1
|
Chen JR, Ke TX, Frey PA, Ke SC. Electron Spin Echo Envelope Modulation Spectroscopy Reveals How Adenosylcobalamin-Dependent Lysine 5,6-Aminomutase Positions the Radical Pair Intermediates and Modulates Their Stabilities for Efficient Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-Ru Chen
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| | - Ting-Xi Ke
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| | - Perry A. Frey
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| | - Shyue-Chu Ke
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| |
Collapse
|
2
|
Affiliation(s)
- Perry Allen Frey
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
3
|
Broderick JB, Duffus B, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev 2014; 114:4229-317. [PMID: 24476342 PMCID: PMC4002137 DOI: 10.1021/cr4004709] [Citation(s) in RCA: 615] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Joan B. Broderick
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Benjamin
R. Duffus
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kaitlin S. Duschene
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
4
|
Cobalamin-dependent dehydratases and a deaminase: Radical catalysis and reactivating chaperones. Arch Biochem Biophys 2014; 544:40-57. [DOI: 10.1016/j.abb.2013.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 01/12/2023]
|
5
|
Makins C, Pickering AV, Mariani C, Wolthers KR. Mutagenesis of a conserved glutamate reveals the contribution of electrostatic energy to adenosylcobalamin co-C bond homolysis in ornithine 4,5-aminomutase and methylmalonyl-CoA mutase. Biochemistry 2013; 52:878-88. [PMID: 23311430 DOI: 10.1021/bi3012719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Binding of substrate to ornithine 4,5-aminomutase (OAM) and methylmalonyl-CoA mutase (MCM) leads to the formation of an electrostatic interaction between a conserved glutamate side chain and the adenosyl ribose of the adenosylcobalamin (AdoCbl) cofactor. The contribution of this residue (Glu338 in OAM from Clostridium sticklandii and Glu392 in human MCM) to AdoCbl Co-C bond labilization and catalysis was evaluated by substituting the residue with a glutamine, aspartate, or alanine. The OAM variants, E338Q, E338D, and E338A, showed 90-, 380-, and 670-fold reductions in catalytic turnover and 20-, 60-, and 220-fold reductions in k(cat)/K(m), respectively. Likewise, the MCM variants, E392Q, E392D, and E392A, showed 16-, 330-, and 12-fold reductions in k(cat), respectively. Binding of substrate to OAM is unaffected by the single-amino acid mutation as stopped-flow absorbance spectroscopy showed that the rates of external aldimine formation in the OAM variants were similar to that of the native enzyme. The decrease in the level of catalysis is instead linked to impaired Co-C bond rupture, as UV-visible spectroscopy did not show detectable AdoCbl homolysis upon binding of the physiological substrate, d-ornithine. AdoCbl homolysis was also not detected in the MCM mutants, as it was for the native enzyme. We conclude from these results that a gradual weakening of the electrostatic energy between the protein and the ribose leads to a progressive increase in the activation energy barrier for Co-C bond homolysis, thereby pointing to a key role for the conserved polar glutamate residue in controlling the initial generation of radical species.
Collapse
Affiliation(s)
- Caitlyn Makins
- Department of Chemistry, University of British Columbia, 3333 University Way, Kelowna, BC, Canada
| | | | | | | |
Collapse
|
6
|
Bucher D, Sandala GM, Durbeej B, Radom L, Smith DM. The Elusive 5′-Deoxyadenosyl Radical in Coenzyme-B12-Mediated Reactions. J Am Chem Soc 2012; 134:1591-9. [DOI: 10.1021/ja207809b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Denis Bucher
- School of Chemistry and ARC Centre of Excellence
for Free Radical Chemistry
and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory M. Sandala
- School of Chemistry and ARC Centre of Excellence
for Free Radical Chemistry
and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia
- Division of Organic
Chemistry and Biochemistry, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| | - Bo Durbeej
- Division of Computational
Physics, IFM Theory and Modelling, Linköping University, SE-581 83 Linköping, Sweden
| | - Leo Radom
- School of Chemistry and ARC Centre of Excellence
for Free Radical Chemistry
and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia
| | - David M. Smith
- Division of Organic
Chemistry and Biochemistry, Ruđer Bošković Institute, 10002 Zagreb, Croatia
- Computer-Chemie-Centrum, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
7
|
Manzerova J, Krymov V, Gerfen GJ. Investigating the intermediates in the reaction of ribonucleoside triphosphate reductase from Lactobacillus leichmannii: An application of HF EPR-RFQ technology. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 213:32-45. [PMID: 21944735 DOI: 10.1016/j.jmr.2011.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/23/2011] [Indexed: 05/31/2023]
Abstract
In this investigation high-frequency electron paramagnetic resonance spectroscopy (HFEPR) in conjunction with innovative rapid freeze-quench (RFQ) technology is employed to study the exchange-coupled thiyl radical-cob(II)alamin system in ribonucleotide reductase from a prokaryote Lactobacillus leichmannii. The size of the exchange coupling (Jex) and the values of the thiyl radical g tensor are refined, while confirming the previously determined (Gerfen et al. (1996) [20]) distance between the paramagnets. Conclusions relevant to ribonucleotide reductase catalysis and the architecture of the active site are presented. A key part of this work has been the development of a unique RFQ apparatus for the preparation of millisecond quench time RFQ samples which can be packed into small (0.5 mm ID) sample tubes used for CW and pulsed HFEPR--lack of this ability has heretofore precluded such studies. The technology is compatible with a broad range of spectroscopic techniques and can be readily adopted by other laboratories.
