1
|
Liu XL, Hu YY, Li K, Chen MQ, Wang P. Reconstituted LH2 in multilayer membranes induced by poly-L-lysine: structure of supramolecular and electronic states. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
2
|
Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J Phys Chem B 2016; 120:5429-43. [PMID: 27285777 PMCID: PMC4921951 DOI: 10.1021/acs.jpcb.6b03305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Six light-harvesting-2 complexes
(LH2) from genetically modified
strains of the purple photosynthetic bacterium Rhodobacter
(Rb.) sphaeroides were studied using static and ultrafast
optical methods and resonance Raman spectroscopy. These strains were
engineered to incorporate carotenoids for which the number of conjugated
groups (N = NC=C + NC=O) varies from 9 to 15.
The Rb. sphaeroides strains incorporate their native
carotenoids spheroidene (N = 10) and spheroidenone
(N = 11), as well as longer-chain analogues including
spirilloxanthin (N = 13) and diketospirilloxantion
(N = 15) normally found in Rhodospirillum
rubrum. Measurements of the properties of the carotenoid
first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to
those in LH2 complexes from various other bacterial species and thus
are not significantly impacted by differences in polypeptide composition.
Instead, variations in carotenoid-to-BChl a energy
transfer are primarily regulated by the N-determined
energy of the carotenoid S1 excited state, which for long-chain
(N ≥ 13) carotenoids is not involved in energy
transfer. Furthermore, the role of the long-chain carotenoids switches
from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial
(∼2-fold) reduction of the B850* lifetime and the B850* fluorescence
quantum yield for LH2 housing the longest carotenoids.
Collapse
Affiliation(s)
| | - Qun Tang
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - David F Bocian
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
3
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Bocian DF, Holten D, Hunter CN. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:640-55. [PMID: 25871644 DOI: 10.1016/j.bbabio.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/24/2022]
Abstract
Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Zhuang T, Sasaki SI, Ikeuchi T, Kido J, Wang XF. Natural-photosynthesis-inspired photovoltaic cells using carotenoid aggregates as electron donors and chlorophyll derivatives as electron acceptors. RSC Adv 2015. [DOI: 10.1039/c5ra07099f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we describe photosynthetic active layers-based photovoltaic cells employing a linear carotenoid as the donor and chlorophyll derivatives as the acceptors.
Collapse
Affiliation(s)
- Taojun Zhuang
- Department of Organic Device Engineering
- Graduate School of Engineering
- Research Center for Organic Electronics (ROEL)
- Yamagata University
- Yonezawa
| | | | | | - Junji Kido
- Department of Organic Device Engineering
- Graduate School of Engineering
- Research Center for Organic Electronics (ROEL)
- Yamagata University
- Yonezawa
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education)
- College of Physics
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
5
|
Light-harvesting complexes from purple sulfur bacteria Allochromatium minutissimum assembled without carotenoids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 108:1-7. [DOI: 10.1016/j.jphotobiol.2011.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022]
|
6
|
Focsan AL, Bowman MK, Molnár P, Deli J, Kispert LD. Carotenoid radical formation: dependence on conjugation length. J Phys Chem B 2011; 115:9495-506. [PMID: 21711000 DOI: 10.1021/jp204787b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The relative energy of carotenoid neutral radicals formed by proton loss from the radical cations of linear carotenoids has been examined as a function of conjugation length from n = 15 to 9. For a maximum conjugation length of n = 15 (bisdehydrolycopene, a symmetrical compound), proton loss can occur from any of the 10 methyl groups, with proton loss from the methyl group at position C1 or C1' being the most favorable. In contrast, the most energetically favorable proton loss from the radical cations of lycopene, neurosporene, spheroidene, spheroidenone, spirilloxanthin, and anhydrorhodovibrin occurs from methylene groups that extend from the conjugated system. For example, decreasing the conjugation length to n = 11 (lycopene) by saturation of the double bonds C3-C4 and at C3'-C4' of bisdehydrolycopene favors proton loss at C4 or C4' methylene groups. Saturation at C7'-C8' in the case of neurosporene, spheroidene, and spheroidenone (n = 9, 10, 11) favors the formation of a neutral radical at the C8' methylene group. Saturation of C1-C2 by addition of a methoxy group to a bisdehydrolycopene-like structure with conjugation of n = 12 or 13 (anhydrorhodovibrin, spirilloxanthin) favors proton loss at the C2 methylene group. As a consequence of deprotonation of the radical cation, the unpaired electron spin distribution changes so that larger β-methyl proton couplings occur for the neutral radicals (13-16 MHz) than for the radical cation (7-10 MHz), providing a means to identify possible carotenoid radicals in biological systems by Mims ENDOR.
