, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry,Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
24
|
Zhang M, Qu ZB, Han CM, Lu LF, Li YY, Zhou T, Shi G. Time-resolved probes and oxidase-based biosensors using terbium(III)-guanosine monophosphate-mercury(II) coordination polymer nanoparticles. Chem Commun (Camb) 2015; 50:12855-8. [PMID: 25208485 DOI: 10.1039/c4cc05889e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel lanthanide coordination polymer nanoparticle (LCPN)-based ternary complex was synthesized via the self-assembly of a terbium ion (Tb(3+)) with a nucleotide (GMP) and a mercury ion (Hg(2+)) in aqueous solution. The as-prepared LCPN-based ternary complex (Tb-GMP-Hg) can be applied to the development of time-resolved luminescence assays and oxidase-based biosensors.
Collapse
Affiliation(s)
- Min Zhang
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ghosh D, Luwang MN. One-pot synthesis of 2-thenoyltrifluoroacetone surface functionalised SrF2:Eu3+ nanoparticles: trace level detection of water. RSC Adv 2015. [DOI: 10.1039/c5ra08566g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trace level detection of water by 2-thenoyltrifluoroacetone Surface functionalised fluorescent lanthanide (Eu3+) doped SrF2 nanoparticles.
Collapse
Affiliation(s)
- Debasish Ghosh
- Chemical Engineering and Process Development Division
- National Chemical Laboratory
- Pune – 411008
- India
| | - Meitram Niraj Luwang
- Chemical Engineering and Process Development Division
- National Chemical Laboratory
- Pune – 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
26
|
Golovnev NN, Molokeev MS. Crystal structure of polymer hexaaqua-hexakis(2-thiobarbiturato)dieuropium(III). RUSS J COORD CHEM+ 2014. [DOI: 10.1134/s1070328414090036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
|
28
|
Xu L, Feng L, Han Y, Jing Y, Xian Z, Liu Z, Huang J, Yan Y. Supramolecular self-assembly enhanced europium(III) luminescence under visible light. SOFT MATTER 2014; 10:4686-4693. [PMID: 24839053 DOI: 10.1039/c4sm00335g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we report on the luminescence of europium by directly exciting europium ions with visible light in aqueous medium. Upon replacing all the water molecules that coordinate around a central europium ion with a ditopic ligand 1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9-trioxaundecane (L2EO4), the quenching from water molecules is efficiently eliminated, offering considerable europium emission. By stoichiometrically mixing with a positively charged block polyelectrolyte, the negatively charged L2EO4-Eu coordinating complex can be transformed into a coordination 'polymer', which simultaneously forms electrostatic micelles with further enhanced europium fluorescence emission, owing to the increased fraction of L2EO4-coordinated Eu(III) as revealed by the fluorescence lifetime measurements. This approach avoids the use of the antenna effect that often utilizes UV light as the irradiation source. We further use those micelles for bio-imaging, and for the first time demonstrate the use of directly excited Eu-containing nano-probes for in vivo fluorescence imaging in small animals under visible excitation. Although literature results have shown that the direct excitation of europium ions in water may lead to emissions in the presence of coordinating ligands, those emissions were too weak to be applied due to the remaining water molecules in the coordination sphere. Our work points out that the direct excitation of europium can generate considerable europium emission given that all the water molecules in the coordination sphere are excluded, which does not only greatly reduce tedious lab work in synthesizing antenna molecules, but also facilitates the application of europium in aqueous medium under visible light.
