1
|
Gifford JL, Ishida H, Vogel HJ. Fast methionine-based solution structure determination of calcium-calmodulin complexes. JOURNAL OF BIOMOLECULAR NMR 2011; 50:71-81. [PMID: 21360154 DOI: 10.1007/s10858-011-9495-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/16/2011] [Indexed: 05/30/2023]
Abstract
Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca(2+)-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaM's backbone conformation and a structural plasticity in CaM's domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in the complex, they lack the translational information required to position the domains on the bound peptide and highlight the necessity of intermolecular NOEs. Here we employ a specific isotope labeling strategy in which the role of methionine in CaM-peptide interactions is exploited to collect these critical NOEs. By (1)H, (13)C-labeling the methyl groups of deuterated methionine against a (2)H, (12)C background, we can acquire a (13)C-edited NOESY characterized by simplified, easily analyzable spectra. Together with measured CaM backbone H(N)-N RDCs and intrapeptide NOE-based distances, these intermolecular NOEs provide restraints for a low temperature torsion-angle dynamics and simulated annealing protocol used to calculate the complex structure. We have applied our method to a CaM complex previously solved through X-ray crystallography: Ca(2+)-CaM bound to the CaM kinase I peptide (PDB code: 1MXE). The resulting structure has a backbone RMSD of 1.6 Å to that previously published. We have also used this test complex to investigate the importance of homologous model selection on the calculated outcome. In addition to having application for fast complex structure determination, this method can be used to determine the structures of difficult complexes characterized by chemical shift overlap and broad signals for which the traditional method based on the use of fully (13)C, (15)N-labeled CaM fails.
Collapse
Affiliation(s)
- Jessica L Gifford
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
2
|
Pineda-Sanabria SE, Robertson IM, Sykes BD. Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Biochemistry 2011; 50:1309-20. [PMID: 21226534 PMCID: PMC3043152 DOI: 10.1021/bi101985j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac troponin, a heterotrimeric protein complex that regulates heart contraction, represents an attractive target for the development of drugs for treating heart disease. Cardiovascular diseases are one of the chief causes of morbidity and mortality worldwide. In France, however, the death rate from heart disease is remarkably low relative to fat consumption. This so-called "French paradox" has been attributed to the high level of consumption of wine in France, and the antioxidant trans-resveratrol is thought to be the primary basis for wine's cardioprotective nature. It has been demonstrated that trans-resveratrol increases the myofilament Ca(2+) sensitivity of guinea pig myocytes [Liew, R., Stagg, M. A., MacLeod, K. T., and Collins, P. (2005) Eur. J. Pharmacol. 519, 1-8]; however, the specific mode of its action is unknown. In this study, the structure of trans-resveratrol free and bound to the calcium-binding protein, troponin C, was determined by nuclear magnetic resonance spectroscopy. The results indicate that trans-resveratrol undergoes a minor conformational change upon binding to the hydrophobic pocket of the C-domain of troponin C. The location occupied by trans-resveratrol coincides with the binding site of troponin I, troponin C's natural binding partner. This has been seen for other troponin C-targeting inotropes and implicates the modulation of the troponin C-troponin I interaction as a possible mechanism of action for trans-resveratrol.
Collapse
Affiliation(s)
| | | | - Brian D. Sykes
- Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
3
|
Robertson IM, Sun YB, Li MX, Sykes BD. A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex. J Mol Cell Cardiol 2010; 49:1031-41. [PMID: 20801130 PMCID: PMC2975748 DOI: 10.1016/j.yjmcc.2010.08.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 11/25/2022]
Abstract
The Ca(2+) dependent interaction between troponin I (cTnI) and troponin C (cTnC) triggers contraction in heart muscle. Heart failure is characterized by a decrease in cardiac output, and compounds that increase the sensitivity of cardiac muscle to Ca(2+) have therapeutic potential. The Ca(2+)-sensitizer, levosimendan, targets cTnC; however, detailed understanding of its mechanism has been obscured by its instability. In order to understand how this class of positive inotropes function, we investigated the mode of action of two fluorine containing novel analogs of levosimendan; 2',4'-difluoro(1,1'-biphenyl)-4-yloxy acetic acid (dfbp-o) and 2',4'-difluoro(1,1'-biphenyl)-4-yl acetic acid (dfbp). The affinities of dfbp and dfbp-o for the regulatory domain of cTnC were measured in the absence and presence of cTnI by NMR spectroscopy, and dfbp-o was found to bind more strongly than dfbp. Dfbp-o also increased the affinity of cTnI for cTnC. Dfbp-o increased the Ca(2+)-sensitivity of demembranated cardiac trabeculae in a manner similar to levosimendan. The high resolution NMR solution structure of the cTnC-cTnI-dfbp-o ternary complex showed that dfbp-o bound at the hydrophobic interface formed by cTnC and cTnI making critical interactions with residues such as Arg147 of cTnI. In the absence of cTnI, docking localized dfbp-o to the same position in the hydrophobic groove of cTnC. The structural and functional data reveal that the levosimendan class of Ca(2+)-sensitizers work by binding to the regulatory domain of cTnC and stabilizing the pivotal cTnC-cTnI regulatory unit via a network of hydrophobic and electrostatic interactions, in contrast to the destabilizing effects of antagonists such as W7 at the same interface.