Collapse
Affiliation(s)
- A Ligia Focsan
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | | | | | | |
Collapse
|
7
|
Wang W, Hu Z, Chen X, Zhao Z, Li J, Chen G. Heterologous synthesis and assembly of functional LHII antenna complexes from Rhodovulum sulfidophilum in Rhodobacter sphaeroides mutant. Mol Biol Rep 2009; 36:1695-702. [PMID: 18850303 DOI: 10.1007/s11033-008-9370-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 09/24/2008] [Indexed: 11/27/2022]
Abstract
The light harvesting complexes, including LHII and LHI, are the important components of photosynthetic apparatus. Rhodovulum (Rdv.) sulfidophilum and Rhodobacter (R.) sphaeroides belong to two genera of photosynthetic bacteria, and they are very different in some physiological characteristics and light harvesting complexes structure. The LHII structural genes (pucBsAs) from Rdv. sulfidophilum and the LHI structural genes (pufBA) from R. sphaeroides were amplified, and cloned into an expression vector controlled by puc promoter from R. sphaeroides, which was then introduced into LHI and LHII-minus R. sphaeroides mutants; the transconjugant strains synthesized heterologous LHII and native LHI complexes, which played normal roles in R. sphaeroides. The Rdv. sulfidophilum LHII complex from pucBsAs had near-infrared absorption bands at ~801-853 nm in R. sphaeroides, and was able to transfer energy efficiently to the native LHI complex. The results show that the pucBsAs genes from Rdv. sulfidophilum could be expressed in R. sphaeroides, and the functional foreign LHII and native LHI were assembled into the membrane of R. sphaeroides.
Collapse
Affiliation(s)
- Wanneng Wang
- College of Bioengineering, Chongqing University, Shazhengjie 174, Shapingba, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
8
|
Expression characterization and actual function of the second pucBA in Rhodobacter sphaeroides. Biosci Rep 2009; 29:165-72. [PMID: 18798732 DOI: 10.1042/bsr20080061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The puc2BA operon of Rhodobacter sphaeroides is highly similar to the original puc1BA operon. Genetic, biochemical and spectroscopic approaches were used to investigate the function of puc2BA; the puc1BA and puc2BA structural genes were amplified and cloned into the pRK415 vector controlled by the puc promoter from R. sphaeroides, which was then introduced into R. sphaeroides mutant strains. The results indicated that puc2BA was normally expressed and puc2BA-encoded polypeptides were assembled into membrane LHII (light-harvesting II) complexes, although the puc2A-encoded polypeptide was much larger than the puc1A-encoded polypeptide. Semi-quantitative RT-PCR (reverse transcription-PCR) and SDS/PAGE indicated that puc1BA and puc2BA were expressed in R. sphaeroides when integrated into the genome or expressed from vectors. Furthermore, the polypeptides from the puc1BA and puc2BA genes were both involved in LHII assembly, and pucC is also necessary to assemble LHII complexes. Nevertheless, the LHII complexes synthesized from puc2BA in R. sphaeroides have blue-shift absorption bands at 801 and 846 nm.
