1
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
2
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
3
|
Rigby ST, Van Nostrand KP, Rose AE, Gorelick RJ, Mathews DH, Bambara RA. Factors that determine the efficiency of HIV-1 strand transfer initiated at a specific site. J Mol Biol 2009; 394:694-707. [PMID: 19853618 DOI: 10.1016/j.jmb.2009.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/01/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus-1 employs strand transfer for recombination between two viral genomes. We have previously provided evidence that strand transfer proceeds by an invasion-mediated mechanism in which a DNA segment on the original RNA template is invaded by a second RNA template at a gap site. The initial RNA-DNA hybrid then expands until the DNA is fully transferred. Ribonuclease H (RNase H) cleavages and nucleocapsid protein (NC) were required for long-distance propagation of the hybrid. Evaluation was performed on a unique substrate, with a short gap serving as a precreated invasion site. In our current work, this substrate provided an opportunity for us to test what factors influence a specific invasion site to support transfer, and to distinguish factors that influence invasion site creation from those that impact later steps. RNase H can act in a polymerization-dependent or polymerization-independent mode. Polymerization-dependent and polymerization-independent RNase H were found to be important in creating efficiently used invasion sites in the primer-donor complex, with or without NC. Propagation and terminus transfer steps, emanating from a precreated invasion site in the presence of NC, were stimulated by polymerization-dependent, but not polymerization-independent, RNase H. RNase H can carry out primary and secondary cleavages during synthesis. While both modes of cleavage promoted invasion, only primary cleavage promoted propagation in the presence of NC in our system. These observations suggest that once invasion is initiated at a short gap, it can propagate through an adjacent region interrupted only by nicks, with help by NC. We considered the possibility that propagation solely by strand exchange was a significant contributor to transfers. However, it did not promote transfer even if synthetic progress of reverse transcriptase was intentionally slowed, consistent with strand exchange by random walk in which rate declines precipitously with distance.
Collapse
Affiliation(s)
- Sean T Rigby
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
4
|
Mechanism analysis indicates that recombination events in HIV-1 initiate and complete over short distances, explaining why recombination frequencies are similar in different sections of the genome. J Mol Biol 2009; 388:30-47. [PMID: 19233203 DOI: 10.1016/j.jmb.2009.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 11/20/2022]
Abstract
Strand transfer drives recombination between the co-packaged genomes of HIV-1, a process that allows rapid viral evolution. The proposed invasion-mediated mechanism of strand transfer during HIV-1 reverse transcription has three steps: (1) invasion of the initial or donor primer template by the second or acceptor template; (2) propagation of the primer-acceptor hybrid; and (3) primer terminus transfer. Invasion occurs at a site at which the reverse transcriptase ribonuclease H (RNase H) has created a nick or short gap in the donor template. We used biochemical reconstitution to determine the distance over which a single invasion site can promote transfer. The DNA-primed RNA donor template used had a single-stranded pre-created invasion site (PCIS). Results showed that the PCIS could influence transfer by 20 or more nucleotides in the direction of synthesis. This influence was augmented by viral nucleocapsid protein and additional reverse transcriptase-RNase H cleavage. Strand-exchange assays were performed specifically to assess the distance over which a hybrid interaction initiated at the PCIS could propagate to achieve transfer. Propagation by simple branch migration of strands was limited to 24-32 nt. Additional RNase H cuts in the donor RNA allowed propagation to a maximum distance of 32-64 nt. Overall, results indicate that a specific invasion site has a limited range of influence on strand transfer. Evidently, a series of invasion sites cannot collaborate over a long distance to promote transfer. This result explains why the frequency of recombination events does not increase with increasing distance from the start of synthesis, a characteristic that supports effective mixing of viral mutations.
