1
|
Li D, Cai S, Wang P, Cheng H, Cheng B, Zhang Y, Liu G. Innovative Design Strategies Advance Biomedical Applications of Phthalocyanines. Adv Healthc Mater 2023; 12:e2300263. [PMID: 37039069 DOI: 10.1002/adhm.202300263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Owing to their long absorption wavelengths, high molar absorptivity, and tunable photosensitivity, phthalocyanines have been widely used in photodynamic therapy (PDT). However, phthalocyanines still face the drawbacks of poor targeting, "always-on" photosensitizing properties, and unsatisfactory therapeutic efficiency, which limit their wide applications in biomedical fields. Thus, new design strategies such as modification of targeting molecules, formation of nanoparticles, and activating photosensitizers are developed to improve the above defects. Notably, recent studies have shown that novel phthalocyanines are not only used in fluorescence imaging and PDT, but also in photoacoustic imaging, photothermal imaging, sonodynamic therapy, and photothermal therapy. This review focuses on recent design strategies, applications in biomedicine, and clinical development of phthalocyanines, providing ideas and references for the design and application of phthalocyanine, so as to promote their future transformation into clinical applications.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shundong Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Peiyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bingwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Dual-Labelling Strategies for Nuclear and Fluorescence Molecular Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040432. [PMID: 35455430 PMCID: PMC9028399 DOI: 10.3390/ph15040432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging offers the possibility to investigate biological and biochemical processes non-invasively and to obtain information on both anatomy and dysfunctions. Based on the data obtained, a fundamental understanding of various disease processes can be derived and treatment strategies can be planned. In this context, methods that combine several modalities in one probe are increasingly being used. Due to the comparably high sensitivity and provided complementary information, the combination of nuclear and optical probes has taken on a special significance. In this review article, dual-labelled systems for bimodal nuclear and optical imaging based on both modular ligands and nanomaterials are discussed. Particular attention is paid to radiometal-labelled molecules for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) and metal complexes combined with fluorescent dyes for optical imaging. The clinical potential of such probes, especially for fluorescence-guided surgery, is assessed.
Collapse
|
3
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
4
|
Wang LX, Wang ZH, Sun XL, Zi CT, Wang XJ, Sheng J. Discovery of EGFR-Targeted Environment-Sensitive Fluorescent Probes for Cell Imaging and Efficient Tumor Detection. Bioorg Chem 2022; 121:105585. [DOI: 10.1016/j.bioorg.2021.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022]
|
5
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine Conjugate-Based Biomedical Imaging Probes. Adv Healthc Mater 2020; 9:e2001327. [PMID: 33000915 DOI: 10.1002/adhm.202001327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Cyanine is a class of fluorescent dye with meritorious fluorescence properties and has motivated numerous researchers to explore its imaging capabilities by miscellaneous structural modification and functionalization strategies. The covalent conjugation with other functional molecules represents a distinctive design strategy and has shown immense potential in both basic and clinical research. This review article summarizes recent achievements in cyanine conjugate-based probes for biomedical imaging. Particular attention is paid to the conjugation with targeting warheads and other contrast agents for targeted fluorescence imaging and multimodal imaging, respectively. Additionally, their clinical potential in cancer diagnostics is highlighted and some concurrent impediments for clinical translation are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Yiming Zhou
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Xiuli Yue
- School of Environment Harbin Institute of Technology Harbin 150090 China
| | - Zhifei Dai
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
6
|
Williams TM, Zhou Z, Singh SS, Sibrian-Vazquez M, Jois SD, Henriques Vicente MDG. Targeting EGFR Overexpression at the Surface of Colorectal Cancer Cells by Exploiting Amidated BODIPY-Peptide Conjugates. Photochem Photobiol 2020; 96:581-595. [PMID: 32086809 DOI: 10.1111/php.13234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
Three BODIPY-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) at the extracellular domain were synthesized, and their specificity for binding to EGFR was investigated. Peptide sequences containing seven amino acids, GLARLLT (2) and KLARLLT (4), and 13 amino acids, GYHWYGYTPQNVI (3), were conjugated to carboxyl BODIPY dye (1) by amide bond formation in up to 73% yields. The BODIPY-peptide conjugates and their "parent" peptides were determined to bind to EGFR experimentally using SPR analysis and were further investigated using computational methods (AutoDock). Results of SPR, competitive binding and docking studies propose that conjugate 6 including the GYHWYGYTPQNVI sequence binds to EGFR more effectively than conjugates 5 and 7, bearing the smaller peptide sequences. Findings in human carcinoma HEp2 cells overexpressing EGFR showed nontoxic behavior in the presence of activated light (1.5 J cm-2 ) and in the absence of light for all BODIPYs. Furthermore, conjugate 6 showed about five-fold higher accumulation within HEp2 cells compared with conjugates 5 and 7, localizing preferentially in the cell ER and lysosomes. Our findings suggest that BODIPY-peptide conjugate 6 is a promising contrast agent for detection of colorectal cancer and potentially other EGFR-overexpressing cancers.