Collapse
|
9
|
Wang W, Hu Z, Li J, Chen X, Chen G. Characteristics of light-harvesting complex II mutant of Rhodobacter sphaeroides with alterations at the transmembrane helices of beta-subunit. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:807-812. [PMID: 19747103 DOI: 10.1134/s0006297909070153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The peripheral light-harvesting complex II (LHII) is an important component of the photosynthetic apparatus of Rhodobacter sphaeroides. In this study, genetic, biochemical, and spectroscopic approaches were applied to investigate the spectral properties and functions of LHII in which two amino acid residues Phe32 and Leu42 in the transmembrane helix domain of pucB-encoded beta-apoprotein were replaced by Leu and Pro. The mutated LHII complex showed blue shift of absorbance peaks in the near infrared region at approximately 801-845 nm in R. sphaeroides. It should be noted that the B800 peak was much lower than that of the native LHII, and transfer energy was efficient from the B800 to the B850 pigments in the LHII complex. The results suggest that the mutated pucB could be expressed in R. sphaeroides, and the functional LHII was assembled into the membrane of R. sphaeroides notwithstanding with the different spectral properties. These mutated residues were indeed critical for the modulation of characteristics and function of LHII complex.
Collapse
Affiliation(s)
- Wanneng Wang
- College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400030, China
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Makhneva Z, Bolshakov M, Moskalenko A. Heterogeneity of carotenoid content and composition in LH2 of the purple sulphur bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition. PHOTOSYNTHESIS RESEARCH 2008; 98:633-641. [PMID: 18998236 DOI: 10.1007/s11120-008-9384-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/11/2008] [Indexed: 05/27/2023]
Abstract
The effects brought about by growing Allochromatium (Alc.) minutissimum in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) have been investigated. A decrease of Car content (from approximately 70% to >5%) in the membranes was accompanied by an increase of the percentage of (immature) Cars with reduced numbers of conjugated C=C bonds (from neurosporene to phytoene). Based on the obtained results and the analysis of literature data, the conclusion is reached that accumulation of phytoene during inhibition did not occur. Surprisingly, DPA inhibited phytoene synthase instead of phytoene desaturase as generally assumed. The distribution of Cars in peripheral antenna (LH2) complexes and their effect on the stability of LH2 has been investigated using absorption spectroscopy and HPLC analysis. Heterogeneity of Car composition and contents in the LH2 pool is revealed. The Car contents in LH2 varied widely from control levels to complete absence. According to common view, the assembly of LH2 occurs only in the presence of Cars. Here, we show that the LH2 can be assembled without any Cars. The presence of Cars, however, is important for structural stability of LH2 complexes.
Collapse
Affiliation(s)
- Zoya Makhneva
- Institute of Basic Biological Problems RAS, Pushchino 142290, Russia
| | | | | |
Collapse
|
12
|
García-Martín A, Pazur A, Wilhelm B, Silber M, Robert B, Braun P. The Role of Aromatic Phenylalanine Residues in Binding Carotenoid to Light-Harvesting Model and Wild-Type Complexes. J Mol Biol 2008; 382:154-66. [DOI: 10.1016/j.jmb.2008.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 06/29/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
|
13
|
Cong H, Niedzwiedzki DM, Gibson GN, LaFountain AM, Kelsh RM, Gardiner AT, Cogdell RJ, Frank HA. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J Phys Chem B 2008; 112:10689-703. [PMID: 18671366 PMCID: PMC3628606 DOI: 10.1021/jp711946w] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.
