1
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
2
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
3
|
Characterization of the chandipura virus leader RNA–phosphoprotein interaction using single tryptophan mutants and its detection in viral infected cells. Biochimie 2013; 95:180-94. [DOI: 10.1016/j.biochi.2012.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/11/2012] [Indexed: 11/15/2022]
|
4
|
Dubois DY, Blais SP, Huot JL, Lapointe J. A C-truncated glutamyl-tRNA synthetase specific for tRNA(Glu) is stimulated by its free complementary distal domain: mechanistic and evolutionary implications. Biochemistry 2009; 48:6012-21. [PMID: 19496540 DOI: 10.1021/bi801690f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Faithful translation of the genetic code is mainly based on the specificity of tRNA aminoacylation catalyzed by aminoacyl-tRNA synthetases. These enzymes are comprised of a catalytic core and several appended domains. Bacterial glutamyl-tRNA synthetases (GluRS) contain five structural domains, the two distal ones interacting with the anticodon arm of tRNA(Glu). Thermus thermophilus GluRS requires the presence of tRNA(Glu) to bind ATP in the proper site for glutamate activation. In order to test the role of these two distal domains in this mechanism, we characterized the in vitro properties of the C-truncated Escherichia coli GluRSs N(1-313) and N(1-362), containing domains 1-3 and 1-4, respectively, and of their N-truncated complements GluRSs C(314-471) (containing domains 4 and 5) and C(363-471) (free domain 5). These C-truncated GluRSs are soluble, aminoacylate specifically tRNA(Glu), and require the presence of tRNA(Glu) to catalyze the activation of glutamate, as does full-length GluRS(1-471). The k(cat) of tRNA glutamylation catalyzed by N(1-362) is about 2000-fold lower than that catalyzed by the full-length E. coli GluRS(1-471). The addition of free domain 5 (C(363-471)) to N(1-362) strongly stimulates this k(cat) value, indicating that covalent connectivity between N(1-362) and domain 5 is not required for GluRS activity; the hyperbolic relationship between domain 5 concentration and this stimulation indicates that these proteins and tRNA(Glu) form a productive complex with a K(d) of about 100 microM. The K(d) values of tRNA(Glu) interactions with the full-length GluRS and with the truncated GluRSs N(1-362) and free domain 5 are 0.48, 0.11, and about 1.2 microM, respectively; no interaction was detected between these two complementary truncated GluRSs. These results suggest that in the presence of these truncated GluRSs, tRNA(Glu) is positioned for efficient aminoacylation by the two following steps: first, it interacts with GluRS N(1-362) via its acceptor-TPsiC stem loop domain and then with free domain 5 via its anticodon-Dstem-biloop domain, which appeared later during evolution. On the other hand, tRNA glutamylation catalyzed by N(1-313) is not stimulated by its complement C(314-471), revealing the importance of the covalent connectivity between domains 3 and 4 for GluRS aminoacylation activity. The K(m) values of N(1-313) and N(1-362) for each of their substrates are similar to those of full-length GluRS. These C-truncated GluRSs recognize only tRNA(Glu). These results confirm the modular nature of GluRS and support the model of a "recent" fusion of domains 4 and 5 to a proto-GluRS containing the catalytic domain and able to recognize its tRNA substrate(s).
