1
|
Grifagni D, Doni D, Susini B, Fonseca BM, Louro RO, Costantini P, Ciofi‐Baffoni S. Unraveling the molecular determinants of a rare human mitochondrial disorder caused by the P144L mutation of FDX2. Protein Sci 2024; 33:e5197. [PMID: 39467201 PMCID: PMC11515921 DOI: 10.1002/pro.5197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Episodic mitochondrial myopathy with or without optic atrophy and reversible leukoencephalopathy (MEOAL) is a rare, orphan autosomal recessive disorder caused by mutations in ferredoxin-2 (FDX2), which is a [2Fe-2S] cluster-binding protein participating in the formation of iron-sulfur clusters in mitochondria. In this biosynthetic pathway, FDX2 works as electron donor to promote the assembly of both [2Fe-2S] and [4Fe-4S] clusters. A recently identified missense mutation of MEOAL is the homozygous mutation c.431C>T (p.P144L) described in six patients from two unrelated families. This mutation alters a highly conserved proline residue located in a loop of FDX2 that is distant from the [2Fe-2S] cluster. How this Pro to Leu substitution damages iron-sulfur cluster biosynthesis is unknown. In this work, we have first compared the structural, dynamic, cluster binding and redox properties of WT and P144L [2Fe-2S] FDX2 to have clues on how the pathogenic P144L mutation can perturb the FDX2 function. Then, we have investigated the interaction of both WT and P144L [2Fe-2S] FDX2 with its physiological electron donor, ferredoxin reductase FDXR, comparing their electron transfer efficiency and protein-protein recognition patterns. Overall, the data indicate that the pathogenic P144L mutation negatively affects the FDXR-dependent electron transfer pathway from NADPH to FDX2, thereby reducing the capacity of FDX2 in assembling both [2Fe-2S] and [4Fe-4S] clusters. Our study also provided solid molecular evidences on the functional role of the C-terminal tail of FDX2 in the electron transfer between FDX2 and FDXR.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Davide Doni
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Bianca Susini
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Bruno M. Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | - Ricardo O. Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | | | - Simone Ciofi‐Baffoni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| |
Collapse
|
2
|
Pignatti E, Slone J, Gómez Cano MÁ, Campbell TM, Vu J, Sauter KS, Pandey AV, Martínez-Azorín F, Alonso-Riaño M, Neilson DE, Longo N, du Toit T, Voegel CD, Huang T, Flück CE. FDXR variants cause adrenal insufficiency and atypical sexual development. JCI Insight 2024; 9:e179071. [PMID: 38885337 PMCID: PMC11383170 DOI: 10.1172/jci.insight.179071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Genetic defects affecting steroid biosynthesis cause cortisol deficiency and differences of sex development; among these defects are recessive mutations in the steroidogenic enzymes CYP11A1 and CYP11B, whose function is supported by reducing equivalents donated by ferredoxin reductase (FDXR) and ferredoxin. So far, mutations in the mitochondrial flavoprotein FDXR have been associated with a progressive neuropathic mitochondriopathy named FDXR-related mitochondriopathy (FRM), but cortisol insufficiency has not been documented. However, patients with FRM often experience worsening or demise following stress associated with infections. We investigated 2 female patients with FRM carrying the potentially novel homozygous FDXR mutation p.G437R with ambiguous genitalia at birth and sudden death in the first year of life; they presented with cortisol deficiency and androgen excess compatible with 11-hydroxylase deficiency. In addition, steroidogenic FDXR-variant cell lines reprogrammed from 3 patients with FRM fibroblasts displayed deficient mineralocorticoid and glucocorticoid production. Finally, Fdxr-mutant mice allelic to the severe p.R386W human variant showed reduced progesterone and corticosterone production. Therefore, our comprehensive studies show that human FDXR variants may cause compensated but possibly life-threatening adrenocortical insufficiency in stress by affecting adrenal glucocorticoid and mineralocorticoid synthesis through direct enzyme inhibition, most likely in combination with disturbed mitochondrial redox balance.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Jesse Slone
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - María Ángeles Gómez Cano
- Department of Pediatrics, Endocrinology Unit, and
- Unidad de Dismorfología y Genética (UDISGEN), 12 de Octubre University Hospital, Madrid, Spain
| | - Teresa Margaret Campbell
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jimmy Vu
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Kay-Sara Sauter
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (imas12), E-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain
| | | | - Derek E Neilson
- Division of Genetics and Metabolism, Department of Child Health, The University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Therina du Toit
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clarissa D Voegel
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Taosheng Huang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
4
|
Orton H, Abdelkader E, Topping L, Butler S, Otting G. Localising nuclear spins by pseudocontact shifts from a single tagging site. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:65-76. [PMID: 37905181 PMCID: PMC10539793 DOI: 10.5194/mr-3-65-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/18/2022] [Indexed: 11/01/2023]
Abstract
Ligating a protein at a specific site with a tag molecule containing a paramagnetic metal ion provides a versatile way of generating pseudocontact shifts (PCSs) in nuclear magnetic resonance (NMR) spectra. PCSs can be observed for nuclear spins far from the tagging site, and PCSs generated from multiple tagging sites have been shown to enable highly accurate structure determinations at specific sites of interest, even when using flexible tags, provided the fitted effective magnetic susceptibility anisotropy (Δ χ ) tensors accurately back-calculate the experimental PCSs measured in the immediate vicinity of the site of interest. The present work investigates the situation where only the local structure of a protein region or bound ligand is to be determined rather than the structure of the entire molecular system. In this case, the need for gathering structural information from tags deployed at multiple sites may be queried. Our study presents a computational simulation of the structural information available from samples produced with single tags attached at up to six different sites, up to six different tags attached to a single site, and in-between scenarios. The results indicate that the number of tags is more important than the number of tagging sites. This has important practical implications, as it is much easier to identify a single site that is suitable for tagging than multiple ones. In an initial experimental demonstration with the ubiquitin mutant S57C, PCSs generated with four different tags at a single site are shown to accurately pinpoint the location of amide protons in different segments of the protein.