Collapse
Affiliation(s)
- Hong Cong
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy. J Phys Chem B 2008; 112:9467-75. [PMID: 18613723 DOI: 10.1021/jp801773j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reconstitutions of the LH1 complexes from the purple photosynthetic bacterium Rhodospirillum rubrum S1 were performed with a range of carotenoid molecules having different numbers of C=C conjugated double bonds. Since, as we showed previously, some of the added carotenoids tended to aggregate and then to remain with the reconstituted LH1 complexes (Nakagawa, K.; Suzuki, S.; Fujii, R.; Gardiner, A.T.; Cogdell, R.J.; Nango, M.; Hashimoto, H. Photosynth. Res. 2008, 95, 339-344), a further purification step using a sucrose density gradient centrifugation was introduced to improve purity of the final reconstituted sample. The measured absorption, fluorescence-excitation, and Stark spectra of the LH1 complex reconstituted with spirilloxanthin were identical with those obtained with the native, spirilloxanthin-containing, LH1 complex of Rs. rubrum S1. This shows that the electrostatic environments surrounding the carotenoid and bacteriochlorophyll a (BChl a) molecules in both of these LH1 complexes were essentially the same. In the LH1 complexes reconstituted with either rhodopin or spheroidene, however, the wavelength maximum at the BChl a Qy absorption band was slightly different to that of the native LH1 complexes. These differences in the transition energy of the BChl a Qy absorption band can be explained using the values of the nonlinear optical parameters of this absorption band, i.e., the polarizability change Tr(Deltaalpha) and the static dipole-moment change |Deltamu| upon photoexcitation, as determined using Stark spectroscopy. The local electric field around the BChl a in the native LH1 complex (ES) was determined to be approximately 3.0x10(6) V/cm. Furthermore, on the basis of the values of the nonlinear optical parameters of the carotenoids in the reconstituted LH1 complexes, it is possible to suggest that the conformations of carotenoids, anhydrorhodovibrin and spheroidene, in the LH1 complex were similar to that of rhodopin glucoside in crystal structure of the LH2 complex from Rhodopseudomonas acidophila 10050.
Collapse
Affiliation(s)
- Katsunori Nakagawa
- Department of Life and Materials Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Harvey PD, Stern C, Gros CP, Guilard R. Comments on the through-space singlet energy transfers and energy migration (exciton) in the light harvesting systems. J Inorg Biochem 2007; 102:395-405. [PMID: 18160130 DOI: 10.1016/j.jinorgbio.2007.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/20/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
Abstract
Recent findings on the photophysical investigations of several cofacial bisporphyrin dyads for through space singlet and triplet energy transfers raised several serious questions about the mechanism of the energy transfers and energy migration in the light harvesting devices, notably LH II, in the heavily studied purple photosynthetic bacteria. The key issue is that for simple cofacial or slipped dyads with controlled geometry using rigid spacers or spacers with limited flexibilities, the fastest possible rates for singlet energy transfer for three examples are in the 10 x 10(9)s(-1) (i.e. just in the 100 ps time scale) for donor-acceptor distances approaching 3.5-3.6 A. The reported time scale for energy transfers between different bacteriochlorophylls, notably B800*-->B850, is in the picosecond time scale despite the long Mg...Mg separation of approximately 18 A. Such a short rate drastically contrasts with the well accepted Förster theory. This article reviews the modern knowledge of the structure, bacteriochlorophyll a transition moments, and photophysical processes and dynamics in LH II, and compares these parameters with the recently investigated model bisporphyrin dyads build upon octa-etio-porphyrin chromophores and rigid and semi-rigid spacers. The recently discovered role of the rhodopin glucoside residue called carotenoid will be commented as the possible relay for energy transfer, including the possibility of uphill processes at room temperature. In this context, the concept of energy migration, called exciton, may also be affected by relays and uphill processes. Also, it is becoming more and more apparent that the presence of an irreversible electron transfer reaction at the reaction center, i.e. electron transfer from the special pair to the phyophytin macrocycle and so on, renders the rates for energy transfer and migration more rapid precluding all possibility of back transfers.