Collapse
Affiliation(s)
- Ian M. Robertson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, SE1 1UL, UK
| | - Monica X. Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
4
|
Butterfoss GL, DeRose EF, Gabel SA, Perera L, Krahn JM, Mueller GA, Zheng X, London RE. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. JOURNAL OF BIOMOLECULAR NMR 2010; 48:31-47. [PMID: 20734113 PMCID: PMC5598763 DOI: 10.1007/s10858-010-9436-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/13/2010] [Indexed: 05/12/2023]
Abstract
Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT calculations on model systems to evaluate the conformational dependence of (3)J (CSCC), (3)J (CSCH), and the isotropic shielding, sigma(iso). Results have been compared with experimental data reported in the literature, as well as data obtained on [methyl-(13)C]methionine and on model compounds. These studies indicate that relative to oxygen, the presence of the sulfur atom in the coupling pathway results in a significantly smaller coupling constant, (3)J (CSCC)/(3)J (COCC) approximately 0.7. It is further demonstrated that the (3)J (CSCH) coupling constant depends primarily on the subtended CSCH dihedral angle, and secondarily on the CSCC dihedral angle. Comparison of theoretical shielding calculations with the experimental shift range of the methyl group for methionine residues in proteins supports the conclusion that the intra-residue conformationally-dependent shift perturbation is the dominant determinant of delta(13)Cepsilon. Analysis of calmodulin data based on these calculations indicates that several residues adopt non-standard rotamers characterized by very large approximately 100 degrees chi(3) values. The utility of the delta(13)Cepsilon as a basis for estimating the gauche/trans ratio for chi(3) is evaluated, and physical and technical factors that limit the accuracy of both the NMR and crystallographic analyses are discussed.
Collapse
Affiliation(s)
- Glenn L. Butterfoss
- The Courant Institute of Mathematical Sciences and the Center for Genomics & Systems Biology, New York University, New York, NY 10003 USA
| | - Eugene F. DeRose
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Scott A. Gabel
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Joseph M. Krahn
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Geoffrey A. Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Xunhai Zheng
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Robert E. London
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| |
Collapse
|
5
|
Li MX, Robertson IM, Sykes BD. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Biochem Biophys Res Commun 2008; 369:88-99. [PMID: 18162171 PMCID: PMC2349097 DOI: 10.1016/j.bbrc.2007.12.108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/11/2007] [Indexed: 11/29/2022]
Abstract
Over the 40 years since its discovery, many studies have focused on understanding the role of troponin as a myofilament based molecular switch in regulating the Ca(2+)-dependent activation of striated muscle contraction. Recently, studies have explored the role of cardiac troponin as a target for cardiotonic agents. These drugs are clinically useful for treating heart failure, a condition in which the heart is no longer able to pump enough blood to other organs. These agents act via a mechanism that modulates the Ca(2+)-sensitivity of troponin; such a mode of action is therapeutically desirable because intracellular Ca(2+) concentration is not perturbed, preserving the regulation of other Ca(2+)-based signaling pathways. This review describes molecular details of the interaction of cardiac troponin with a variety of cardiotonic drugs. We present recent structural work that has identified the docking sites of several cardiotonic drugs in the troponin C-troponin I interface and discuss their relevance in the design of troponin based drugs for the treatment of heart disease.