Collapse
Affiliation(s)
- Henry W. Orton
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lydia Topping
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Tsg101/ESCRT-I recruitment regulated by the dual binding modes of K63-linked diubiquitin. Structure 2022; 30:289-299.e6. [PMID: 35120596 PMCID: PMC10015442 DOI: 10.1016/j.str.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
The ESCRT-I protein Tsg101 plays a critical role in viral budding and endocytic sorting. Although Tsg101 is known to recognize monoubiquitin (Ub1), here we show that it can also bind several diubiquitins (K48-Ub2, N-Ub2, and K63-Ub2), with a preference for K63-linked Ub2. The NMR structure of the Tsg101:K63-Ub2 complex showed that while the Ub1-binding site accommodates the distal domain of Ub2, the proximal domain alternatively binds two different sites, the vestigial active site and an N-terminal helix. Mutation of each site results in distinct phenotypes regarding the recruitment of Tsg101 partners. Mutation in the vestigial active site abrogates interaction between Tsg101 and the HIV-1 protein Gag but not Hrs, a cellular protein. Mutation at the N-terminal helix alters Gag but not Hrs-Tsg101 localization. Given the broad involvement of Tsg101 in diverse cellular functions, this discovery advances our understanding of how the ESCRT protein recognizes binding partners and sorts endocytic cargo.
Collapse
|
6
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Orton H, Herath I, Maleckis A, Jabar S, Szabo M, Graham B, Breen C, Topping L, Butler S, Otting G. Localising individual atoms of tryptophan side chains in the metallo- β-lactamase IMP-1 by pseudocontact shifts from paramagnetic lanthanoid tags at multiple sites. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:1-13. [PMID: 37905175 PMCID: PMC10583275 DOI: 10.5194/mr-3-1-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 11/01/2023]
Abstract
The metallo-β -lactamase IMP-1 features a flexible loop near the active site that assumes different conformations in single crystal structures, which may assist in substrate binding and enzymatic activity. To probe the position of this loop, we labelled the tryptophan residues of IMP-1 with 7-13 C-indole and the protein with lanthanoid tags at three different sites. The magnetic susceptibility anisotropy (Δ χ ) tensors were determined by measuring pseudocontact shifts (PCSs) of backbone amide protons. The Δ χ tensors were subsequently used to identify the atomic coordinates of the tryptophan side chains in the protein. The PCSs were sufficient to determine the location of Trp28, which is in the active site loop targeted by our experiments, with high accuracy. Its average atomic coordinates showed barely significant changes in response to the inhibitor captopril. It was found that localisation spaces could be defined with better accuracy by including only the PCSs of a single paramagnetic lanthanoid ion for each tag and tagging site. The effect was attributed to the shallow angle with which PCS isosurfaces tend to intersect if generated by tags and tagging sites that are identical except for the paramagnetic lanthanoid ion.
Collapse
Affiliation(s)
- Henry W. Orton
- ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
| | - Iresha D. Herath
- Research School of Chemistry, The Australian National University,
Sullivans Creek Road, Canberra ACT 2601, Australia
| | - Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga,
Latvia
| | - Shereen Jabar
- Research School of Chemistry, The Australian National University,
Sullivans Creek Road, Canberra ACT 2601, Australia
| | - Monika Szabo
- Monash Institute of Pharmaceutical Sciences, Monash University,
Parkville, VIC 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University,
Parkville, VIC 3052, Australia
| | - Colum Breen
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Lydia Topping
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Saio T, Hiramatsu S, Asada M, Nakagawa H, Shimizu K, Kumeta H, Nakamura T, Ishimori K. Conformational ensemble of a multidomain protein explored by Gd 3+ electron paramagnetic resonance. Biophys J 2021; 120:2943-2951. [PMID: 34242587 DOI: 10.1016/j.bpj.2021.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
Abstract
Despite their importance in function, the conformational state of proteins and its changes are often poorly understood, mainly because of the lack of an efficient tool. MurD, a 47-kDa protein enzyme responsible for peptidoglycan biosynthesis, is one of those proteins whose conformational states and changes during their catalytic cycle are not well understood. Although it has been considered that MurD takes a single conformational state in solution as shown by a crystal structure, the solution nuclear magnetic resonance (NMR) study suggested the existence of multiple conformational state of apo MurD in solution. However, the conformational distribution has not been evaluated. In this work, we investigate the conformational states of MurD by the use of electron paramagnetic resonance (EPR), especially intergadolinium distance measurement using double electron-electron resonance (DEER) measurement. The gadolinium ions are fixed on specific positions on MurD via a rigid double-arm paramagnetic lanthanide tag that has been originally developed for paramagnetic NMR. The combined use of NMR and EPR enables accurate interpretation of the DEER distance information to the structural information of MurD. The DEER distance measurement for apo MurD shows a broad distance distribution, whereas the presence of the inhibitor narrows the distance distribution. The results suggest that MurD exists in a wide variety of conformational states in the absence of ligands, whereas binding of the inhibitor eliminates variation in conformational states. The multiple conformational states of MurD were previously implied by NMR experiments, but our DEER data provided structural characterization of the conformational variety of MurD.
Collapse
Affiliation(s)
- Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| | - Soya Hiramatsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Mizue Asada
- Instrument Center, Institute for Molecular Science, Okazaki, Japan
| | - Hiroshi Nakagawa
- Materials Sciences Research CenterTokai, Ibaraki, Japan; J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Kazumi Shimizu
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | | | | | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
9
|
Bernhardt R, Neunzig J. Underestimated reactions and regulation patterns of adrenal cytochromes P450. Mol Cell Endocrinol 2021; 530:111237. [PMID: 33722664 DOI: 10.1016/j.mce.2021.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
Although cytochrome P450 (CYP) systems including the adrenal ones are being investigated since many years, there are still reactions and regulation patterns that have been underestimated ever since. This review discusses neglected ones to bring them into the focus of investigators working in the field. Novel substrates and reactions described for adrenal CYPs recently point to the fact that different from what has been believed for many years, adrenal CYPs are less selective than previously thought. The conversion of steroid sulfates, intermediates of steroid biosynthesis as well as of exogenous compounds are being discussed here in more detail and consequences for further studies are drawn. Furthermore, it was shown that protein-protein interactions may have an important effect not only on the activity of adrenal CYPs, but also on the product pattern of the reactions. It was found that, as expected, the stoichiometry of CYP:redox partner plays an important role for tuning the activity. In addition, competition between different CYPs for the redox partner and for electrons and possible alterations by mutants in the efficiency of electron transfer play an important role for the activity and product pattern. Moreover, the influence of phosphorylation and small charged molecules like natural polyamines on the activity of adrenal systems has been demonstrated in-vitro indicating a possible regulation of adrenal CYP reactions by affecting redox partner recognition and binding affinity. Finally, an effect of the genetic background on the consequences of mutations in adrenal CYPs found in patients was suggested from corresponding in-vitro studies indicating that a different genetic background might be able to significantly affect the activity of a CYP mutant.