Collapse
Affiliation(s)
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, LA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA
| | | | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA
| | | |
Collapse
|
7
|
In Vitro Characterization and Stability Profiles of Antibody-Fluorophore Conjugates Derived from Interchain Cysteine Cross-Linking or Lysine Bioconjugation. Pharmaceuticals (Basel) 2019; 12:ph12040176. [PMID: 31810248 PMCID: PMC6958397 DOI: 10.3390/ph12040176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
Fluorescent labelling of monoclonal antibodies (mAbs) is classically performed by chemical bioconjugation methods. The most frequent labelling technique to generate antibody–fluorophore conjugates (AFCs) involves the bioconjugation onto the mAb lysines of a dye bearing an N-hydroxysuccinimide ester or an isothiocyanate group. However, discrepancies between labelling experiments or kits can be observed, related to reproducibility issues, alteration of antigen binding, or mAb properties. The lack of information on labelling kits and the incomplete characterization of the obtained labelled mAbs largely contribute to these issues. In this work, we generated eight AFCs through either lysine or interchain cysteine cross-linking bioconjugation of green-emitting fluorophores (fluorescein or BODIPY) onto either trastuzumab or rituximab. This strategy allowed us to study the influence of fluorophore solubility, bioconjugation technology, and antibody nature on two known labelling procedures. The structures of these AFCs were thoroughly analyzed by mass spectroscopy, and their antigen binding properties were studied. We then compared these AFCs in vitro by studying their respective spectral properties and stabilities. The shelf stability profiles and sensibility to pH variation of these AFCs prove to be dye-, antibody- and labelling-technology-dependent. Fluorescence emission in AFCs was higher when lysine labelling was used, but cross-linked AFCs were revealed to be more stable. This must be taken into account for the design of any biological study involving antibody labelling.
Collapse
|
8
|
Sengupta S, Krishnan MA, Dudhe P, Reddy RB, Giri B, Chattopadhyay S, Chelvam V. Novel solid-phase strategy for the synthesis of ligand-targeted fluorescent-labelled chelating peptide conjugates as a theranostic tool for cancer. Beilstein J Org Chem 2018; 14:2665-2679. [PMID: 30410628 PMCID: PMC6204756 DOI: 10.3762/bjoc.14.244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
In this article, we have successfully designed and demonstrated a novel continuous process for assembling targeting ligands, peptidic spacers, fluorescent tags and a chelating core for the attachment of cytotoxic molecules, radiotracers, nanomaterials in a standard Fmoc solid-phase peptide synthesis in high yield and purity. The differentially protected Fmoc-Lys-(Tfa)-OH plays a vital role in attaching fluorescent tags while growing the peptide chain in an uninterrupted manner. The methodology is versatile for solid-phase resins that are sensitive to mild and strong acidic conditions when acid-sensitive side chain amino protecting groups such as Trt (chlorotrityl), Mtt (4-methyltrityl), Mmt (4-methoxytrityl) are employed to synthesise the ligand targeted fluorescent tagged bioconjugates. Using this methodology, DUPA rhodamine B conjugate (DUPA = 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid), targeting prostate specific membrane antigen (PSMA) expressed on prostate, breast, bladder and brain cancers and pteroate rhodamine B, targeting folate receptor positive cancers such as ovarian, lung, endometrium as well as inflammatory diseases have been synthesized. In vitro studies using LNCaP (PSMA +ve), PC-3 (PSMA −ve, FR −ve) and CHO-β (FR +ve) cell lines and their respective competition experiments demonstrate the specificity of the newly synthesized bioconstructs for future application in fluorescent guided intra-operative imaging.