Collapse
Affiliation(s)
- Daniel Y Dubois
- Regroupement quebecois de Recherche sur la Fonction, la Structure et l'Ingenierie des Proteines (PROTEO), Departement de Biochimie et de Microbiologie, Universite Laval, Quebec, Quebec, Canada G1K 7P4
| | | | | | | |
Collapse
|
5
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
6
|
LEFEVRE JF, BACHA H, RENAUD M, GANGLOFF J, REMY P, EHRLICH R, HAAR F. Fluorimetric Study of Yeast tRNAPheCCF in the Complex with Phenylalanyl-tRNA Synthetase. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1432-1033.1981.tb06358.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Rogers KC, Crescenzo AT, Söll D. Aminoacylation of transfer RNAs with 2-thiouridine derivatives in the wobble position of the anticodon. Biochimie 1995; 77:66-74. [PMID: 7541255 DOI: 10.1016/0300-9084(96)88106-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The first position or 'wobble base' in the anticodon of tRNAs is frequently the site of post-transcriptional modification. In Escherichia coli, glutamine, glutamate, and lysine tRNAs contain 2-thiouridine derivatives in this position, and the significance of these modifications has been under investigation since their discovery. Here we describe the investigations to link 2-thiouridine derivatives to aminoacylation of these tRNAs. The implications of these findings on the evolution of specificity of aminoacyl-tRNA synthetases and on translational regulation are also discussed.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon
- Base Sequence
- Biological Evolution
- Escherichia coli/chemistry
- Molecular Sequence Data
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Gln/metabolism
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Lys/metabolism
- Substrate Specificity
- Thiouridine/analogs & derivatives
- Thiouridine/metabolism
Collapse
Affiliation(s)
- K C Rogers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
8
|
Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E, Söll D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 1993; 32:3836-41. [PMID: 8385989 DOI: 10.1021/bi00066a002] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Early investigations into the interaction between Escherichia coli glutamyl-tRNA synthetase (GluRS) and tRNAGlu have implicated the modified nucleoside 5-[(methylamino)methyl]-2-thiouridine in the first position of the anticodon as an important contact for efficient aminoacylation. However, the experimental methods employed were not sufficient to determine whether the interaction was dependent on the presence of the modification or simply involved other anticodon loop-nucleotides, now occluded from interaction with the synthetase. Unmodified E. coli tRNA(Glu), derived by in vitro transcription of the corresponding gene, is a poor substrate for GluRS, exhibiting a 100-fold reduction in its specificity constant (kcat/KM) compared to that of tRNA(Glu) prepared from an overproducing strain. Through the use of recombinant RNA technology, we created several hybrid tRNAs which combined sequences from the in vitro transcript with that of the native tRNA, resulting in tRNA molecules differing in modified base content. By in vitro aminoacylation of these hybrid tRNA molecules and of tRNAs with base substitutions at positions of nucleotide modification, we show conclusively that the modified uridine at position 34 in tRNA(Glu) is required for efficient aminoacylation by E. coli GluRS. This is only the second example of a tRNA modification acting as a positive determinant for interaction with its cognate aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- L A Sylvers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | | | |
Collapse
|
9
|
Nureki O, Suzuki K, Hara-Yokoyama M, Kohno T, Matsuzawa H, Ohta T, Shimizu T, Morikawa K, Miyazawa T, Yokoyama S. Glutamyl-tRNA synthetase from Thermus thermophilus HB8. Molecular cloning of the gltX gene and crystallization of the overproduced protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:465-72. [PMID: 1541262 DOI: 10.1111/j.1432-1033.1992.tb16656.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene for the Glu-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8, was isolated using a synthetic oligonucleotide probe coding for the N-terminal amino acid sequence of Glu-tRNA synthetase. Nucleotide-sequence analysis revealed an open reading frame coding for a protein composed of 468 amino acid residues (Mr 53,901). Codon usage in the T. thermophilus Glu-tRNA synthetase gene was in fact similar to the characteristic usages in the genes for proteins from bacteria of genus Thermus: the G + C content in the third position of the codons was as high as 94%. In contrast, the amino acid sequence of T. thermophilus Glu-tRNA synthetase showed high similarity with bacterial Glu-tRNA synthetases (35-45% identity); the sequences of the binding sites for ATP and for the 3' terminus of tRNA(Glu) are highly conserved. The Glu-tRNA synthetase gene was efficiently expressed in Escherichia coli under the control of the tac promoter. The recombinant T. thermophilus Glu-tRNA synthetase was extremely thermostable and was purified to homogeneity by heat treatment and three-step column chromatography. Single crystals of T. thermophilus Glu-tRNA synthetase were obtained from poly(ethylene glycol) 6000 solution by a vapor-diffusion technique. The crystals diffract X-rays beyond 0.35 nm. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters of a = 8.64 nm, b = 8.86 nm and c = 8.49 nm.