Collapse
Affiliation(s)
- Julia Manzerova
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, United States
| | | | | |
Collapse
|
8
|
Chen YH, Maity AN, Pan YC, Frey PA, Ke SC. Radical stabilization is crucial in the mechanism of action of lysine 5,6-aminomutase: role of tyrosine-263α as revealed by electron paramagnetic resonance spectroscopy. J Am Chem Soc 2011; 133:17152-5. [PMID: 21939264 DOI: 10.1021/ja207766c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase utilizes free radical intermediates to mediate 1,2-amino group rearrangement, during which an elusive high-energy aziridincarbinyl radical is proposed to be central in the mechanism of action. Understanding how the enzyme participates in stabilizing any of the radical intermediates is fundamentally significant. Y263F mutation abolished the enzymatic activity. With isotope-edited EPR methods, the roles of the Tyr263α residue in the putative active site are revealed. The Tyr263α residue stabilizes a radical intermediate, which most likely is the aziridincarbinyl radical, either by acting as a spin-relay device or serving as an anchor for the pyridine ring of pyridoxal-5'-phosphate through aromatic π-stacking interactions during spin transfer. The Tyr263α residue also protects the radical intermediate from interception by molecular oxygen. This study supports the proposed reaction mechanism, including the aziridincarbinyl radical, which has eluded detection for more than two decades.
Collapse
Affiliation(s)
- Yung-Han Chen
- Physics Department, National Dong Hwa University, Hualien, Taiwan 97401
| | | | | | | | | |
Collapse
|
9
|
Robertson WD, Wang M, Warncke K. Characterization of protein contributions to cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase by using photolysis in the ternary complex. J Am Chem Soc 2011; 133:6968-77. [PMID: 21491908 PMCID: PMC3092035 DOI: 10.1021/ja107052p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein contributions to the substrate-triggered cleavage of the cobalt-carbon (Co-C) bond and formation of the cob(II)alamin-5'-deoxyadenosyl radical pair in the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium have been studied by using pulsed-laser photolysis of AdoCbl in the EAL-AdoCbl-substrate ternary complex, and time-resolved probing of the photoproduct dynamics by using ultraviolet-visible absorption spectroscopy on the 10(-7)-10(-1) s time scale. Experiments were performed in a fluid dimethylsulfoxide/water cryosolvent system at 240 K, under conditions of kinetic competence for thermal cleavage of the Co-C bond in the ternary complex. The static ultraviolet-visible absorption spectra of holo-EAL and ternary complex are comparable, indicating that the binding of substrate does not labilize the cofactor cobalt-carbon (Co-C) bond by significantly distorting the equilibrium AdoCbl structure. Photolysis of AdoCbl in EAL at 240 K leads to cob(II)alamin-5'-deoxyadenosyl radical pair quantum yields of <0.01 at 10(-6) s in both holo-EAL and ternary complex. Three photoproduct states are populated following a saturating laser pulse, and labeled, P(f), P(s), and P(c). The relative amplitudes and first-order recombination rate constants of P(f) (0.4-0.6; 40-50 s(-1)), P(s) (0.3-0.4; 4 s(-1)), and P(c) (0.1-0.2; 0) are comparable in holo-EAL and in the ternary complex. Time-resolved, full-spectrum electron paramagnetic resonance (EPR) spectroscopy shows that visible irradiation alters neither the kinetics of thermal cob(II)alamin-substrate radical pair formation, nor the equilibrium between ternary complex and cob(II)alamin-substrate radical pair, at 246 K. The results indicate that substrate binding to holo-EAL does not "switch" the protein to a new structural state, which promptly stabilizes the cob(II)alamin-5'-deoxyadenosyl radical pair photoproduct, either through an increased barrier to recombination, a decreased barrier to further radical pair separation, or lowering of the radical pair state free energy, or a combination of these effects. Therefore, we conclude that such a change in protein structure, which is independent of changes in the AdoCbl structure, and specifically the Co-C bond length, is not a basis of Co-C bond cleavage catalysis. The results suggest that, following the substrate trigger, the protein interacts with the cofactor to contiguously guide the cleavage of the Co-C bond, at every step along the cleavage coordinate, starting from the equilibrium configuration of the ternary complex. The cleavage is thus represented by a diagonal trajectory across a free energy surface, that is defined by chemical (Co-C separation) and protein configuration coordinates.