Collapse
Affiliation(s)
- Sagnik Sengupta
- Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Mena Asha Krishnan
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Premansh Dudhe
- Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Ramesh B Reddy
- Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Bishnubasu Giri
- Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Sudeshna Chattopadhyay
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India.,Discipline of Physics and Discipline of Metallurgy Engineering & Material Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Venkatesh Chelvam
- Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India.,Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| |
Collapse
|
9
|
Chen Q, Ma Y, Zhao J, Zhao M, Li W, Liu Q, Xiong L, Wu W, Hong Z. In vitro and in vivo evaluation of improved EGFR targeting peptide-conjugated phthalocyanine photosensitizers for tumor photodynamic therapy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Zeng Z, Belousoff MJ, Spiccia L, Bond AM, Torriero AAJ. Macrocycles Bearing Ferrocenyl Pendants and their Electrochemical Properties upon Binding to Divalent Transition Metal Cations. Chempluschem 2018; 83:728-738. [PMID: 31950627 DOI: 10.1002/cplu.201700550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Indexed: 01/09/2023]
Abstract
Metal complexes of Cu2+ , Co2+ , Cd2+ , Zn2+ , and Ni2+ formed with the ligands [Fc(cyclen)] (1) and [Fc(cyclen)2 ] (2) (Fc=ferrocene, cyclen=1,4,7,10-tetraazacyclododecane) are synthesised and characterised. The X-ray structure of the Cu2+ complex of 2, Fc([Cu(cyclen)(CH3 CN)]2 (ClO4 )4 , is reported, and shows that the two positively charged Cu2+ -cyclen units have a coordination number of five, adopting a distorted trigonal-bipyramidal configuration. The Cu2+ -cyclen units are arranged in a trans-like configuration with respect to the Fc group, presumably to minimise electrostatic repulsion. The voltammetric oxidation of the free ligands 1 and 2 in a CH2 Cl2 /CH3 CN (1:4) solvent mixture yields two closely spaced oxidation processes. Both electron-transfer steps are associated with the ferrocenyl moiety, implying strong communication between the cyclen nitrogen atoms and the ferrocenyl group. In contrast, cyclic voltammograms display only a simple reversible one-electron process if 1 and 2 are complexed with Cd2+ , Cu2+ , Zn2+ , Ni2+ , or Co2+ . Binding of these metal ions produces a significant shift in the reversible midpoint potential (Em ). Except for Ni2+ , Em is linearly proportional to the charge density of the transition metal ion, demonstrating that 1 and 2 may undergo redox switching. The diffusion coefficients of Fc, DmFc, 1 and 2, and their metal ion complexes correlate well with their molecular weights.
Collapse
Affiliation(s)
- Zhanghua Zeng
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | | | - Leone Spiccia
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Angel A J Torriero
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| |
Collapse
|
11
|
Joshi T, Kubeil M, Nsubuga A, Singh G, Gasser G, Stephan H. Harnessing the Coordination Chemistry of 1,4,7-Triazacyclononane for Biomimicry and Radiopharmaceutical Applications. Chempluschem 2018; 83:554-564. [DOI: 10.1002/cplu.201800103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Tanmaya Joshi
- Institute of Radiopharmaceutical Cancer Research; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Anne Nsubuga
- Institute of Radiopharmaceutical Cancer Research; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Garima Singh
- Institute of Radiopharmaceutical Cancer Research; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Gilles Gasser
- Chimie ParisTech; PSL University; Laboratory for Inorganic Chemical Biology; 75005 Paris France
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstrasse 400 01328 Dresden Germany
| |
Collapse
|
12
|
Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans 2018; 45:15702-15724. [PMID: 26865360 DOI: 10.1039/c5dt04706d] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key part of the development of metal based Positron Emission Tomography probes is the chelation of the radiometal. In this review the recent developments in the chelation of four positron emitting radiometals, 68Ga, 64Cu, 89Zr and 44Sc, are explored. The factors that effect the chelation of each radio metal and the ideal ligand system will be discussed with regards to high in vivo stability, complexation conditions, conjugation to targeting motifs and complexation kinetics. A series of cyclic, cross-bridged and acyclic ligands will be discussed, such as CP256 which forms stable complexes with 68Ga under mild conditions and PCB-TE2A which has been shown to form a highly stable complex with 64Cu. 89Zr and 44Sc have seen significant development in recent years with a number of chelates being applied to each metal - eight coordinate di-macrocyclic terephthalamide ligands were found to rapidly produce more stable complexes with 89Zr than the widely used DFO.