Collapse
Affiliation(s)
- Monica X Li
- Department of Biochemistry, University of Alberta, Edmonton, Alta., Canada
| | | | | |
Collapse
|
6
|
Kleerekoper Q, Hecht JT, Putkey JA. Disease-causing mutations in cartilage oligomeric matrix protein cause an unstructured Ca2+ binding domain. J Biol Chem 2002; 277:10581-9. [PMID: 11782471 DOI: 10.1074/jbc.m109944200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondrocytes from pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1) patients display an enlarged rough endoplasmic reticulum that accumulates extracellular matrix proteins, including cartilage oligomeric matrix protein (COMP). Mutations that cause PSACH and EDM1 are restricted to a 27-kDa Ca(2+) binding domain (type 3 repeat). This domain has 13 Ca(2+)-binding loops with a consensus sequence that conforms to Ca(2+)-binding loops found in EF hands. Most disease-causing mutations are found in the 11-kDa C-terminal region of this domain. We expressed recombinant native and mutant forms of the type 3 repeat domain (T3) and its 11-kDa C-terminal region (T3-Cterm). T3 and T3-Cterm bind approximately 13 and 8 mol of Ca(2+)/mol of protein, respectively. CD, one-dimensional proton, and two-dimensional (1)H-(15)N HSQC spectra of Ca(2+)-bound T3-Cterm indicate a distinct conformation that has little helical secondary structure, despite the presence of 13 EF hand Ca(2+)-binding loops. This conformation is also formed within the context of the intact T3. 19 cross-peaks found between 9.0 and 11.4 ppm are consistent with the presence of strong hydrogen bonding patterns, such as those in beta-sheets. Removal of Ca(2+) leads to an apparent loss of structure as evidenced by decreased dispersion and loss of all down field resonances. Deletion of Asp-470 (a mutation found in 22% of all PSACH and EDM1 patients) decreased the Ca(2+)-binding capacity of both T3 and T3-Cterm by about 3 mol of Ca(2+)/mol of protein. Two-dimensional (1)H-(15)N HSQC spectra of mutated T3-Cterm showed little evidence of defined structure in the presence or absence of Ca(2+). The data demonstrate that Ca(2+) is required to nucleate folding and to maintain defined structure. Mutation results in a partial loss of Ca(2+)-binding capacity and prevents Ca(2+)-dependent folding. Persistence of an unstructured state of the mutated Ca(2+) binding domain in COMP is the structural basis for retention of COMP in the rough endoplasmic reticulum of differentiated PSACH and EDM1 chondrocytes.
Collapse
Affiliation(s)
- Quinn Kleerekoper
- Department of Biochemistry, Structural Biology Research Center, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
7
|
Sorsa T, Heikkinen S, Abbott MB, Abusamhadneh E, Laakso T, Tilgmann C, Serimaa R, Annila A, Rosevear PR, Drakenberg T, Pollesello P, Kilpelainen I. Binding of levosimendan, a calcium sensitizer, to cardiac troponin C. J Biol Chem 2001; 276:9337-43. [PMID: 11113122 DOI: 10.1074/jbc.m007484200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levosimendan is an inodilatory drug that mediates its cardiac effect by the calcium sensitization of contractile proteins. The target protein of levosimendan is cardiac troponin C (cTnC). In the current work, we have studied the interaction of levosimendan with Ca(2+)-saturated cTnC by heteronuclear NMR and small angle x-ray scattering. A specific interaction between levosimendan and the Ca(2+)-loaded regulatory domain of recombinant cTnC(C35S) was observed. The changes in the NMR spectra of the N-domain of full-length cTnC(C35S), due to the binding of levosimendan to the primary site, were indicative of a slow conformational exchange. In contrast, no binding of levosimendan to the regulatory domain of cTnC(A-Cys), where all the cysteine residues are mutated to serine, was detected. Moreover, it was shown that levosimendan was in fast exchange on the NMR time scale with a secondary binding site in the C-domain of both cTnC(C35S) and cTnC(A-Cys). The small angle x-ray scattering experiments confirm the binding of levosimendan to Ca(2+)-saturated cTnC but show no domain-domain closure. The experiments were run in the absence of the reducing agent dithiothreitol and the preservative sodium azide (NaN(3)), since we found that levosimendan reacts with these chemicals, commonly used for preparation of NMR protein samples.