Collapse
Affiliation(s)
- Rita Bernhardt
- Department of Biochemistry, Campus B2.2, Saarland University, D-66123, Saarbrücken, Germany.
| | - Jens Neunzig
- Institute of Molecular Plant Biology, Campus A2.4, Saarland University, D-66123, Saarbrücken, Germany
| |
Collapse
|
10
|
Redox Partners: Function Modulators of Bacterial P450 Enzymes. Trends Microbiol 2020; 28:445-454. [DOI: 10.1016/j.tim.2020.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 01/25/2023]
|
11
|
Accelerating structural life science by paramagnetic lanthanide probe methods. Biochim Biophys Acta Gen Subj 2020; 1864:129332. [DOI: 10.1016/j.bbagen.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
|
12
|
Joss D, Häussinger D. Design and applications of lanthanide chelating tags for pseudocontact shift NMR spectroscopy with biomacromolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:284-312. [PMID: 31779884 DOI: 10.1016/j.pnmrs.2019.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 05/14/2023]
Abstract
In this review, lanthanide chelating tags and their applications to pseudocontact shift NMR spectroscopy as well as analysis of residual dipolar couplings are covered. A complete overview is presented of DOTA-derived and non-DOTA-derived lanthanide chelating tags, critical points in the design of lanthanide chelating tags as appropriate linker moieties, their stability under reductive conditions, e.g., for in-cell applications, the magnitude of the anisotropy transferred from the lanthanide chelating tag to the biomacromolecule under investigation and structural properties, as well as conformational bias of the lanthanide chelating tags are discussed. Furthermore, all DOTA-derived lanthanide chelating tags used for PCS NMR spectroscopy published to date are displayed in tabular form, including their anisotropy parameters, with all employed lanthanide ions, CB-Ln distances and tagging reaction conditions, i.e., the stoichiometry of lanthanide chelating tags, pH, buffer composition, temperature and reaction time. Additionally, applications of lanthanide chelating tags for pseudocontact shifts and residual dipolar couplings that have been reported for proteins, protein-protein and protein-ligand complexes, carbohydrates, carbohydrate-protein complexes, nucleic acids and nucleic acid-protein complexes are presented and critically reviewed. The vast and impressive range of applications of lanthanide chelating tags to structural investigations of biomacromolecules in solution clearly illustrates the significance of this particular field of research. The extension of the repertoire of lanthanide chelating tags from proteins to nucleic acids holds great promise for the determination of valuable structural parameters and further developments in characterizing intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Joss
- University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | | |
Collapse
|
13
|
Strickland M, Catazaro J, Rajasekaran R, Strub MP, O'Hern C, Bermejo GA, Summers MF, Marchant J, Tjandra N. Long-Range RNA Structural Information via a Paramagnetically Tagged Reporter Protein. J Am Chem Soc 2019; 141:1430-1434. [PMID: 30652860 DOI: 10.1021/jacs.8b11384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NMR has provided a wealth of structural and dynamical information for RNA molecules of up to ∼50 nucleotides, but its application to larger RNAs has been hampered in part by difficulties establishing global structural features. A potential solution involves measurement of NMR perturbations after site-specific paramagnetic labeling. Although the approach works well for proteins, the inability to place the label at specific sites has prevented its application to larger RNAs transcribed in vitro. Here, we present a strategy in which RNA loop residues are modified to promote binding to a paramagnetically tagged reporter protein. Lanthanide-induced pseudocontact shifts are demonstrated for a 232-nucleotide RNA bound to tagged derivatives of the spliceosomal U1A RNA-binding domain. Further, the method is validated with a 36-nucleotide RNA for which measured NMR values agreed with predictions based on the previously known protein and RNA structures. The ability to readily insert U1A binding sites into ubiquitous hairpin and/or loop structures should make this approach broadly applicable for the atomic-level study of large RNAs.
Collapse
Affiliation(s)
- Madeleine Strickland
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | - Rohith Rajasekaran
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Marie-Paule Strub
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | - Guillermo A Bermejo
- Office of Intramural Research, Center for Information Technology, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | | | - Nico Tjandra
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
14
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|
15
|
Banci L, Camponeschi F, Ciofi-Baffoni S, Piccioli M. The NMR contribution to protein-protein networking in Fe-S protein maturation. J Biol Inorg Chem 2018; 23:665-685. [PMID: 29569085 PMCID: PMC6006191 DOI: 10.1007/s00775-018-1552-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Iron–sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe–S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe–2S], [3Fe–4S] and [4Fe–4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe–S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe–S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of “Fe–S interactomics”. This contribution was particularly effective when protein–protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| | - Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
16
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
17
|
Khalil M, Bernhardt R, Hellwig P. Raman and infrared spectroscopic evidence for the structural changes of the 2Fe2S cluster and its environment during the interaction of adrenodoxin and adrenodoxin reductase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:298-305. [PMID: 28458234 DOI: 10.1016/j.saa.2017.04.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Many biological functions involve the formation of protein-protein complexes. In the present study, we investigated the interaction of two proteins involved in electron transfer, adrenodoxin (Adx) and adrenodoxin reductase (AdR) by using Raman and infrared spectroscopies. Different shifts and splittings of the FeSb/t stretching vibrational modes upon interaction of the two proteins can be reported pointing towards major structural changes in the [2Fe2S] cluster. These changes may be necessary for optimizing electron transfer. The assignment of the shifted modes to the [2Fe2S] cluster was confirmed by 54Fe labeling of the truncated Adx (4-108) as well as the investigation of mutants close to the interaction site and in the vicinity of the [2Fe2S] cluster. Electrochemically induced FTIR difference spectra revealed that the flavin cofactor in AdR also changes due to the interaction with [2Fe2S] cluster in the Adx/AdR electron transfer complex.