Collapse
Affiliation(s)
- Thomas W Price
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| | - John Greenman
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK.
| | - Graeme J Stasiuk
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| |
Collapse
|
13
|
Reijonen V, Kanninen LK, Hippeläinen E, Lou YR, Salli E, Sofiev A, Malinen M, Paasonen T, Yliperttula M, Kuronen A, Savolainen S. Multicellular dosimetric chain for molecular radiotherapy exemplified with dose simulations on 3D cell spheroids. Phys Med 2017; 40:72-78. [PMID: 28736283 DOI: 10.1016/j.ejmp.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 05/25/2017] [Accepted: 07/13/2017] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Absorbed radiation dose-response relationships are not clear in molecular radiotherapy (MRT). Here, we propose a voxel-based dose calculation system for multicellular dosimetry in MRT. We applied confocal microscope images of a spherical cell aggregate i.e. a spheroid, to examine the computation of dose distribution within a tissue from the distribution of radiopharmaceuticals. METHODS A confocal microscope Z-stack of a human hepatocellular carcinoma HepG2 spheroid was segmented using a support-vector machine algorithm and a watershed function. Heterogeneity in activity uptake was simulated by selecting a varying amount of the cell nuclei to contain 111In, 125I, or 177Lu. Absorbed dose simulations were carried out using vxlPen, a software application based on the Monte Carlo code PENELOPE. RESULTS We developed a schema for radiopharmaceutical dosimetry. The schema utilizes a partially supervised segmentation method for cell-level image data together with a novel main program for voxel-based radiation dose simulations. We observed that for 177Lu, radiation cross-fire enabled full dose coverage even if the radiopharmaceutical had accumulated to only 60% of the spheroid cells. This effect was not found with 111In and 125I. Using these Auger/internal conversion electron emitters seemed to guarantee that only the cells with a high enough activity uptake will accumulate a lethal amount of dose, while neighboring cells are spared. CONCLUSIONS We computed absorbed radiation dose distributions in a 3D-cultured cell spheroid with a novel multicellular dosimetric chain. Combined with pharmacological studies in different tissue models, our cell-level dosimetric calculation method can clarify dose-response relationships for radiopharmaceuticals used in MRT.
Collapse
Affiliation(s)
- Vappu Reijonen
- Comprehensive Cancer Center, Helsinki University Hospital, Finland.
| | - Liisa K Kanninen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Eero Hippeläinen
- HUS Medical Imaging Center, Helsinki University Hospital, Finland
| | - Yan-Ru Lou
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Eero Salli
- HUS Medical Imaging Center, Helsinki University Hospital, Finland
| | - Alexey Sofiev
- HUS Medical Imaging Center, Helsinki University Hospital, Finland; Department of Physics, University of Helsinki, Finland
| | - Melina Malinen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo Paasonen
- Comprehensive Cancer Center, Helsinki University Hospital, Finland; Department of Physics, University of Helsinki, Finland
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Antti Kuronen
- Department of Physics, University of Helsinki, Finland
| | - Sauli Savolainen
- HUS Medical Imaging Center, Helsinki University Hospital, Finland; Department of Physics, University of Helsinki, Finland
| |
Collapse
|
14
|