Collapse
Affiliation(s)
- O Nureki
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Miyazawa T, Yokoyama S. Structures and functions of proteins and nucleic acids in protein biosynthesis. INT REV PHYS CHEM 1989. [DOI: 10.1080/01442358909353226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Hara-Yokoyama M, Yokoyama S, Miyazawa T. Conformation change of tRNAGlu in the complex with glutamyl-tRNA synthetase is required for the specific binding of L-glutamate. Biochemistry 1986; 25:7031-6. [PMID: 2879555 DOI: 10.1021/bi00370a041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The binding of Thermus thermophilus glutamyl-tRNA synthetase (GluRS) with T. thermophilus tRNAGlu, Escherichia coli tRNAGlu, and amino acids was studied by fluorescence measurements. In the absence of tRNAGlu, GluRS binds with D-glutamate as well as L-glutamate. However, in the presence of E. coli tRNAGlu, GluRS binds specifically with L-glutamate. The KCl effects on the Michaelis constants (Km) for tRNAGlu, L-glutamate, and ATP were studied for the aminoacylation of the homologous tRNAGlu and heterologous tRNAGlu species. As the KCl concentration is raised from 0 to 100 mM, the Km value for L-glutamate in the heterologous system is remarkably increased whereas the Km value for L-glutamate in the homologous system is only slightly increased. The circular dichroism analyses were made mainly of the bands due to the 2-thiouridine derivatives of tRNAGlu in the complex. The conformation change of T. thermophilus tRNAGlu upon complex formation with GluRS is not affected by addition of KCl. In contrast, the heterologous tRNAGlu X GluRS complex is in an equilibrium of two forms that depends on KCl concentration. The predominant form at low KCl concentration is closely related to the small Km value for L-glutamate. In this form of the complex, the conformation of tRNAGlu is appreciably different from that of free molecule. Accordingly, such a conformation change of tRNAGlu in the complex with GluRS is required for the specific binding of L-glutamate as the substrate.
Collapse
|
12
|
Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67429-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
|
14
|
Beresten S, Scheinker V, Favorova O, Kisselev L. Mutual conformational changes of tryptophanyl-tRNA synthetase and tRNATrp in the course of their specific interaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 136:559-70. [PMID: 6357794 DOI: 10.1111/j.1432-1033.1983.tb07777.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
tRNATrp (beef, yeast) is capable of accelerating limited tryptic hydrolysis of the N-terminal part in the polypeptide chains of dimeric beef pancreas tryptophanyl-tRNA synthetase; it can also eliminate the protective effect of tryptophanyl adenylate on the enzyme proteolysis. The effect of tRNA on the proteolysis is manifested even when the 3'-CCA terminus is removed. It has been concluded that the conformation of the synthetase changes when it forms a complex with tRNATrp. Yeast tRNATrp lacking the 3'-half of the acceptor stem can still interact with the synthetase and, to certain extent, induces changes in the conformation of the latter. The susceptibility of single-stranded and double-stranded regions of tRNATrp to cleavage with endonucleases has been studied, and the results are indicative of the fact that, regardless of considerable differences in the nucleotide sequence of yeast and beef tRNATrp, their three-dimensional structures are similar. This fact is consistent with the finding that parameters for the interaction of these tRNAsTrp with beef tryptophanyl-tRNA synthetase are rather close. The three-dimensional structure of tRNATrp is altered when the enzyme forms a complex with it, as seen from (a) a change in the circular dichroic spectrum and (b) an elevated susceptibility of the anticodon and, apparently, acceptor stems to cleavage with nuclease. The conversion of exposed cytidine residues in tRNATrp into uridine residues results in a loss of the acceptor activity; the capability to accelerate limited tryptic hydrolysis of tryptophanyl-tRNA synthetase is also lost although the enzyme-substrate complex, as seen from circular dichroic spectra, can still be formed. The conversion of cytosine in the anticodon stem into uracil modifies the conformation of the anticodon stem. The anticodon arm (including the anticodon) and the acceptor stem play an essential role in the interaction between tRNATrp and tryptophanyl-tRNA synthetase.