Collapse
Affiliation(s)
- Mireille Khalil
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140 CNRS Université de Strasbourg, 4 Rue Blaise Pascal, 67081, France
| | - Rita Bernhardt
- Saarland University, Institute of Biochemistry, Campus B2.2, 66123 Saarbrücken, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140 CNRS Université de Strasbourg, 4 Rue Blaise Pascal, 67081, France.
| |
Collapse
|
18
|
Nitsche C, Otting G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:20-49. [PMID: 28283085 DOI: 10.1016/j.pnmrs.2016.11.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Affiliation(s)
- Christoph Nitsche
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia. http://www.rsc.anu.edu.au/~go/index.html
| |
Collapse
|
19
|
Abstract
Computational modeling of proteins using evolutionary or de novo approaches offers rapid structural characterization, but often suffers from low success rates in generating high quality models comparable to the accuracy of structures observed in X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. A computational/experimental hybrid approach incorporating sparse experimental restraints in computational modeling algorithms drastically improves reliability and accuracy of 3D models. This chapter discusses the use of structural information obtained from various paramagnetic NMR measurements and demonstrates computational algorithms implementing pseudocontact shifts as restraints to determine the structure of proteins at atomic resolution.
Collapse
|
20
|
Hikone Y, Hirai G, Mishima M, Inomata K, Ikeya T, Arai S, Shirakawa M, Sodeoka M, Ito Y. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells. JOURNAL OF BIOMOLECULAR NMR 2016; 66:99-110. [PMID: 27631409 DOI: 10.1007/s10858-016-0059-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/02/2016] [Indexed: 05/14/2023]
Abstract
Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N-H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.
Collapse
Affiliation(s)
- Yuya Hikone
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Masaki Mishima
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kohsuke Inomata
- Quantitative Biology Center, RIKEN, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, 230-0045, Japan
- PRESTO/Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Teppei Ikeya
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Souichiro Arai
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masahiro Shirakawa
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
21
|
Kubeil C, Yeung JCI, Tuckey RC, Rodgers RJ, Martin LL. Membrane‐Mediated Protein–Protein Interactions of Cholesterol Side‐Chain Cleavage Cytochrome P450 with its Associated Electron Transport Proteins. Chempluschem 2016; 81:995-1002. [DOI: 10.1002/cplu.201600272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Clemens Kubeil
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | | | - Robert C. Tuckey
- School of Chemistry and Biochemistry The University of Western Australia Western Australia 6009 Australia
| | - Raymond J. Rodgers
- School of Medicine Robinson Research Institute University of Adelaide Adelaide South Australia 5005 Australia
| | | |
Collapse
|
22
|
Chen WN, Nitsche C, Pilla KB, Graham B, Huber T, Klein CD, Otting G. Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets. J Am Chem Soc 2016; 138:4539-46. [PMID: 26974502 DOI: 10.1021/jacs.6b00416] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-guided drug design relies on detailed structural knowledge of protein-ligand complexes, but crystallization of cocomplexes is not always possible. Here we present a sensitive nuclear magnetic resonance (NMR) approach to determine the binding mode of tightly binding lead compounds in complex with difficult target proteins. In contrast to established NMR methods, it does not depend on rapid exchange between bound and free ligand or on stable isotope labeling, relying instead on a tert-butyl group as a chemical label. tert-Butyl groups are found in numerous protein ligands and deliver an exceptionally narrow and tall (1)H NMR signal. We show that a tert-butyl group also produces outstandingly intense intra- and intermolecular NOESY cross-peaks. These enable measurements of pseudocontact shifts generated by lanthanide tags attached to the protein, which in turn allows positioning of the ligand on the protein. Once the ligand has been located, assignments of intermolecular NOEs become possible even without prior resonance assignments of protein side chains. The approach is demonstrated with the dengue virus NS2B-NS3 protease in complex with a high-affinity ligand containing a tert-butyl group.
Collapse
Affiliation(s)
- Wan-Na Chen
- Australian National University , Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Australian National University , Research School of Chemistry, Canberra, ACT 2601, Australia.,Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Kala Bharath Pilla
- Australian National University , Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Thomas Huber
- Australian National University , Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Gottfried Otting
- Australian National University , Research School of Chemistry, Canberra, ACT 2601, Australia
| |
Collapse
|
23
|
Castro G, Regueiro-Figueroa M, Esteban-Gómez D, Pérez-Lourido P, Platas-Iglesias C, Valencia L. Magnetic Anisotropies in Rhombic Lanthanide(III) Complexes Do Not Conform to Bleaney’s Theory. Inorg Chem 2016; 55:3490-7. [DOI: 10.1021/acs.inorgchem.5b02918] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Goretti Castro
- Departamento de Química Inorgánica,
Facultad de Ciencias, Universidade de Vigo, As Lagoas, Pontevedra, Marcosende 36310, Spain
| | - Martín Regueiro-Figueroa
- Centro
de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - David Esteban-Gómez
- Centro
de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica,
Facultad de Ciencias, Universidade de Vigo, As Lagoas, Pontevedra, Marcosende 36310, Spain
| | - Carlos Platas-Iglesias
- Centro
de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Laura Valencia
- Departamento de Química Inorgánica,
Facultad de Ciencias, Universidade de Vigo, As Lagoas, Pontevedra, Marcosende 36310, Spain
| |
Collapse
|
24
|
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences (W.L.M.), University of California, San Francisco, California 94143-0556; and Institute of Molecular Biology Academia Sinica (B.-c.C.), Taipei, 115 Taiwan
| | - Bon-Chu Chung
- Center for Reproductive Sciences (W.L.M.), University of California, San Francisco, California 94143-0556; and Institute of Molecular Biology Academia Sinica (B.-c.C.), Taipei, 115 Taiwan
| |
Collapse
|
25
|
Abstract
The energy landscapes of proteins are highly complex and can be influenced by changes in physical and chemical conditions under which the protein is studied. The redox enzyme cytochrome P450cam undergoes a multistep catalytic cycle wherein two electrons are transferred to the heme group and the enzyme visits several conformational states. Using paramagnetic NMR spectroscopy with a lanthanoid tag, we show that the enzyme bound to its redox partner, putidaredoxin, is in a closed state at ambient temperature in solution. This result contrasts with recent crystal structures of the complex, which suggest that the enzyme opens up when bound to its partner. The closed state supports a model of catalysis in which the substrate is locked in the active site pocket and the enzyme acts as an insulator for the reactive intermediates of the reaction.