Collapse
|
5
|
Vo MN, Barany G, Rouzina I, Musier-Forsyth K. Effect of Mg(2+) and Na(+) on the nucleic acid chaperone activity of HIV-1 nucleocapsid protein: implications for reverse transcription. J Mol Biol 2009; 386:773-88. [PMID: 19154740 DOI: 10.1016/j.jmb.2008.12.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/20/2008] [Accepted: 12/29/2008] [Indexed: 11/18/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) is an essential protein for retroviral replication. Among its numerous functions, NC is a nucleic acid (NA) chaperone protein that catalyzes NA rearrangements leading to the formation of thermodynamically more stable conformations. In vitro, NC chaperone activity is typically assayed under conditions of low or no Mg(2+), even though reverse transcription requires the presence of divalent cations. Here, the chaperone activity of HIV-1 NC was studied as a function of varying Na(+) and Mg(2+) concentrations by investigating the annealing of complementary DNA and RNA hairpins derived from the trans-activation response domain of the HIV genome. This reaction mimics the annealing step of the minus-strand transfer process in reverse transcription. Gel-shift annealing and sedimentation assays were used to monitor the annealing kinetics and aggregation activity of NC, respectively. In the absence of protein, a limited ability of Na(+) and Mg(2+) cations to facilitate hairpin annealing was observed, whereas NC stimulated the annealing 10(3)- to 10(5)-fold. The major effect of either NC or the cations is on the rate of bimolecular association of the hairpins. This effect is especially strong under conditions wherein NC induces NA aggregation. Titration with NC and NC/Mg(2+) competition studies showed that the annealing kinetics depends only on the level of NA saturation with NC. NC competes with Mg(2+) or Na(+) for sequence-nonspecific NA binding similar to a simple trivalent cation. Upon saturation, NC induces attraction between NA molecules corresponding to approximately 0.3 kcal/mol/nucleotide, in agreement with an electrostatic mechanism of NC-induced NA aggregation. These data provide insights into the variable effects of NC's chaperone activity observed during in vitro studies of divalent metal-dependent reverse transcription reactions and suggest the feasibility of NC-facilitated proviral DNA synthesis within the mature capsid core.
Collapse
Affiliation(s)
- My-Nuong Vo
- Department of Chemistry and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
6
|
Wu T, Heilman-Miller SL, Levin JG. Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2007; 35:3974-87. [PMID: 17553835 PMCID: PMC1919501 DOI: 10.1093/nar/gkm375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (−) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop structure at the 5′ end of the transactivation response element (TAR) in a 70-nt RNA acceptor (RNA 70) appears to be the major nucleation pathway. Using a mutational approach, we show that when the acceptor has a weak local structure, NC has little or no effect. In this case, the efficiencies of both annealing and strand transfer reactions are similar. However, when NC is required to destabilize local structure in acceptor RNA, the efficiency of annealing is significantly higher than that of strand transfer. Consistent with this result, we find that Mg2+ (required for RT activity) inhibits NC-catalyzed annealing. This suggests that Mg2+ competes with NC for binding to the nucleic acid substrates. Collectively, our findings provide new insights into the mechanism of NC-dependent and -independent minus-strand transfer.
Collapse
Affiliation(s)
| | | | - Judith G. Levin
- *To whom correspondence should be addressed. +1 301 496 1970+1 301 496 0243
| |
Collapse
|
7
|
Gao L, Balakrishnan M, Roques BP, Bambara RA. Insights into the multiple roles of pausing in HIV-1 reverse transcriptase-promoted strand transfers. J Biol Chem 2007; 282:6222-31. [PMID: 17204480 DOI: 10.1074/jbc.m610056200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously analyzed the role of pausing induced by hairpin structures within RNA templates in facilitating strand transfer by HIV-1 RT (reverse transcriptase). We proposed a multistep transfer mechanism in which pause-induced RNase H cuts within the initial RNA template (donor) expose regions of cDNA. A second homologous RNA template (acceptor) can interact with the cDNA at such sites, initiating transfer. The acceptor-cDNA hybrid is thought to then propagate by branch-migration, eventually catching up with the primer terminus and completing the transfer. The prominent pause site in the template system facilitated acceptor invasion; however, very few of the transfers terminated at this pause. To examine the effects of homology on pause-promoted transfer, we increased template homology before the pause site, from 19 nucleotides (nt) in the initial template system to 52 nt in the new system. Significantly, the increased homology enhanced transfers 3-fold, with 32% of the transfers now terminating at the pause site. Additionally, the acceptor cleavage profile indicated the creation of a new invasion site in the added region of homology. NC (nucleocapsid) increased the strand transfer throughout the whole template. However, the prominent hot spot for internal transfer remained, which was still at the pause site. We interpret the new results to mean that pause sites can also serve to stall DNA synthesis, allowing acceptor invasions initiated earlier in the template to catch up with the primer terminus.
