1
|
Hybrid bilayer membranes as platforms for biomimicry and catalysis. Nat Rev Chem 2022; 6:862-880. [PMID: 37117701 DOI: 10.1038/s41570-022-00433-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
Hybrid bilayer membrane (HBM) platforms represent an emerging nanoscale bio-inspired interface that has broad implications in energy catalysis and smart molecular devices. An HBM contains multiple modular components that include an underlying inorganic surface with a biological layer appended on top. The inorganic interface serves as a support with robust mechanical properties that can also be decorated with functional moieties, sensing units and catalytic active sites. The biological layer contains lipids and membrane-bound entities that facilitate or alter the activity and selectivity of the embedded functional motifs. With their structural complexity and functional flexibility, HBMs have been demonstrated to enhance catalytic turnover frequency and regulate product selectivity of the O2 and CO2 reduction reactions, which have applications in fuel cells and electrolysers. HBMs can also steer the mechanistic pathways of proton-coupled electron transfer (PCET) reactions of quinones and metal complexes by tuning electron and proton delivery rates. Beyond energy catalysis, HBMs have been equipped with enzyme mimics and membrane-bound redox agents to recapitulate natural energy transport chains. With channels and carriers incorporated, HBM sensors can quantify transmembrane events. This Review serves to summarize the major accomplishments achieved using HBMs in the past decade.
Collapse
|
2
|
Leeman M, Albers WM, Bombera R, Kuncova-Kallio J, Tuppurainen J, Nilsson L. Asymmetric flow field-flow fractionation coupled to surface plasmon resonance detection for analysis of therapeutic proteins in blood serum. Anal Bioanal Chem 2020; 413:117-127. [PMID: 33098467 PMCID: PMC7801359 DOI: 10.1007/s00216-020-03011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Coupling of surface plasmon resonance (SPR) detection to asymmetric flow field-flow fractionation (AF4) offers the possibility to study active fractions of bio-separations on real samples, such as serum and saliva, including the assessment of activity of possibly aggregated species. The coupling of SPR with AF4 requires the possibility to select fractions from a fractogram and redirect them to the SPR. The combination of SPR with chromatography-like methods also requires a mechanism for regeneration of the receptor immobilised onto the SPR sensor surface. In recent work, the combination of size exclusion chromatography (SEC) with SPR was pioneered as a successful methodology for identification, characterisation and quantification of active biocomponents in biological samples. In this study, the approach using AF4 is evaluated for the antibody trastuzumab in buffer and serum. The particular object of this study was to test the feasibility of using AF4 in combination with SPR to detect and quantify proteins and aggregates in complex samples such as blood serum. Also, in the investigation, three different immobilisation methods for the receptor HER-2 were compared, which involved (1) direct binding via EDC/NHS, the standard approach; (2) immobilisation via NTA-Ni-Histag complexation; and (3) biotin/avidin-linked chemistry using a regenerable form of avidin. The highest specific activity was obtained for the biotin-avidin method, while the lowest specific activity was observed for the NTA-Ni-Histag linkage. The data show that AF4 can separate trastuzumab monomers and aggregates in blood serum and that SPR has the ability to selectively monitor the elution. This is an encouraging result for automated analysis of complex biological samples using AF4-SPR.
Collapse
Affiliation(s)
- Mats Leeman
- SOLVE Research and Consultancy AB, Medicon village, 22381, Lund, Sweden
| | | | | | | | | | - Lars Nilsson
- Department of Food Technology, Engineering and Nutrition, Faculty of Engineering LTH, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
3
|
Janik M, Niedziałkowski P, Lechowicz K, Koba M, Sezemsky P, Stranak V, Ossowski T, Śmietana M. Electrochemically directed biofunctionalization of a lossy-mode resonance optical fiber sensor. OPTICS EXPRESS 2020; 28:15934-15942. [PMID: 32549427 DOI: 10.1364/oe.390780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
In this work, we present a direct electrochemical biofunctionalization of an indium-tin-oxide-coated lossy-mode resonance optical fiber sensor. The functionalization using a biotin derivative was performed by cyclic voltammetry in a 10 mM biotin hydrazide solution. All stages of the experiment were simultaneously verified with optical and electrochemical techniques. Performed measurements indicate the presence of a poly-biotin layer on the sensor's surface. Furthermore, dual-domain detection of 0.01 and 0.1 mg/mL of avidin confirms the sensor's viability for label-free detection.