Collapse
|
26
|
Lee MD, Loh CT, Shin J, Chhabra S, Dennis ML, Otting G, Swarbrick JD, Graham B. Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy. Chem Sci 2015; 6:2614-2624. [PMID: 29560247 PMCID: PMC5812434 DOI: 10.1039/c4sc03892d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/25/2015] [Indexed: 01/18/2023] Open
Abstract
The design, synthesis and evaluation of four novel lanthanide-binding tags for paramagnetic NMR spectroscopy are reported.
The design, synthesis and evaluation of four novel lanthanide-binding tags for paramagnetic NMR spectroscopy are reported. Each tag is based on the ((2S,2′S,2′′S,2′′′S)-1,1′,1′′,1′′′-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(propan-2-ol)) scaffold, featuring small chiral alcohol coordinating pendants to minimise the size and hydrophobic character of each tag. The tags feature different linkers of variable length for conjugation to protein via a single cysteine residue. Each tag's ability to induce pseudocontact shifts (PCS) was assessed on a ubiquitin A28C mutant. Two enantiomeric tags of particular note, C7 and C8, produced significantly larger Δχ-tensors compared to a previously developed tag, C1, attributed to the extremely short linker utilised, limiting the mobility of the bound lanthanide ion. The C7 and C8 tags' capacity to induce PCSs was further demonstrated on GB1 Q32C and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) S112C/C80A mutants. Whilst factors such as the choice of lanthanide ion, pH and site of conjugation influence the size of the PCSs obtained, the tags represent a significant advance in the field.
Collapse
Affiliation(s)
- M D Lee
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - C-T Loh
- Research School of Chemistry , Australian National University , Canberra , ACT 0200 , Australia
| | - J Shin
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - S Chhabra
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - M L Dennis
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - G Otting
- Research School of Chemistry , Australian National University , Canberra , ACT 0200 , Australia
| | - J D Swarbrick
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - B Graham
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| |
Collapse
|
27
|
Hass MAS, Liu WM, Agafonov RV, Otten R, Phung LA, Schilder JT, Kern D, Ubbink M. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2015; 61:123-136. [PMID: 25563704 DOI: 10.1007/s10858-014-9894-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements.
Collapse
Affiliation(s)
- Mathias A S Hass
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Camacho-Zarco AR, Munari F, Wegstroth M, Liu WM, Ubbink M, Becker S, Zweckstetter M. Multiple paramagnetic effects through a tagged reporter protein. Angew Chem Int Ed Engl 2014; 54:336-9. [PMID: 25293958 DOI: 10.1002/anie.201408615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 11/12/2022]
Abstract
Paramagnetic effects provide unique information about the structure and dynamics of biomolecules. We developed a method in which the lanthanoid tag is not directly attached to the protein of interest, but instead to a "reporter" protein, which binds and then transmits paramagnetic information to the target. The designed method allows access to a large number of paramagnetic restraints and residual dipolar couplings produced from independent molecular alignments in high-molecular-weight proteins with unknown 3D structure.
Collapse
Affiliation(s)
- Aldo R Camacho-Zarco
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany); German Center for Neurodegenerative Diseases (DZNE), Göttingen (Germany); Center for the Molecular Physiology of the Brain, University Medical Center, Göttingen (Germany)
| | | | | | | | | | | | | |
Collapse
|
29
|
Camacho‐Zarco AR, Munari F, Wegstroth M, Liu W, Ubbink M, Becker S, Zweckstetter M. Paramagnetische Effekte mittels eines markierten Reporterproteins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aldo R. Camacho‐Zarco
- Max‐Planck‐Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Deutschland)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Deutschland)
- Center for the Molecular Physiology of the Brain, Universitätsmedizin, Göttingen (Deutschland)
| | - Francesca Munari
- Max‐Planck‐Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Deutschland)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Deutschland)
- Center for the Molecular Physiology of the Brain, Universitätsmedizin, Göttingen (Deutschland)
| | - Melanie Wegstroth
- Max‐Planck‐Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Deutschland)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Deutschland)
- Center for the Molecular Physiology of the Brain, Universitätsmedizin, Göttingen (Deutschland)
| | - Wei‐Min Liu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Niederlande)
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Niederlande)
| | - Stefan Becker
- Max‐Planck‐Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Deutschland)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Deutschland)
- Center for the Molecular Physiology of the Brain, Universitätsmedizin, Göttingen (Deutschland)
| | - Markus Zweckstetter
- Max‐Planck‐Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Deutschland)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Deutschland)
- Center for the Molecular Physiology of the Brain, Universitätsmedizin, Göttingen (Deutschland)
| |
Collapse
|
30
|
Martins AF, Eliseeva SV, Carvalho HF, Teixeira JMC, Paula CTB, Hermann P, Platas-Iglesias C, Petoud S, Tóth E, Geraldes CFGC. A bis(pyridine N-oxide) analogue of DOTA: relaxometric properties of the Gd(III) complex and efficient sensitization of visible and NIR-emitting lanthanide(III) cations including Pr(III) and Ho(III). Chemistry 2014; 20:14834-45. [PMID: 25236257 DOI: 10.1002/chem.201403856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 11/07/2022]
Abstract
We report the synthesis of a cyclen-based ligand (4,10-bis[(1-oxidopyridin-2-yl)methyl]-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid=L1) containing two acetate and two 2-methylpyridine N-oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the Gd(III) complex may be sufficient for biological applications. A detailed structural study of the complexes by (1) H NMR spectroscopy and DFT calculations indicates that they adopt an anti-Δ(λλλλ) conformation in aqueous solution, that is, an anti-square antiprismatic (anti-SAP) isomeric form, as demonstrated by analysis of the (1) H NMR paramagnetic shifts induced by Yb(III) . The water-exchange rate of the Gd(III) complex is ${k{{298\hfill \atop {\rm ex}\hfill}}}$=6.7×10(6) s(-1) , about a quarter of that for the mono-oxidopyridine analogue, but still about 50 % higher than the ${k{{298\hfill \atop {\rm ex}\hfill}}}$ of GdDOTA (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). The 2-methylpyridine N-oxide chromophores can be used to sensitize a wide range of Ln(III) ions emitting in both the visible (Eu(III) and Tb(III) ) and NIR (Pr(III) , Nd(III) , Ho(III) , Yb(III) ) spectral regions. The emission quantum yield determined for the Yb(III) complex (${Q{{{\rm L}\hfill \atop {\rm Yb}\hfill}}}$=7.3(1)×10(-3) ) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.