Collapse
Affiliation(s)
- Lu Gao
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
8
|
Hanson MN, Balakrishnan M, Roques BP, Bambara RA. Evidence that creation of invasion sites determines the rate of strand transfer mediated by HIV-1 reverse transcriptase. J Mol Biol 2006; 363:878-90. [PMID: 16997325 DOI: 10.1016/j.jmb.2006.08.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Strand transfer during reverse transcription can produce genetic recombination in human immunodeficiency virus type 1 (HIV-1) when two genomic RNAs, that are not identical, are co-packaged in the virus. Strand transfer was measured in vitro, in reactions involving primer switching from a donor to acceptor RNA template. The transfer product appeared with much slower kinetics than full-length synthesis on the donor template. The goal of this study was to learn more about the transfer mechanism by defining the steps that limit its rate. We previously proposed transfer to include the steps of acceptor invasion, hybrid propagation, terminus transfer, and re-initiation of synthesis on the acceptor template. Unexpectedly, with our templates increasing acceptor concentration increased the transfer efficiency but had no effect on the rate of transfer. Templates with a short region of homology limiting hybrid propagation exhibited a slow accumulation of transfer products, suggesting that for tested long homology templates hybrid propagation was not rate limiting. Substituting a DNA acceptor and adding Klenow polymerase accelerated re-initiation and extension exclusively on the DNA acceptor. This lead to a small rate increase due to faster extension on the acceptor, suggesting re-initiation of synthesis on the tested RNA acceptors was not rate limiting. A substrate was designed in which the 5' end of the primer was single stranded, and complimentary to the acceptor, i.e. having a pre-made invasion site. With this substrate, increasing concentrations of acceptor increased the rate of transfer. Together these data suggest that RNase H cleavage, and dissociation of RNA fragments creating an invasion site was rate limiting on most tested templates. When an accessible invasion site was present, acceptor interaction at that site influence the rate.
Collapse
Affiliation(s)
- Mark Nils Hanson
- Department of Biochemistry and Biophysics, Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
9
|
Song M, Balakrishnan M, Chen Y, Roques BP, Bambara RA. Stimulation of HIV-1 minus strand strong stop DNA transfer by genomic sequences 3' of the primer binding site. J Biol Chem 2006; 281:24227-35. [PMID: 16782713 DOI: 10.1074/jbc.m603097200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) minus strand transfer was examined using a genomic RNA sequence-based donor-acceptor template system. The donor RNA, D199, was a 199-nucleotide sequence from the 5'-end of the genome to the primer binding site (PBS) and shared 97 nucleotides of homology with the acceptor RNA. To investigate the influence of RNA structure on transfer, a second donor RNA, D520, was generated by extending the 3'-end of D199 to include an additional 321 nucleotides of the genome. The position of priming, length of homology with the acceptor, and length of cDNA synthesized were identical with the two donors. Interestingly, at 200% NC coating, donor D520 yielded a transfer efficiency of about 75% compared with about 35% with D199. A large proportion of the D520 promoted transfers occurred after the donor RNA was copied to the end. Analysis of donor RNA cleavage, the acceptor invasion site and R homology requirements indicated that transfers with D520 involved a similar but more efficient acceptor invasion mechanism compared with D199. RNA structure probing by RNase T1 and the RT pause profile during synthesis indicated conformational differences between D199 and D520 in the starting structure, and in dynamic structures formed during synthesis within the R region. Overall observations suggest that regions 3' of the primer binding site influence the conformation of the R region of D520 to facilitate steps that promote strand transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
10
|
Wellensiek BP, Sundaravaradan V, Ramakrishnan R, Ahmad N. Molecular characterization of the HIV-1 gag nucleocapsid gene associated with vertical transmission. Retrovirology 2006; 3:21. [PMID: 16600029 PMCID: PMC1459197 DOI: 10.1186/1742-4690-3-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 04/06/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) plays a pivotal role in the viral lifecycle: including encapsulating the viral genome, aiding in strand transfer during reverse transcription, and packaging two copies of the viral genome into progeny virions. Another gag gene product, p6, plays an integral role in successful viral budding from the plasma membrane and inclusion of the accessory protein Vpr within newly budding virions. In this study, we have characterized the gag NC and p6 genes from six mother-infant pairs following vertical transmission by performing phylogenetic analysis and by analyzing the degree of genetic diversity, evolutionary dynamics, and conservation of functional domains. RESULTS Phylogenetic analysis of 168 gag NC and p6 genes sequences revealed six separate subtrees that corresponded to each mother-infant pair, suggesting that epidemiologically linked individuals were closer to each other than epidemiologically unlinked individuals. A high frequency (92.8%) of intact open reading frames of NC and p6 with patient and pair specific sequence motifs were conserved in mother-infant pairs' sequences. Nucleotide and amino acid distances showed a lower degree of viral heterogeneity, and a low degree of estimates of genetic diversity was also found in NC and p6 sequences. The NC and p6 sequences from both mothers and infants were found to be under positive selection pressure. The two important functional motifs within NC, the zinc-finger motifs, were highly conserved in most of the sequences, as were the gag p6 Vpr binding, AIP1 and late binding domains. Several CTL recognition epitopes identified within the NC and p6 genes were found to be mostly conserved in 6 mother-infant pairs' sequences. CONCLUSION These data suggest that the gag NC and p6 open reading frames and functional domains were conserved in mother-infant pairs' sequences following vertical transmission, which confirms the critical role of these gene products in the viral lifecycle.
Collapse
Affiliation(s)
- Brian P Wellensiek
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Vasudha Sundaravaradan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Rajesh Ramakrishnan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
11
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|