Collapse
Affiliation(s)
| | - Miao Wang
- Department of Physics, Emory University, Atlanta, GA 30322
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA 30322
| |
Collapse
|
10
|
Vey JL, Drennan CL. Structural insights into radical generation by the radical SAM superfamily. Chem Rev 2011; 111:2487-506. [PMID: 21370834 PMCID: PMC5930932 DOI: 10.1021/cr9002616] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jessica L Vey
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
11
|
Tang KH, Mansoorabadi SO, Reed GH, Frey PA. Radical triplets and suicide inhibition in reactions of 4-thia-D- and 4-thia-L-lysine with lysine 5,6-aminomutase. Biochemistry 2009; 48:8151-60. [PMID: 19634897 DOI: 10.1021/bi900828f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysine 5,6-aminomutase (5,6-LAM) catalyzes the interconversions of D- or L-lysine and the corresponding enantiomers of 2,5-diaminohexanoate, as well as the interconversion of L-beta-lysine and l-3,5-diaminohexanoate. The reactions of 5,6-LAM are 5'-deoxyadenosylcobalamin- and pyridoxal-5'-phosphate (PLP)-dependent. Similar to other 5'-deoxyadenosylcobalamin-dependent enzymes, 5,6-LAM is thought to function by a radical mechanism. No free radicals can be detected by electron paramagnetic resonance (EPR) spectroscopy in reactions of 5,6-LAM with D- or L-lysine or with L-beta-lysine. However, the substrate analogues 4-thia-L-lysine and 4-thia-D-lysine undergo early steps in the mechanism to form two radical species that are readily detected by EPR spectroscopy. Cob(II)alamin and 5'-deoxyadenosine derived from 5'-deoxyadenosylcobalamin are also detected. The radicals are proximal to and spin-coupled with low-spin Co(2+) in cob(II)alamin and appear as radical triplets. The radicals are reversibly formed but do not proceed to stable products, so that 4-thia-D- and L-lysine are suicide inhibitors. Inhibition attains equilibrium between the active Michaelis complex and the inhibited radical triplets. The structure of the transient 4-thia-L-lysine radical is analogous to that of the first substrate-related radical in the putative isomerization mechanism. The second, persistent radical is more stable than the transient species and is assigned as a tautomer, in which a C6(H) of the transient radical is transferred to the carboxaldehyde carbon (C4') of PLP. The persistent radical blocks the active site and inhibits the enzyme, but it decomposes very slowly at </=1% of the rate of formation to regenerate the active enzyme. Fundamental differences between reversible suicide inactivation by 4-thia-D- or L-4-lysine and irreversible suicide inactivation by D- or L-lysine are discussed. The observation of the transient radical supports the hypothetical isomerization mechanism.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, Wisconsin 53726, USA
| | | | | | | |
Collapse
|
12
|
Abstract
This chapter reviews the literature on cobalamin- and corrinoid-containing enzymes. These enzymes fall into two broad classes, those using methylcobalamin or related methylcorrinoids as prosthetic groups and catalyzing methyl transfer reactions, and those using adenosylcobalamin as the prosthetic group and catalyzing the generation of substrate radicals that in turn undergo rearrangements and/or eliminations.
Collapse
Affiliation(s)
- Rowena G Matthews
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor MI 48109-2216, USA
| |
Collapse
|
13
|
Pierik AJ, Graf T, Pemberton L, Golding BT, Rétey J. But-3-ene-1,2-diol: A Mechanism-Based Active Site Inhibitor for Coenzyme B12-Dependent Glycerol Dehydratase. Chembiochem 2008; 9:2268-75. [DOI: 10.1002/cbic.200800213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|