Collapse
Affiliation(s)
- Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, Canada J1K 2R1.
| | | | | | | |
Collapse
|
16
|
Polívka T, Niedzwiedzki D, Fuciman M, Sundström V, Frank HA. Role of B800 in Carotenoid−Bacteriochlorophyll Energy and Electron Transfer in LH2 Complexes from the Purple BacteriumRhodobactersphaeroides. J Phys Chem B 2007; 111:7422-31. [PMID: 17547450 DOI: 10.1021/jp071395c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.
Collapse
Affiliation(s)
- Tomas Polívka
- Institute of Physical Biology, University of South Bohemia, Nove Hrady, Czech Republic.
| | | | | | | | | |
Collapse
|
17
|
Garcia-Martin A, Kwa LG, Strohmann B, Robert B, Holzwarth AR, Braun P. Structural Role of (Bacterio)chlorophyll Ligated in the Energetically Unfavorable β-Position. J Biol Chem 2006; 281:10626-34. [PMID: 16484226 DOI: 10.1074/jbc.m510731200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorophyll is attached to apoprotein in diastereotopically distinct ways, by beta- and alpha-ligation. Both the beta- and alpha-ligated chlorophylls of photosystem I are shown to have ample contacts to apoprotein within their proteinaceous binding sites, in particular, at C-13 of the isocyclic ring. The H-bonding patterns for the C-13(1) oxo groups, however, are clearly distinct for the beta-ligated and alpha-ligated chlorophylls. The beta-ligated chlorophylls frequently employ their C-13(1) oxo in H-bonds to neighboring helices and subunits. In contrast, the C-13(1) oxo of alpha-ligated chlorophylls are significantly less involved in H-bonding interactions, particularly to neighboring helices. Remarkably, in the peripheral antenna, light harvesting complex (LH2) from Rhodobacter sphaeroides, a single mutation in the alpha-subunit, introduced to eliminate H-bonding to the beta-bacteriochlorophyll-B850, which is ligated in the "beta-position," results in significant thermal destabilization of the LH2 in the membrane. In addition, in comparison with wild type LH2, the expression level of the LH2 lacking this H-bond is significantly reduced. These findings show that H-bonding to the C-13(1) keto group ofbeta-ligated (bacterio)-chlorophyll is a key structural motif and significantly contributes to the stability of bacteriochlorophyll proteins in the native membrane. Our analysis of photosystem I and II suggests that this hitherto unrecognized motif involving H-bonding to beta-ligated chlorophylls may be equally critical for the stable assembly of the inner core antenna of these multicomponent chlorophyll proteins.
Collapse
|
18
|
Chen XH, Zhang L, Weng YX, Du LC, Ye MP, Yang GZ, Fujii R, Rondonuwu FS, Koyama Y, Wu YS, Zhang JP. Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state. Biophys J 2005; 88:4262-73. [PMID: 15821161 PMCID: PMC1305656 DOI: 10.1529/biophysj.104.053868] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 03/25/2005] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.
Collapse
Affiliation(s)
- Xing-Hai Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hunter CN, Tucker JD, Niederman RA. The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides. Photochem Photobiol Sci 2005; 4:1023-7. [PMID: 16307117 DOI: 10.1039/b506099k] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent AFM data demonstrate that mature photosynthetic membranes of R. sphaeroides are composed of rows of dimeric RC-LH1-PufX complexes with some LH2 complexes 'sandwiched' between these rows of core complexes, and others in discrete LH2-only domains which might form the light-responsive complement of the LH2 antenna. The present work applies membrane fractionation, radiolabelling and LDS-PAGE techniques to investigate the response of R. sphaeroides to lowered light intensity. The kinetics underlying this adaptation to low light conditions were revealed by radiolabelling with the bacteriochlorophyll (bchl) biosynthetic precursor, delta-aminolevulinate, which allowed us to measure only the bchls synthesised after the light intensity shift. We show that (1) the increase in LH2 antenna size is mainly restricted to the mature ICM membrane fraction, and the antenna composition of the precursor upper pigmented band (UPB) membrane remains constant, (2) the precursor UPB membrane is enriched in bchl synthase, the terminal enzyme of the bchl biosynthetic pathway, and (3) the LH2 and the complexes of intermediate migration in LDS-PAGE exhibit completely different labelling kinetics. Thus, new photosynthetic complexes, mainly LH2, are synthesised and assembled at the membrane initiation UPB sites, where the LH2 rings pack between the rows of dimeric cores fostering new LH2-LH1 interactions. Mature membranes also assemble new LH2 rings, but in this case the 'sandwich' regions between the rows of core dimers are already fully occupied and the bulk antenna pool is the favoured location for these new LH2 complexes.