Zhao N, Williams TM, Zhou Z, Fronczek FR, Sibrian-Vazquez M, Jois SD, Vicente MGH. Synthesis of BODIPY-Peptide Conjugates for Fluorescence Labeling of EGFR Overexpressing Cells. Bioconjug Chem 2017; 28:1566-1579. [PMID: 28414435 DOI: 10.1021/acs.bioconjchem.7b00211] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regioselective functionalization of 2,3,5,6,8-pentachloro-BODIPY 1 produced unsymmetric BODIPY 5, bearing an isothiocyanate group suitable for conjugation, in only four steps. The X-ray structure of 5 reveals a nearly planar BODIPY core with aryl dihedral angles in the range 47.4-62.9°. Conjugation of 5 to two EGFR-targeting pegylated peptides, 3PEG-LARLLT (6) and 3PEG-GYHWYGYTPQNVI (7), under mild conditions (30 min at room temperature), afforded BODIPY conjugates 8 and 9 in 50-80% isolated yields. These conjugates showed red-shifted absorption and emission spectra compared with 5, in the near-IR region, and were evaluated as potential fluorescence imaging agents for EGFR overexpressing cells. SPR and docking investigations suggested that conjugate 8 bearing the LARLLT sequence binds to EGFR more effectively than 9 bearing the GYHWYGYTPQNVI peptide, in part due to the lower solubility of 9, and its tendency for aggregation at concentrations above 10 μM. Studies in human carcinoma HEp2 cells overexpressing EGFR demonstrated low dark and photo cytotoxicities for BODIPY 5 and the two peptide conjugates, and remarkably high cellular uptake for both conjugates 8 and 9, up to 90-fold compared with BODIPY 5 after 1 h. Fluorescence imaging studies in HEp2 cells revealed subcellular localization of the BODIPY-peptide conjugates mainly in the Golgi apparatus and the cell lysosomes. The low cytotoxicity of the new conjugates and their remarkably high uptake into EGFR overexpressing cells renders them promising imaging agents for cancers overexpressing EGFR.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Tyrslai M Williams
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Martha Sibrian-Vazquez
- Department of Chemistry, Portland State University , Portland, Oregon 97201, United States
| | - Seetharama D Jois
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe , Monroe, Louisiana 71201, United States
| | - M Graça H Vicente
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
15
|
Mayr J, Hager S, Koblmüller B, Klose MHM, Holste K, Fischer B, Pelivan K, Berger W, Heffeter P, Kowol CR, Keppler BK. EGFR-targeting peptide-coupled platinum(IV) complexes. J Biol Inorg Chem 2017; 22:591-603. [PMID: 28405842 PMCID: PMC5443859 DOI: 10.1007/s00775-017-1450-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
The high mortality rate of lung cancer patients and the frequent occurrence of side effects during cancer therapy demonstrate the need for more selective and targeted drugs. An important and well-established target for lung cancer treatment is the occasionally mutated epidermal growth factor receptor (EGFR). As platinum(II) drugs are still the most important therapeutics against lung cancer, we synthesized in this study the first platinum(IV) complexes coupled to the EGFR-targeting peptide LARLLT (and the shuffled RTALLL as reference). Notably, HPLC–MS measurements revealed two different peaks with the same molecular mass, which turned out to be a transcyclization reaction in the linker between maleimide and the coupled cysteine moiety. With regard to the EGFR specificity, subsequent biological investigations (3-day viability, 14-day clonogenic assays and platinum uptake) on four different cell lines with different verified EGFR expression levels were performed. Unexpectedly, the results showed neither an enhanced activity nor an EGFR expression-dependent uptake of our new compounds. Consequently, fluorophore-coupled peptides were synthesized to re-evaluate the targeting ability of LARLLT itself. However, also with these molecules, flow cytometry measurements showed no correlation of drug uptake with the EGFR expression levels. Taken together, we successfully synthesized the first platinum(IV) complexes coupled to an EGFR-targeting peptide; however, the biological investigations revealed that LARLLT is not an appropriate peptide for enhancing the specific uptake of small-molecule drugs into EGFR-overexpressing cancer cells.