Collapse
Affiliation(s)
- André F Martins
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, P. O. Box 3046, 3001-401 Coimbra (Portugal); Coimbra Chemistry Center, Rua Larga, University of Coimbra, 3004-535 Coimbra (Portugal); Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Liu W, Skinner SP, Timmer M, Blok A, Hass MAS, Filippov DV, Overhand M, Ubbink M. A Two‐Armed Lanthanoid‐Chelating Paramagnetic NMR Probe Linked to Proteins via Thioether Linkages. Chemistry 2014; 20:6256-8. [DOI: 10.1002/chem.201400257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Wei‐Min Liu
- Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden (The Netherlands)
| | - Simon P. Skinner
- Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden (The Netherlands)
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden (The Netherlands)
| | - Anneloes Blok
- Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden (The Netherlands)
| | - Mathias A. S. Hass
- Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden (The Netherlands)
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden (The Netherlands)
| | - Mark Overhand
- Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden (The Netherlands)
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden (The Netherlands)
| |
Collapse
|
33
|
van Ingen H, Bonvin AMJJ. Information-driven modeling of large macromolecular assemblies using NMR data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:103-114. [PMID: 24656083 DOI: 10.1016/j.jmr.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/25/2013] [Indexed: 06/03/2023]
Abstract
Availability of high-resolution atomic structures is one of the prerequisites for a mechanistic understanding of biomolecular function. This atomic information can, however, be difficult to acquire for interesting systems such as high molecular weight and multi-subunit complexes. For these, low-resolution and/or sparse data from a variety of sources including NMR are often available to define the interaction between the subunits. To make best use of all the available information and shed light on these challenging systems, integrative computational tools are required that can judiciously combine and accurately translate the sparse experimental data into structural information. In this Perspective we discuss NMR techniques and data sources available for the modeling of large and multi-subunit complexes. Recent developments are illustrated by particularly challenging application examples taken from the literature. Within this context, we also position our data-driven docking approach, HADDOCK, which can integrate a variety of information sources to drive the modeling of biomolecular complexes. It is the synergy between experimentation and computational modeling that will provides us with detailed views on the machinery of life and lead to a mechanistic understanding of biomolecular function.
Collapse
Affiliation(s)
- Hugo van Ingen
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Faculty of Science - Chemistry, Padulaan 8, 3854 CH Utrecht, The Netherlands.
| | - Alexandre M J J Bonvin
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Faculty of Science - Chemistry, Padulaan 8, 3854 CH Utrecht, The Netherlands.
| |
Collapse
|
34
|
Gu XH, Gong Z, Guo DC, Zhang WP, Tang C. A decadentate Gd(III)-coordinating paramagnetic cosolvent for protein relaxation enhancement measurement. JOURNAL OF BIOMOLECULAR NMR 2014; 58:149-54. [PMID: 24510274 DOI: 10.1007/s10858-014-9817-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/31/2014] [Indexed: 05/26/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) arises from random collisions between paramagnetic cosolvent and protein of interest. The sPRE can be readily measured, affording protein structure information. However, lack of an inert cosolvent probe may yield sPRE values that are not consistent with protein structure. Here we synthesized a new sPRE probe, triethylenetetraamine hexaacetate trimethylamide gadolinium, or Gd(III)-TTHA-TMA. With a total of 10 coordination sites, this paramagnetic cosovlent eliminates an inner-sphere water molecule that can otherwise transfer relaxation to protein through exchange. With the metal ion centered, the new probe is largely spherical with a radius of 4.0 Å, permitting accurate back calculation of sPRE. The effectiveness Gd(III)-TTHA-TMA as a sPRE probe was demonstrated on three well-studied protein systems.