Collapse
Affiliation(s)
- C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK S10 2TN
| | | | | |
Collapse
|
20
|
Liu Y, Wu Y, Xu C. Elimination of polarity in the carotenoid terminus promotes the exposure of B850-binding sites (Tyr 44, 45) and ANS-mediated energy transfer in LH2 complexes of Rhodobacter sphaeroides. Biochem Biophys Res Commun 2004; 325:600-4. [PMID: 15530435 DOI: 10.1016/j.bbrc.2004.10.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Indexed: 11/27/2022]
Abstract
Carotenoids in the peripheral light-harvesting complexes (LH2) of the green mutant (GM309) of Rhodobacter sphaeroides were identified as containing neurosporenes, which lack the polar CH(3)O group, compared to spheroidenes in native-LH2 of R. sphaeroides 601. After LH2 complexes were treated with 1-anilino-8-naphthalene sulfonate (ANS), new energy transfer pathways from ANS or tryptophan to carotenoids were discovered in both native- and GM309-LH2. The carotenoid fluorescence intensity of GM309-LH2 was greater than that of native-LH2 when bound with ANS, suggesting that the elimination of polarity in the neurosporene increases the energy transfer from ANS to carotenoid. The fact that two alpha-tyrosines (alpha-Tyr 44, 45, B850-binding sites) in each alpha-apoprotein of GM309-LH2 were more easily modified than those of native-LH2 by N-acetylimidazole (NAI) indicates that the elimination of polarity in the neurosporene terminus increases the exposure of these sites to solution.
Collapse
Affiliation(s)
- Yuan Liu
- Shanghai Institute of Plant Physiology, Shanghai institute for Biological Sciences, Chinese Academy of Science, Shanghai 200032, PR China
| | | | | |
Collapse
|
21
|
Polívka T, Pullerits T, Frank HA, Cogdell RJ, Sundström V. Ultrafast Formation of a Carotenoid Radical in LH2 Antenna Complexes of Purple Bacteria. J Phys Chem B 2004. [DOI: 10.1021/jp0483019] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomáš Polívka
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Harry A. Frank
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Richard J. Cogdell
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Villy Sundström
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, and Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
22
|
Georgakopoulou S, van Grondelle R, van der Zwan G. Circular dichroism of carotenoids in bacterial light-harvesting complexes: experiments and modeling. Biophys J 2004; 87:3010-22. [PMID: 15326029 PMCID: PMC1304774 DOI: 10.1529/biophysj.104.047498] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work we investigate the origin and characteristics of the circular dichroism (CD) spectrum of rhodopin glucoside and lycopene in the light-harvesting 2 complex of Rhodopseudomonas acidophila and Rhodospirillum molischianum, respectively. We successfully model their absorption and CD spectra based on the high-resolution structures. We assume that these spectra originate from seven interacting transition dipole moments: the first corresponds to the 0-0 transition of the carotenoid, whereas the remaining six represent higher vibronic components of the S2 state. From the absorption spectra we get an estimate of the Franck-Condon factors of these transitions. Furthermore, we investigate the broadening mechanisms that lead to the final shape of the spectra and get an insight into the interaction energy between carotenoids. Finally, we examine the consequences of rotations of the carotenoid transition dipole moment and of deformations in the light-harvesting 2 complex rings. Comparison of the modeled carotenoid spectra with modeled spectra of the bacteriochlorophyll QY region leads to a refinement of the modeling procedure and an improvement of all calculated results. We therefore propose that the combined carotenoid and bacteriochlorophyll CD can be used as an accurate reflection of the overall structure of the light-harvesting complexes.