Collapse
|
4
|
Delgadillo RF, Mueser TC, Zaleta-Rivera K, Carnes KA, González-Valdez J, Parkhurst LJ. Detailed characterization of the solution kinetics and thermodynamics of biotin, biocytin and HABA binding to avidin and streptavidin. PLoS One 2019; 14:e0204194. [PMID: 30818336 PMCID: PMC6394990 DOI: 10.1371/journal.pone.0204194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
The high affinity (KD ~ 10−15 M) of biotin for avidin and streptavidin is the essential component in a multitude of bioassays with many experiments using biotin modifications to invoke coupling. Equilibration times suggested for these assays assume that the association rate constant (kon) is approximately diffusion limited (109 M-1s-1) but recent single molecule and surface binding studies indicate that they are slower than expected (105 to 107 M-1s-1). In this study, we asked whether these reactions in solution are diffusion controlled, which reaction model and thermodynamic cycle describes the complex formation, and if there are any functional differences between avidin and streptavidin. We have studied the biotin association by two stopped-flow methodologies using labeled and unlabeled probes: I) fluorescent probes attached to biotin and biocytin; and II) unlabeled biotin and HABA, 2-(4’-hydroxyazobenzene)-benzoic acid. Both native avidin and streptavidin are homo-tetrameric and the association data show no cooperativity between the binding sites. The kon values of streptavidin are faster than avidin but slower than expected for a diffusion limited reaction in both complexes. Moreover, the Arrhenius plots of the kon values revealed strong temperature dependence with large activation energies (6–15 kcal/mol) that do not correspond to a diffusion limited process (3–4 kcal/mol). Accordingly, we propose a simple reaction model with a single transition state for non-immobilized reactants whose forward thermodynamic parameters complete the thermodynamic cycle, in agreement with previously reported studies. Our new understanding and description of the kinetics, thermodynamics, and spectroscopic parameters for these complexes will help to improve purification efficiencies, molecule detection, and drug screening assays or find new applications.
Collapse
Affiliation(s)
- Roberto F. Delgadillo
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RFD); (LJP)
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, United States of America
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Katie A. Carnes
- GlaxoSmithKline, Medicinal Science and Technology, R&D, King of Prussia, Pennsylvania, United States of America
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, NL, Monterrey, Mexico
| | - Lawrence J. Parkhurst
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RFD); (LJP)
| |
Collapse
|
5
|
Raines DJ, Clarke JE, Blagova EV, Dodson EJ, Wilson KS, Duhme-Klair AK. Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly. Nat Catal 2018. [DOI: 10.1038/s41929-018-0124-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Knoglinger C, Zich A, Traxler L, Poslední K, Friedl G, Ruttmann B, Schorpp A, Müller K, Zimmermann M, Gruber HJ. Regenerative biosensor for use with biotinylated bait molecules. Biosens Bioelectron 2018; 99:684-690. [PMID: 28734694 DOI: 10.1016/j.bios.2017.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022]
Abstract
Label-free biosensors are ideally suited for the quantitative analysis of specific interactions among biomolecules or of biomolecules with drugs, as well as for quantitation of diagnostic markers in biofluids. In contrast to the label-dependent methods, a new assay for a particular prey molecule can be set up within few minutes by immobilizing the corresponding bait molecule on the sensor surface, using one of the common immobilization procedures. Unfortunately, the extensive application of label-free biosensors is still hampered by the fact that the immobilization of the bait molecule is usually irreversible; for that reason, a new chip (which is expensive) is required for every successful or futile attempt. Here, we present a general method for the switchable immobilization of biotinylated bait molecules on a new desthiobiotin surface, using wild-type streptavidin as a robust bridge between the chip and the biotinylated bait. The immobilization of the bait is very stable, so that many cycles of prey injection and subsequent prey removal can be carried out. For the latter, common reagents like HCl, Na2CO3, glycine buffer, or SDS are employed. When desired, however, streptavidin plus the biotinylated bait can be completely removed by 3min injections of biotin, guanidinium thiocyanate, pepsin, and SDS, which makes it possible to immobilize new biotinylated bait. The number of in situ regeneration cycles is unlimited during the lifetime of the chip (2-3 weeks). One chip can easily be shared by many users with unrelated tasks (as is typical in academics), or used for the fully automated screening of many different interactions (for example in pharmaceutical research). In comparison to other regenerative chips, the new chip surface has much wider applicability and all of its structural and functional parameters have been disclosed.