Collapse
Affiliation(s)
- Xin-Hua Gu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics and Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, Hubei Province, China
| | | | | | | | | |
Collapse
|
35
|
Hass MAS, Ubbink M. Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr Opin Struct Biol 2014; 24:45-53. [DOI: 10.1016/j.sbi.2013.11.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
|
36
|
Abstract
(1)H-, (11)B-, (13)C-, (15)N-, (17)O-, (19)F-, and (31)P-NMR chemical shifts of flavocoenzymes and derivatives of it, as well as of alloxazines and isoalloxazinium salts, from NMR experiments performed under various experimental conditions (e.g., dependence of the chemical shifts on temperature, concentration, solvent polarity, and pH) are reported. Also solid-state (13)C- and (15)N-NMR experiments are described revealing the anisotropic values of corresponding chemical shifts. These data, in combination with a number of coupling constants, led to a detailed description of the electronic structure of oxidized and reduced flavins. The data also demonstrate that the structure of oxidized flavin can assume a configuration deviating from coplanarity, depending on substitutions in the isoalloxazine ring, while that of reduced flavin exhibits several configurations, from almost planar to quite bended. The complexes formed between oxidized flavin and metal ions or organic molecules revealed three coordination sites with metal ions (depending on the chemical nature of the ion), and specific interactions between the pyrimidine moiety of flavin and organic molecules, mimicking specific interactions between apoflavoproteins and their coenzymes. Most NMR studies on flavoproteins were performed using (13)C- and (15)N-substituted coenzymes, either specifically enriched in the pterin moiety of flavin or uniformly labeled flavins. The chemical shifts of free flavins are used as a guide in the interpretation of the chemical shifts observed in flavoproteins. Although the hydrogen-bonding pattern in oxidized and reduced flavoproteins varies considerably, no correlation is obvious between these patterns and the corresponding redox potentials. In all reduced flavoproteins the N(1)H group of the flavocoenzyme is deprotonated, an exception is thioredoxin reductase. Three-dimensional structures of only a few flavoproteins, mostly belonging to the family of flavodoxins, have been solved. Also the kinetics of unfolding and refolding of flavodoxins has been investigated by NMR techniques. In addition, (31)P-NMR data of all so far studied flavoproteins and some (19)F-NMR spectra are discussed.
Collapse
Affiliation(s)
- Franz Müller
- , Wylstrasse 13, CH-6052, Hergiswil, Switzerland,
| |
Collapse
|
37
|
Shishmarev D, Otting G. How reliable are pseudocontact shifts induced in proteins and ligands by mobile paramagnetic metal tags? A modelling study. JOURNAL OF BIOMOLECULAR NMR 2013; 56:203-16. [PMID: 23652856 DOI: 10.1007/s10858-013-9738-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/27/2013] [Indexed: 05/20/2023]
Abstract
The anisotropic component of the magnetic susceptibility tensor (Δχ tensor) associated with various paramagnetic metal ions can induce pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) in proteins, yielding valuable restraints in structural studies. In particular, PCSs have successfully been used to study ligands that bind to proteins tagged with a paramagnetic metal ion, which is of great interest in fragment-based drug design. To create easy-to-interpret PCSs, the metal ion must be attached to the protein in a rigid manner. Most of the existing methods for site-specific attachment of a metal tag, however, result in tethers with residual flexibility. Here we present model calculations to quantify the extent, to which mobility of the metal-binding tag can compromise the quality of the Δχ tensor that can be determined from the PCSs observed in the protein. Assuming that the protein can be approximated by a sphere and the tag is attached by a single tether, the results show that a single effective ∆χ tensor can describe the PCSs and RDCs of the protein spins very well even in the presence of substantial tag mobility, implying that PCSs of ligands in binding pockets of the protein can be predicted with similar accuracy. In contrast, the quality of the PCS prediction for nuclear spins positioned above the surface of the protein is significantly poorer, with implications for studies of protein-protein complexes. The simulations probed the sensitivity of the effective Δχ tensor to different parameters, including length of the tether between protein and metal ion, protein size, type and amplitude of tag motion, tensor orientation relative to the protein and direction of tag motion. Tether length and amplitude of motion were identified as two key parameters. It is shown that the amplitude of tag motions cannot be quantified by simple comparisons of the effective Δχ tensor with the alignment tensor determined from RDCs.
Collapse
Affiliation(s)
- Dmitry Shishmarev
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | | |
Collapse
|
38
|
Skinner SP, Moshev M, Hass MAS, Keizers PHJ, Ubbink M. PARAssign--paramagnetic NMR assignments of protein nuclei on the basis of pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2013; 55:379-89. [PMID: 23526169 DOI: 10.1007/s10858-013-9722-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/14/2013] [Indexed: 05/07/2023]
Abstract
The use of paramagnetic NMR data for the refinement of structures of proteins and protein complexes is widespread. However, the power of paramagnetism for protein assignment has not yet been fully exploited. PARAssign is software that uses pseudocontact shift data derived from several paramagnetic centers attached to the protein to obtain amide and methyl assignments. The ability of PARAssign to perform assignment when the positions of the paramagnetic centers are known and unknown is demonstrated. PARAssign has been tested using synthetic data for methyl assignment of a 47 kDa protein, and using both synthetic and experimental data for amide assignment of a 14 kDa protein. The complex fitting space involved in such an assignment procedure necessitates that good starting conditions are found, both regarding placement and strength of paramagnetic centers. These starting conditions are obtained through automated tensor placement and user-defined tensor parameters. The results presented herein demonstrate that PARAssign is able to successfully perform resonance assignment in large systems with a high degree of reliability. This software provides a method for obtaining the assignments of large systems, which may previously have been unassignable, by using 2D NMR spectral data and a known protein structure.
Collapse
Affiliation(s)
- Simon P Skinner
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Yagi H, Maleckis A, Otting G. A systematic study of labelling an α-helix in a protein with a lanthanide using IDA-SH or NTA-SH tags. JOURNAL OF BIOMOLECULAR NMR 2013; 55:157-166. [PMID: 23263916 DOI: 10.1007/s10858-012-9697-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
The previously published IDA-SH and NTA-SH tags are small synthetic lanthanide-binding tags derived from cysteine, which afford site-specific lanthanide labelling by disulfide-bond formation with a cysteine residue of the target protein. Following attachment to a single cysteine in an α-helix, sizeable pseudocontact shifts (PCS) can be observed, if the lanthanide is immobilized by additional coordination to a negatively charged amino-acid side chain that is located in a neighboring turn of the helix. To identify the best labelling strategy for PCS measurements, we performed a systematic study, where IDA-SH or NTA-SH tags were ligated to a cysteine residue in position i of an α-helix, and aspartate or glutamate residues were placed in the positions i - 4 or i + 4. The largest anisotropy components of the magnetic susceptibility tensor were observed for an NTA-SH tag in position i with a glutamate residue in position i - 4. While the NTA-SH tag produced sizeable PCSs regardless of the presence of nearby carboxyl groups of the protein, the IDA-SH tag generated a good lanthanide binding site only if an aspartate was placed in position i + 4. The findings provide a firm basis for the design of site-directed mutants that are suitable for the reliable generation of PCSs in proteins with paramagnetic lanthanides.