Collapse
Affiliation(s)
- S Georgakopoulou
- Department of Biophysics and Physics of Complex Systems, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Kwa LG, García-Martín A, Végh AP, Strohmann B, Robert B, Braun P. Hydrogen bonding in a model bacteriochlorophyll-binding site drives assembly of light harvesting complex. J Biol Chem 2004; 279:15067-75. [PMID: 14742420 DOI: 10.1074/jbc.m312429200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contribution of intramembrane hydrogen bonding at the interface between polypeptide and cofactor is explored in the native lipid environment by use of model bacteriochlorophyll proteins. In the peripheral antenna complex, LH2, large portions of the transmembrane helices, which make up the dimeric bacteriochlorophyll-binding site, are replaced by simplified, alternating alanine-leucine stretches. Replacement of either one of the two helices with the helices containing the model sequence at a time results in the assembly of complexes with nearly native light harvesting properties. In contrast, replacement of both helices results in the loss of antenna complexes from the membrane. The assembly of such doubly modified complexes is restored by a single intramembrane serine residue at position -4 relative to the liganding histidine of the alpha-subunit. In situ analysis of the spectral properties in a series of site-directed mutants reveals a critical dependence of the model complex assembly on the side chain of the residue at this position in the helix. A hydrogen bond between the hydroxy group of the serine and the 13(1) keto group of one of the central bacteriochlorophylls of the complexes is identified by Raman spectroscopy in the model antenna complex containing one of the alanine-leucine helices. The additional OH group of the serine residue, which participates in hydrogen bonding, increases the thermal stability of the model complexes in the native membrane. Intramembrane hydrogen bonding is thus shown to be a key factor for the binding of bacteriochlorophyll and assembly of this model cofactor-polypeptide site.
Collapse
Affiliation(s)
- Lee G Kwa
- Department Biologie I der Universität München, Botanik, 80638 München, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Braun P, Végh AP, von Jan M, Strohmann B, Hunter CN, Robert B, Scheer H. Identification of intramembrane hydrogen bonding between 131 keto group of bacteriochlorophyll and serine residue α27 in the LH2 light-harvesting complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1607:19-26. [PMID: 14556909 DOI: 10.1016/j.bbabio.2003.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intramembrane hydrogen bonding and its effect on the structural integrity of purple bacterial light-harvesting complex 2, LH2, have been assessed in the native membrane environment. A novel hydrogen bond has been identified by Raman resonance spectroscopy between a serine residue of the membrane-spanning region of LH2 alpha-subunit, and the C-13(1) keto carbonyl of bacteriochlorophyll (BChl) B850 bound to the beta-subunit. Replacement of the serine by alanine disrupts this strong hydrogen bond, but this neither alters the strongly red-shifted absorption nor the structural arrangement of the BChls, as judged from circular dichroism. It also decreases only slightly the thermal stability of the mutated LH2 in the native membrane environment. The possibility is discussed that weak H-bonding between the C-13(1) keto carbonyl and a methyl hydrogen of the alanine replacing serine(-4) or the imidazole group of the nearby histidine maintains structural integrity in this very stable bacterial light-harvesting complex. A more widespread occurrence of H-bonding to C-13(1) not only in BChl, but also in chlorophyll proteins, is indicated by a theoretical analysis of chlorophyll/polypeptide contacts at <3.5 A in the high-resolution structure of Photosystem I. Nearly half of the 96 chlorophylls have aa residues suitable as hydrogen bond donors to their keto groups.
Collapse
Affiliation(s)
- P Braun
- Department Biologie 1, Section Botanik, Universität München, Menzinger Str. 67, D-80638 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|