Collapse
|
15
|
The monomeric glutamyl-tRNA synthetase from Bacillus subtilis 168 and its regulatory factor. Their purification, characterization, and the study of their interaction. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33112-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Bacha H, Renaud M, Lefevre JF, Remy P. Conformational activation of aminoacyl-tRNA synthetases upon binding of tRNA. A facet of a multi-step adaptation process leading to the optimal biological activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 127:87-95. [PMID: 6754376 DOI: 10.1111/j.1432-1033.1982.tb06841.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The activation of the catalytic center of aminoacyl-tRNA synthetases upon binding of the tRNA, previously reported in the case of yeast phenylalanyl-tRNA and valyl-tRNA synthetases [Renaud et al., (1981) Proc. Natl Acad. Sci. USA, 78, 1606-1608] has been investigated in other systems. It is shown that this property is encountered not only in cognate systems (phenylalanyl, valyl and arginyl) but also in the non-cognate systems which are particularly efficient in misaminoacylation reactions. The arginyl system, the peculiarity of which is to form the aminoacyladenylate only in the presence of the cognate tRNA, is shown to be a border-line case of this general process of catalytic center activation. In the case of the phenylalanyl system, the crucial role of the wybutine residue (adjacent to the anticodon) in the activation of phenylalanyl-tRNA synthetase by the tRNA core has been analysed by comparison with native or modified non-cognate tRNAs (tRNATyr, tRNAArg). It is proposed that upon complex formation between a tRNA and its cognate aminoacyl-tRNA synthetase, a multistep adaptation process takes place in order to promote the optimal rate for the aminoacylation reaction, thus contributing to the specificity of this reaction.
Collapse
|
17
|
Butorin AS, Remy P, Ebel JP, Vassilenko SK. Comparison of the hydrolysis patterns of several tRNAs by cobra venom ribonuclease in different steps of the aminoacylation reaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 121:587-95. [PMID: 6915854 DOI: 10.1111/j.1432-1033.1982.tb05827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The hydrolysis of several tRNAs by an endonuclease extracted from the venom of Naja oxiana and specific for double-stranded, or at least highly ordered, regions has been studied under various experimental conditions. It is shown that the hydrolysis patterns of yeast tRNAPhe, tRNAVal and tRNAAsp in the isolated state are similar, most of the cuts occurring in the anticodon and acceptor stems. Ionic conditions are able to modify the hydrolysis pattern. The origin of these modifications is discussed. The protection against ribonuclease action, afforded to tRNAPhe, tRNAVal and tRNAAsp by the cognate aminoacyl-tRNA synthetase, is analyzed. It is shown that in all cases the anticodon stem is protected. The 3'-terminal region does not seem to be tightly engaged in the complex with the aminoacyl-tRNA synthetase. These results are discussed in the light of information on contact areas previously obtained by ultraviolet cross-linking techniques. The effects of the small ligands (ATP and amino acid) on the protection afforded to the tRNA by the cognate synthetase, have been studied. In the valine and aspartic acid systems, ATP induced a modification of the tRNA-enzyme complex leading to differences in the hydrolysis pattern of the 3'-accepting region. The effects of aminoacylation on the cleavage of tRNAPhe, tRNAVal and tRNAAsp were also studied. Whereas no modification of the cleavage map was observed in the aspartic system, aminoacylation resulted in slight but significant modifications of the hydrolysis pattern for tRNAPhe and tRNaVal in the 3'-terminal region.
Collapse
|
18
|
Renaud M, Bacha H, Remy P, Ebel JP. Conformational activation of the yeast phenylalanyl-tRNA synthetase catalytic site induced by tRNAPhe interaction: triggering of adenosine or CpCpA trinucleoside diphosphate aminoacylation upon binding of tRNAPhe lacking these residues. Proc Natl Acad Sci U S A 1981; 78:1606-8. [PMID: 7015339 PMCID: PMC319180 DOI: 10.1073/pnas.78.3.1606] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Adenosine or CpCpA trinucleoside diphosphate can be aminoacylated by phenylalanyl-tRNA synthetase [L-phenylalanine:tRNAPhe ligase (AMP forming), EC 6.1.1.20] when the reaction takes place in the presence of tRNAPhe deprived of its 3' adenosine or pCpCpA terminus. This shows that, upon interaction with tRNA, a structural alteration of the enzyme's active site is achieved. This process may be a determining step in the specificity of the aminoacylation reaction.