Collapse
Affiliation(s)
- T Sorsa
- NMR Laboratory, Institute of Biotechnology, University of Helsinki, P. O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Levijoki J, Pollesello P, Kaivola J, Tilgmann C, Sorsa T, Annila A, Kilpeläinen I, Haikala H. Further evidence for the cardiac troponin C mediated calcium sensitization by levosimendan: structure-response and binding analysis with analogs of levosimendan. J Mol Cell Cardiol 2000; 32:479-91. [PMID: 10731446 DOI: 10.1006/jmcc.1999.1093] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levosimendan, an inodilatory drug discovered using troponin C as a target protein, has a cardiac effect deriving from the calcium sensitization of contractile proteins. The aim of this study was to give further evidence that levosimendan binds to cardiac troponin C and that the binding involves amino acid residues on helixepsilon of the N-terminal domain of this calcium-binding protein. Nine organic molecules, obtained by chemical modification of levosimendan, were tested both for their calcium-dependent binding to troponin C and troponin complex affinity HPLC columns, and for their ability to increase the calcium sensitivity of myofilaments in cardiac skinned fibers. A good correlation between the calcium sensitization and the calcium-dependent binding to troponin complex (r=0.90) and to cardiac troponin C (r=0.91) for the analogs of levosimendan was shown. In addition, the effect of levosimendan on the calcium-induced conformational changes in native and point-mutated cTnC was studied. Cys84-->Ser, Asp87-->Lys and Asp88-->Ala point-mutated cTnC were shown to maintain a high affinity to calcium, but their Ca(2+)titration curves were not influenced by levosimendan as for the native protein. Finally, it was demonstrated that the NMR chemical shifts of the terminal methyl groups of Met47, Met81, and Met85 on calcium-saturated cTnC were changed after addition of levosimendan in water solution at pH 7.4. This effect was not seen when adding an analog of levosimendan, which did not bind to the troponin C affinity HPLC column and did not increase the calcium-induced tension in cardiac skinned fibers.
Collapse
Affiliation(s)
- J Levijoki
- Department of Drug Discovery & Pharmacology, Orion Pharma, Preclinical Research, Espoo, FIN-02101, Finland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Compounds that sensitize cardiac muscle to Ca(2+) by intervening at the level of regulatory thin filament proteins would have potential therapeutic benefit in the treatment of myocardial infarctions. Two putative Ca(2+) sensitizers, EMD 57033 and levosimendan, are reported to bind to cardiac troponin C (cTnC). In this study, we use heteronuclear NMR techniques to study drug binding to [methyl-(13)C]methionine-labeled cTnC when free or when complexed with cardiac troponin I (cTnI). In the absence of Ca(2+), neither drug interacted with cTnC. In the presence of Ca(2+), one molecule of EMD 57033 bound specifically to the C-terminal domain of free cTnC. NMR and equilibrium dialysis failed to demonstrate binding of levosimendan to free cTnC, and the presence of levosimendan had no apparent effect on the Ca(2+) binding affinity of cTnC. Changes in the N-terminal methionine methyl chemical shifts in cTnC upon association with cTnI suggest that cTnI associates with the A-B helical interface and the N terminus of the central helix in cTnC. NMR experiments failed to show evidence of binding of levosimendan to the cTnC.cTnI complex. However, levosimendan covalently bound to a small percentage of free cTnC after prolonged incubation with the protein. These findings suggest that levosimendan exerts its positive inotropic effect by mechanisms that do not involve binding to cTnC.