Collapse
Affiliation(s)
- Josef Mayr
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Sonja Hager
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Bettina Koblmüller
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Matthias H M Klose
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Katharina Holste
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Britta Fischer
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Karla Pelivan
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Research Cluster ''Translational Cancer Therapy Research'', University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria. .,Research Cluster ''Translational Cancer Therapy Research'', University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria.
| | - Christian R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria. .,Research Cluster ''Translational Cancer Therapy Research'', University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria.,Research Cluster ''Translational Cancer Therapy Research'', University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| |
Collapse
|
16
|
Cellular Uptake and Photo-Cytotoxicity of a Gadolinium(III)-DOTA-Naphthalimide Complex "Clicked" to a Lipidated Tat Peptide. Molecules 2016; 21:molecules21020194. [PMID: 26861271 PMCID: PMC6273236 DOI: 10.3390/molecules21020194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
A new bifunctional macrocyclic chelator featuring a conjugatable alkynyl-naphthalimide fluorophore pendant group has been prepared and its Gd(III) complex coupled to a cell-penetrating lipidated azido-Tat peptide derivative using Cu(I)-catalysed “click” chemistry. The resulting fluorescent conjugate is able to enter CAL-33 tongue squamous carcinoma cells, as revealed by confocal microscopy, producing a very modest anti-proliferative effect (IC50 = 93 µM). Due to the photo-reactivity of the naphthalimide moiety, however, the conjugate’s cytotoxicity is significantly enhanced (IC50 = 16 µM) upon brief low-power UV-A irradiation.
Collapse
|
17
|
Burke BP, Seemann J, Archibald SJ. Advanced Chelator Design for Metal Complexes in Imaging Applications. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Paterson BM, Donnelly PS. Macrocyclic Bifunctional Chelators and Conjugation Strategies for Copper-64 Radiopharmaceuticals. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Li F, Liu Q, Liang Z, Wang J, Pang M, Huang W, Wu W, Hong Z. Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizers with highly hydrophilic modifications. Org Biomol Chem 2016; 14:3409-22. [DOI: 10.1039/c6ob00122j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Highly hydrophilic modification enhances the selectivity of targeted photosensitizer delivery.
Collapse
Affiliation(s)
- Fu Li
- College of Material Science and Chemical Engineering
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- State Key Laboratory of Medicinal Chemical Biology
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Zhenzhen Liang
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jin Wang
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Mingpei Pang
- College of Material Science and Chemical Engineering
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- State Key Laboratory of Medicinal Chemical Biology
| | | | - Wenjie Wu
- College of Material Science and Chemical Engineering
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
20
|
Pant K, Gröger D, Bergmann R, Pietzsch J, Steinbach J, Graham B, Spiccia L, Berthon F, Czarny B, Devel L, Dive V, Stephan H, Haag R. Synthesis and Biodistribution Studies of 3H- and 64Cu-Labeled Dendritic Polyglycerol and Dendritic Polyglycerol Sulfate. Bioconjug Chem 2015; 26:906-18. [DOI: 10.1021/acs.bioconjchem.5b00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kritee Pant
- Helmholtz-Zentrum
Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner
Landstrasse 400, D-01328 Dresden, Germany
| | - Dominic Gröger
- Organische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195, Berlin, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum
Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner
Landstrasse 400, D-01328 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum
Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner
Landstrasse 400, D-01328 Dresden, Germany
- Technische Universität Dresden, Department of
Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum
Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner
Landstrasse 400, D-01328 Dresden, Germany
- Technische Universität Dresden, Department of
Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Bim Graham
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Leone Spiccia
- School
of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Fannely Berthon
- CEA-Saclay, Service d’Ingénierie Moléculaire de Protéines (SIMOPRO), Labex LERMIT,
CEA-DSV-iBiTecS, 91191 Gif/Yvette Cedex, France
| | - Bertrand Czarny
- CEA-Saclay, Service d’Ingénierie Moléculaire de Protéines (SIMOPRO), Labex LERMIT,
CEA-DSV-iBiTecS, 91191 Gif/Yvette Cedex, France
| | - Laurent Devel
- CEA-Saclay, Service d’Ingénierie Moléculaire de Protéines (SIMOPRO), Labex LERMIT,
CEA-DSV-iBiTecS, 91191 Gif/Yvette Cedex, France
| | - Vincent Dive
- CEA-Saclay, Service d’Ingénierie Moléculaire de Protéines (SIMOPRO), Labex LERMIT,
CEA-DSV-iBiTecS, 91191 Gif/Yvette Cedex, France
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner
Landstrasse 400, D-01328 Dresden, Germany
| | - Rainer Haag
- Organische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195, Berlin, Germany
| |
Collapse
|