Collapse
|
19
|
|
20
|
Patkowski A, Chu B. Studies of protein–nucleic acid interactions by photon correlation spectroscopy. I. tRNA–BSA interactions at low ionic strength. J Chem Phys 1980. [DOI: 10.1063/1.440566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Dietrich A, Giege R, Comarmond MB, Thierry JC, Moras D. Crystallographic studies on the aspartyl-tRNA synthetase-tRNAAsp system from yeast. The crystalline aminoacyl-tRNA synthetase. J Mol Biol 1980; 138:129-35. [PMID: 6997491 DOI: 10.1016/s0022-2836(80)80008-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Ehrlich R, Lefevre JF, Remy P. Fluorimetric study of the complex between yeast phenylalanyl-tRNA synthetase and tRNA-Phe. 1. Changes in the conformation of the enzyme and tRNA; modification of the Wybutine neighbourhood. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 103:145-53. [PMID: 6987055 DOI: 10.1111/j.1432-1033.1980.tb04298.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Kern D, Lapointe J. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Effect of alteration of the 5-(methylaminomethyl)-2-thiouridine in the anticodon of glutamic acid transfer ribonucleic acid on the catalytic mechanism. Biochemistry 1979; 18:5819-26. [PMID: 229902 DOI: 10.1021/bi00593a011] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Kern D, Lapointe J. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates. Biochemistry 1979; 18:5809-18. [PMID: 229901 DOI: 10.1021/bi00593a010] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The binding of the various substrates to Escherichia coli glutamyl-tRNA synthetase has been investigated by using as experimental approaches the binding study under equilibrium conditions and the substrate-induced protection of the enzyme against its thermal inactivation. The results show that ATP and tRNAGlu bind to the free enzyme, whereas glutamate binds only to an enzyme form to which glutamate-accepting tRNAGlu is associated. By use of modified E. coli tRNAsGlu and heterologous tRNAsGlu, a correlation could be established between the ability of tRNAGlu to be aminoacylated by glutamyl-tRNA synthetase and its abilities to promote the [32P]PPi-ATP isotope exchange and the binding of glutamate to the synthetase. These results give a possible explanation for the inability of blutamyl-tRNA synthetase to catalyze the isotope exchange in the absence of amino acid accepting tRNAGlu and for the failure to detect an enzyme-adenylate complex for this synthetase by using the usual approaches. One binding site was detected for each substrate. The specificity of the interaction of the various substrates has been further investigated. Concerning ATP, inhibition studies of the aminoacylation reaction by various analogues showed the existence of a synergistic effect between the adenine and the ribose residues for the interaction of adenosine. The primary recognition of ATP involves the N-1 and the 6-amino group of adenine as well as the 2'-OH group of ribose. This first interaction is then strengthened by the phosphate groups- Inhibition studies by various analogues of glutamate showed a strong decrease in the affinity of this substrate for the synthetase after substitution of the alpha- or gamma-carboxyl groups. The enzyme exhibits a marked tendency to complex tRNAs of other specificities even in the presence of tRNAGlu. MgCl2 and spermidine favor the specific interactions. The influence of monovalent ions and of pH on the interaction between glutamyl-tRNA synthetase and tRNAGlu is similar to those reported for other synthetases not requiring their cognate tRNA to bind the amino acid. Finally, contrary to that reported for other monomeric synthetases, no dimerization of glutamyl-tRNA synthetase occurs during the catalytic process.
Collapse
|
25
|
Favre A, Ballini JP, Holler E. Phenylalanyl-tRNA synthetase induced conformational change of Escherichia coli tRNA phe. Biochemistry 1979; 18:2887-95. [PMID: 383142 DOI: 10.1021/bi00580a033] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
The 5 S RNA.protein complex from an extreme halophile, Halobacterium cutirubrum. Studies on the RNA-protein interaction. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)37798-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Kern D, Potier S, Boulanger Y, Lapointe J. The monomeric glutamyl-tRNA synthetase of Escherichia coli. Purification and relation between its structural and catalytic properties. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)37946-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Powers DM, Ginsburg A. Monomeric structure of glutamyl-tRNA synthetase in Escherichia coli. Arch Biochem Biophys 1978; 191:673-9. [PMID: 369459 DOI: 10.1016/0003-9861(78)90406-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
|
30
|
Holler E. Protein biosynthesis: the codon-specific activation of amino acids. ANGEWANDTE CHEMIE (INTERNATIONAL ED. IN ENGLISH) 1978; 17:648-56. [PMID: 101100 DOI: 10.1002/anie.197806481] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Goddard JP. The structures and functions of transfer RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1978. [DOI: 10.1016/0079-6107(78)90021-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
|