Collapse
Affiliation(s)
- Q Kleerekoper
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
10
|
Hazard AL, Kohout SC, Stricker NL, Putkey JA, Falke JJ. The kinetic cycle of cardiac troponin C: calcium binding and dissociation at site II trigger slow conformational rearrangements. Protein Sci 1998; 7:2451-9. [PMID: 9828012 PMCID: PMC2143865 DOI: 10.1002/pro.5560071123] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The goal of this study is to characterize the kinetic mechanism of Ca2+ activation and inactivation of cardiac troponin C (cTnC), the Ca2+ signaling protein which triggers heart muscle contraction. Previous studies have shown that IAANS covalently coupled to Cys84 of wild-type cTnC is sensitive to conformational change caused by Ca2+ binding to the regulatory site II; the present study also utilizes the C35S mutant, in which Cys84 is the lone cysteine, to ensure the specificity of IAANS labeling. Site II Ca2+ affinities for cTnC-wt, cTnC-C35S, cTnC-wt-IAANS2, and cTnC-C35S-IAANS were similar (KD = 2-5 microM at 25 degrees C; KD = 2-8 microM at 4 degrees C), indicating that neither the IAANS label nor the C35S mutation strongly perturbs site II Ca2+ affinity. To directly determine the rate of Ca2+ dissociation from site II, the Ca2+-loaded protein was rapidly mixed with a spectroscopically sensitive chelator in a stopped flow spectrometer. The resulting site II Ca2+ off-rates were k(off) = 700-800 s(-1) (4 degrees C) for both cTnC-wt and cTnC-C35S, yielding calculated macroscopic site II Ca2+ on-rates of k(on) = k(off)/KD = 2-4 x 10(8) M(-1) s(-1) (4 degrees C). As observed for Ca2+ affinities, neither the C35S mutation nor IAANS labeling significantly altered the Ca2+ on- and off-rates. Using IAANS fluorescence as a monitor of the protein conformational state, the intramolecular conformational changes (delta) induced by Ca2+ binding and release at site II were found to be significantly slower than the Ca2+ on- and off-rates. The conformational rate constants measured for cTnC-wt-IAANS2 and cTnC-C35S-IAANS were k(delta on) = 120-210 s(-1) and k(delta off) = 90-260 s(-1) (4 degrees C) . Both conformational events were slowed in cTnC-wt-IAANS2 relative to cTnC-C35S-IAANS, presumably due to the bulky IAANS probe coupled to Cys35. Together, the results provide a nearly complete kinetic description of the Ca2+ activation cycle of isolated cTnC, revealing rapid Ca2+ binding and release at site II accompanied by slow conformational steps that are likely to be retained by the full troponin complex during heart muscle contraction and relaxation.
Collapse
Affiliation(s)
- A L Hazard
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | | | | | | | |
Collapse
|
11
|
Kleerekoper Q, Liu W, Choi D, Putkey JA. Identification of binding sites for bepridil and trifluoperazine on cardiac troponin C. J Biol Chem 1998; 273:8153-60. [PMID: 9525919 DOI: 10.1074/jbc.273.14.8153] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of cardiac troponin C (cTnC) (Sia, S., Li, M. X., Spyracopoulos, L., Gagne, S. M., Liu, W., Putkey, J. A. & Sykes, B. D. (1997) J. Biol. Chem. 272, 18216-18221) challenges existing structure/function models for this critical regulatory protein. For example, it is clear that the closed conformation of the regulatory N-terminal domain in Ca2+-bound cardiac troponin C (cTnC) presents a much different binding surface for Ca2+-sensitizing compounds than previously thought. We report here the use of Met methyl groups as site-specific structural markers to identify drug binding sites for trifluoperazine and bepridil on cTnC. Drug dependent changes in the NMR heteronuclear single-quantum coherence spectra of [methyl-13C]Met-labeled cTnC indicate that bepridil and trifluoperazine bind to similar sites but only in the presence of Ca2+. There are 3-4 drug binding sites in the N- and C-terminal domains of intact cTnC that exhibit fast exchange on the NMR time scale. Use of a novel spin-labeled phenothiazine and detection of isotope-filtered nuclear Overhauser effects allowed identification of drug binding sites in the shallow hydrophobic cup in the C-terminal domain and on two hydrophobic surfaces on the N-terminal regulatory domain. The data presented here, coupled with our previous study using covalent blocking groups, support a model in which the Ca2+-sensitizing binding site includes Met-45 in helix B of site I, and Met-60 and -80 in helices B and C of the regulatory site II. This subregion in cTnC makes a likely target against which to design new and selective Ca2+-sensitizing compounds.