Collapse
Affiliation(s)
- Claudia Knoglinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Andreas Zich
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Lukas Traxler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Kristýna Poslední
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gloria Friedl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Bianca Ruttmann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Anika Schorpp
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Katharina Müller
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Mirjam Zimmermann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Hermann J Gruber
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria.
| |
Collapse
|
7
|
Hu C, Qu Y, Zhan W, Wei T, Cao L, Yu Q, Chen H. A supramolecular bioactive surface for specific binding of protein. Colloids Surf B Biointerfaces 2017; 152:192-198. [DOI: 10.1016/j.colsurfb.2017.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/04/2017] [Accepted: 01/14/2017] [Indexed: 12/17/2022]
|
8
|
Kumar M, Rahikainen R, Unruh D, Hytönen VP, Delbrück C, Sindelar R, Renz F. Mixture of PLA-PEG and biotinylated albumin enables immobilization of avidins on electrospun fibers. J Biomed Mater Res A 2016; 105:356-362. [DOI: 10.1002/jbm.a.35920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Manish Kumar
- Department of Material Science Faculty II; University of Applied Science and Arts; Ricklinger Stadtweg 120 Hannover 30459 Germany
- Laboratorium of Nano and Quantum Engineering; Leibniz Universität Hannover; Schneiderberg 39 Hannover 30167 Germany
| | - Rolle Rahikainen
- BioMediTech University of Tampere; Lääkärinkatu 1 Tampere Finland 33520
- Fimlab Laboratories; Biokatu 4 Tampere Finland 33520
| | - Daniel Unruh
- Institute of Inorganic Chemistry Leibniz Universität Hannover; Callinstraße 9 Hannover 30167 Germany
| | - Vesa P. Hytönen
- BioMediTech University of Tampere; Lääkärinkatu 1 Tampere Finland 33520
- Fimlab Laboratories; Biokatu 4 Tampere Finland 33520
| | - Cesare Delbrück
- Institute of Inorganic Chemistry Leibniz Universität Hannover; Callinstraße 9 Hannover 30167 Germany
| | - Ralf Sindelar
- Department of Material Science Faculty II; University of Applied Science and Arts; Ricklinger Stadtweg 120 Hannover 30459 Germany
| | - Franz Renz
- Institute of Inorganic Chemistry Leibniz Universität Hannover; Callinstraße 9 Hannover 30167 Germany
| |
Collapse
|
9
|
Dugger JW, Webb LJ. Fibrillar structures formed by covalently bound, short, β-stranded peptides on self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3441-3450. [PMID: 25738859 DOI: 10.1021/la5049369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability to maintain or reproduce biomolecular structures on inorganic substrates has the potential to impact diverse fields such as sensing and molecular electronics, as well as the study of biological self-assembly and structure-function relationships. Because the structure and self-assembly of biomolecules are exquisitely sensitive to their local chemical and electrostatic environment, the goal of reproducing or mimicking biological function in an abiological environment, including at a surface, is challenging. However, simple and well-characterized chemical modifications of prepared surfaces can be used to tune surface chemistry, structure, electrostatics, and reactivity of inorganic materials to facilitate biofunctionalization and function. Here, we describe the covalent attachment of 13-residue β-stranded peptides containing alkyne groups to a flat gold surface functionalized with an azide-terminated self-assembled monolayer through a Huisgen cycloaddition, or "click", reaction. The chemical composition and structural morphology of these surfaces were characterized using X-ray photoelectron spectroscopy, grazing incidence angle reflection-absorption infrared spectroscopy, surface circular dichroism, and atomic force microscopy. The surface-bound β-strands self-assemble into antiparallel β-sheets to form fibrillar structures 24.9 ± 1.6 nm in diameter and 2.83 ± 0.74 nm in height on the reactive surface. The results herein provide a platform for studying and controlling the self-assembly process of biomolecules into larger supermolecular structures while allowing tunable control through chemical functionalization of the surface. Interest in the mechanisms of formation of fibrillar structures has most commonly been associated with neurodegenerative diseases, such as Alzheimer's and Parkinson's, but fibrils may actually represent the thermodynamic low-energy conformation of a much larger class of peptides and proteins. The protocol developed here is an important step toward uncovering not only the factors that dictate self-assembly but also the mechanisms by which this fibrillar class of superstructures forms.
Collapse
Affiliation(s)
- Jason W Dugger
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, and Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, and Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Taskinen B, Zauner D, Lehtonen SI, Koskinen M, Thomson C, Kähkönen N, Kukkurainen S, Määttä JAE, Ihalainen TO, Kulomaa MS, Gruber HJ, Hytönen VP. Switchavidin: Reversible Biotin–Avidin–Biotin Bridges with High Affinity and Specificity. Bioconjug Chem 2014; 25:2233-43. [DOI: 10.1021/bc500462w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Barbara Taskinen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Dominik Zauner
- Institute
of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | - Soili I. Lehtonen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Masi Koskinen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Chloe Thomson
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Niklas Kähkönen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Sampo Kukkurainen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Juha A. E. Määttä
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Teemu O. Ihalainen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
| | - Markku S. Kulomaa
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Hermann J. Gruber
- Institute
of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | - Vesa P. Hytönen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| |
Collapse
|