Collapse
Affiliation(s)
- Limin Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tian L, Dai Z, Ye Z, Song B, Yuan J. Preparation and functionalization of a visible-light-excited europium complex-modified luminescent protein for cell imaging applications. Analyst 2014; 139:1162-7. [PMID: 24443719 DOI: 10.1039/c3an02078a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lanthanide complex-based luminescent bioprobes have shown great utility in a variety of time-resolved luminescence bioassays, but these bioprobes often require UV excitation and suffer from problems related to bioaffinity and biocompatibility for in vivo applications. In this work, a new visible-light-excited europium(III) complex with the maximum excitation wavelength over 400 nm, BHHBB-Eu(3+)-BPT {BHHBB: 1,2-bis[4'-(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-benzyl]-benzene; BPT: 2-(N,N-diethylanilin-4-yl)-4,6-bis(pyrazol-1-yl)-1,3,5-triazine}, has been synthesized for the preparation of an artificial luminescent protein that can be used as a visible-light-excited luminescent bioprobe for cell imaging. By encapsulating BHHBB-Eu(3+)-BPT into apoferritin with a simple dissociation-reassembly method, the luminescent protein, Eu@AFt, with a maximum excitation peak at 420 nm and a long luminescence lifetime of 365 μs was fabricated and successfully used for visible-light-excited time-resolved luminescence cell imaging. Moreover, by conjugating a mitochondria-targeting molecule, (5-N-succinimidoxy-5-oxopentyl)-triphenylphosphonium bromide (SPTPP), onto the surface of Eu@AFt, a mitochondria-specifically-tracking luminescent probe, Eu@AFt-SPTPP, was further prepared and used for visible-light-excited confocal luminescence microscopy imaging to visualize the mitochondria of living cells.
Collapse
Affiliation(s)
- Lu Tian
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | |
Collapse
|
30
|
Zhang M, Le HN, Jiang XQ, Yin BC, Ye BC. Time-Resolved Probes Based on Guanine/Thymine-Rich DNA-Sensitized Luminescence of Terbium(III). Anal Chem 2013; 85:11665-74. [DOI: 10.1021/ac4034054] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Min Zhang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Huynh-Nhu Le
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiao-Qin Jiang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Bin-Cheng Yin
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
31
|
Zhang L, Tian L, Ye Z, Song B, Yuan J. Preparation of visible-light-excited europium biolabels for time-resolved luminescence cell imaging application. Talanta 2013; 108:143-9. [DOI: 10.1016/j.talanta.2013.02.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
32
|
Xu L, Jing Y, Feng L, Xian Z, Yan Y, Liu Z, Huang J. The advantage of reversible coordination polymers in producing visible light sensitized Eu(iii) emissions over EDTA via excluding water from the coordination sphere. Phys Chem Chem Phys 2013; 15:16641-7. [DOI: 10.1039/c3cp52776j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Reddy MLP, Divya V, Pavithran R. Visible-light sensitized luminescent europium(iii)-β-diketonate complexes: bioprobes for cellular imaging. Dalton Trans 2013; 42:15249-62. [DOI: 10.1039/c3dt52238e] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Lu Y, Xi P, Piper JA, Huo Y, Jin D. Time-gated orthogonal scanning automated microscopy (OSAM) for high-speed cell detection and analysis. Sci Rep 2012; 2:837. [PMID: 23150787 PMCID: PMC3495287 DOI: 10.1038/srep00837] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022] Open
Abstract
We report a new development of orthogonal scanning automated microscopy (OSAM) incorporating time-gated detection to locate rare-event organisms regardless of autofluorescent background. The necessity of using long-lifetime (hundreds of microseconds) luminescent biolabels for time-gated detection implies long integration (dwell) time, resulting in slow scan speed. However, here we achieve high scan speed using a new 2-step orthogonal scanning strategy to realise on-the-fly time-gated detection and precise location of 1-μm lanthanide-doped microspheres with signal-to-background ratio of 8.9. This enables analysis of a 15 mm × 15 mm slide area in only 3.3 minutes. We demonstrate that detection of only a few hundred photoelectrons within 100 μs is sufficient to distinguish a target event in a prototype system using ultraviolet LED excitation. Cytometric analysis of lanthanide labelled Giardia cysts achieved a signal-to-background ratio of two orders of magnitude. Results suggest that time-gated OSAM represents a new opportunity for high-throughput background-free biosensing applications.
Collapse
Affiliation(s)
- Yiqing Lu
- Advanced Cytometry Laboratories, MQ Biofocus Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | | | |
Collapse
|