Collapse
Affiliation(s)
- Q Kleerekoper
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
12
|
Huynh Q, Butters CA, Leiden JM, Tobacman LS. Effects of cardiac thin filament Ca2+: statistical mechanical analysis of a troponin C site II mutant. Biophys J 1996; 70:1447-55. [PMID: 8785301 PMCID: PMC1225071 DOI: 10.1016/s0006-3495(96)79704-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cardiac thin filaments contain many troponin C (TnC) molecules, each with one regulatory Ca2+ binding site. A statistical mechanical model for the effects of these sites is presented and investigated. The ternary troponin complex was reconstituted with either TnC or the TnC mutant CBMII, in which the regulatory site in cardiac TnC (site II) is inactivated. Regardless of whether Ca2+ was present, CBMII-troponin was inhibitory in a thin filament-myosin subfragment 1 MgATPase assay. The competitive binding of [3H]troponin and [14C]CBMII-troponin to actin.tropomyosin was measured. In the presence of Mg2+ and low free Ca2+ they had equal affinities for the thin filament. When Ca274+ was added, however, troponin's affinity for the thin filament was 2.2-fold larger for the mutant than for the wild type troponin. This quantitatively describes the effect of regulatory site Ca2+ on troponin's affinity for actin.tropomyosin; the decrease in troponin-thin filament binding energy is small. Application of the theoretical model to the competitive binding data indicated that troponin molecules bind to interdependent rather than independent sites on the thin filament. Ca2+ binding to the regulatory site of TnC has a long-range rather than a merely local effect. However, these indirect TnC-TnC interactions are weak, indicating that the cooperativity of muscle activation by Ca2+ requires other sources of cooperativity.
Collapse
Affiliation(s)
- Q Huynh
- Department of Internal Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
13
|
Lin X, Dotson DG, Putkey JA. Covalent binding of peptides to the N-terminal hydrophobic region of cardiac troponin C has limited effects on function. J Biol Chem 1996; 271:244-9. [PMID: 8550567 DOI: 10.1074/jbc.271.1.244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Exposure of an N-terminal hydrophobic region in troponin C is thought to be important for the regulation of contraction in striated muscle. To test this hypothesis, single Cys residues were engineered at positions 45, 81, 84, or 85 in the N-terminal hydrophobic region of cardiac troponin C (cTnC) to provide specific sites for attachment of blocking groups. A synthetic peptide, Ac-Val-Arg-Ala-Ile-Gly-Lys-Leu-Ser-Ser, or biotin was coupled to these Cys residues, and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity (70-80% inhibited) resulted when the peptide was conjugated to Cys-81 in cTnC(C81), while a lesser degree of inhibition (10-25% inhibited) resulted from covalent modification of cTnC(C84) and cTnC(C85). Inhibition was not due to an altered affinity of the cTnC(C81)/peptide conjugate for the myofibrils, and the Ca2+ dependence of ATPase activity was essentially identical to the unmodified protein. Thus, a subregion of the N-terminal hydrophobic region in cTnC is sensitive to disruption, while other regions are less important or can adapt to rather bulky blocking groups. The data suggest that Ca(2+)-sensitizing drugs may bind to the N-terminal hydrophobic region on cTnC but not interfere with transmission of the Ca2+ signal.
Collapse
Affiliation(s)
- X Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
14
|
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein that can regulate a wide variety of cellular events. The protein contains 9 Met out of a total of 148 amino acid residues. The binding of Ca2+ to CaM induces conformational changes and exposes two Met-rich hydrophobic surfaces which provide the main protein-protein contact areas when CaM interacts with its target enzymes. Two-dimensional (1H,13C)-heteronuclear multiple quantum coherence (HMQC) NMR spectroscopy was used to study selectively 13C-isotope labelled Met methyl groups in apo-CaM, Ca(2+)-CaM and a complex of CaM with the CaM-binding domain of skeletal muscle Myosin Light Chain Kinase (MLCK). The resonance assignment of the Met methyl groups in these three functionally different states were obtained by site-directed mutagenesis (Met-->Leu). Chemical shift changes indicate that the methyl groups of the Met residues are in different environments in apo-, calcium-, and MLCK-bound-CaM. The T1 relaxation rates of the individual Met methyl carbons in the three forms of CaM indicate that those in Ca(2+)-CaM have the highest mobility. Our results also suggest that the methyl groups of the unbranched Met sidechains in general are more flexible than those of aliphatic amino acid residues such as Leu and Ile.
Collapse
Affiliation(s)
- K Siivari
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
15
|
Howarth JW, Krudy GA, Lin X, Putkey JA, Rosevear PR. An NMR and spin label study of the effects of binding calcium and troponin I inhibitory peptide to cardiac troponin C. Protein Sci 1995; 4:671-80. [PMID: 7613465 PMCID: PMC2143097 DOI: 10.1002/pro.5560040407] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC.
Collapse
Affiliation(s)
- J W Howarth
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston 77225, USA
| | | | | | | | | |
Collapse
|