Collapse
Affiliation(s)
- Hiromasa Yagi
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | | | | |
Collapse
|
40
|
Loh CT, Ozawa K, Tuck KL, Barlow N, Huber T, Otting G, Graham B. Lanthanide Tags for Site-Specific Ligation to an Unnatural Amino Acid and Generation of Pseudocontact Shifts in Proteins. Bioconjug Chem 2013; 24:260-8. [DOI: 10.1021/bc300631z] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Choy Theng Loh
- Research School of Chemistry, Australian National University, Canberra, ACT 0200,
Australia
| | - Kiyoshi Ozawa
- School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville,
VIC 3052, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 0200,
Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 0200,
Australia
| | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville,
VIC 3052, Australia
| |
Collapse
|
41
|
Schmitz C, Vernon R, Otting G, Baker D, Huber T. Protein structure determination from pseudocontact shifts using ROSETTA. J Mol Biol 2012; 416:668-77. [PMID: 22285518 DOI: 10.1016/j.jmb.2011.12.056] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/16/2011] [Accepted: 12/27/2011] [Indexed: 11/25/2022]
Abstract
Paramagnetic metal ions generate pseudocontact shifts (PCSs) in nuclear magnetic resonance spectra that are manifested as easily measurable changes in chemical shifts. Metals can be incorporated into proteins through metal binding tags, and PCS data constitute powerful long-range restraints on the positions of nuclear spins relative to the coordinate system of the magnetic susceptibility anisotropy tensor (Δχ-tensor) of the metal ion. We show that three-dimensional structures of proteins can reliably be determined using PCS data from a single metal binding site combined with backbone chemical shifts. The program PCS-ROSETTA automatically determines the Δχ-tensor and metal position from the PCS data during the structure calculations, without any prior knowledge of the protein structure. The program can determine structures accurately for proteins of up to 150 residues, offering a powerful new approach to protein structure determination that relies exclusively on readily measurable backbone chemical shifts and easily discriminates between correctly and incorrectly folded conformations.
Collapse
Affiliation(s)
- Christophe Schmitz
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
42
|
Li QF, Yang Y, Maleckis A, Otting G, Su XC. Thiol–ene reaction: a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR. Chem Commun (Camb) 2012; 48:2704-6. [DOI: 10.1039/c2cc17900h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
de la Cruz L, Nguyen THD, Ozawa K, Shin J, Graham B, Huber T, Otting G. Binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts. J Am Chem Soc 2011; 133:19205-15. [PMID: 22007671 DOI: 10.1021/ja208435s] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The two-component dengue virus NS2B-NS3 protease (DEN NS2B-NS3pro) is an established drug target, but inhibitor design is hampered by the lack of a crystal structure of the protease in its fully active form. In solution and without inhibitors, the functionally important C-terminal segment of the NS2B cofactor is dissociated from DEN NS3pro ("open state"), necessitating a large structural change to produce the "closed state" thought to underpin activity. We analyzed the fold of DEN NS2B-NS3pro in solution with and without bound inhibitor by nuclear magnetic resonance (NMR) spectroscopy. Multiple paramagnetic lanthanide tags were attached to different sites to generate pseudocontact shifts (PCS). In the face of severe spectral overlap and broadening of many signals by conformational exchange, methods for assignment of (15)N-HSQC cross-peaks included selective mutation, combinatorial isotope labeling, and comparison of experimental PCSs and PCSs back-calculated for a structural model of the closed conformation built by using the structure of the related West Nile virus (WNV) protease as a template. The PCSs show that, in the presence of a positively charged low-molecular weight inhibitor, the enzyme assumes a closed state that is very similar to the closed state previously observed for the WNV protease. Therefore, a model of the protease built on the closed conformation of the WNV protease is a better template for rational drug design than available crystal structures, at least for positively charged inhibitors. To assess the open state, we created a binding site for a Gd(3+) complex and measured paramagnetic relaxation enhancements. The results show that the specific open conformation displayed in the crystal of DEN NS2B-NS3pro is barely populated in solution. The techniques used open an avenue to the fold analysis of proteins that yield poor NMR spectra, as PCSs from multiple sites in combination with model building generate powerful information even from incompletely assigned (15)N-HSQC spectra.
Collapse
Affiliation(s)
- Laura de la Cruz
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Salamanca-Pinzón SG, Guengerich FP. A tricistronic human adrenodoxin reductase-adrenodoxin-cytochrome P450 27A1 vector system for substrate hydroxylation in Escherichia coli. Protein Expr Purif 2011; 79:231-6. [PMID: 21621619 PMCID: PMC3155662 DOI: 10.1016/j.pep.2011.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) 27A1 catalyzes 27-hydroxylation of cholesterol and 25-hydroxylation of vitamin D(3), serving as an important component for the maintenance of lipid homeostasis. In eukaryotic cells P450 27A1 is a membrane-bound protein located on the inner mitochondrial membrane and requires two auxiliary reduction partners, adrenodoxin (Adx) and NADPH-adrenodoxin reductase (Adr), for catalysis in the bile acid biosynthesis pathway. A strategy was developed for the functional coexpression of P450 27A1 with Adr and Adx in a tricistronic fashion (single RNA, three proteins) in Escherichia coli, mimicking the mitochondrial P450 system. Intact bacterial cells coexpressing the P450 vector (pTC27A1) efficiently hydroxylated cholesterol at the 27 position as well as vitamin D(3) at the 25 position when supplemented with glycerol as a carbon source. Thus, E. coli containing pTC27A1 is able to hydroxylate cholesterol in a self-sufficient fashion and is suitable for further applications of protein interaction, drug discovery, and inhibitor evaluation and for the study of other mitochondrial P450s and oxysterol production in microorganisms without a need for membrane reconstitution, membrane simulation by detergents, or purification of the components.
Collapse
Affiliation(s)
- S. Giovanna Salamanca-Pinzón
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
45
|
Graham B, Loh CT, Swarbrick JD, Ung P, Shin J, Yagi H, Jia X, Chhabra S, Barlow N, Pintacuda G, Huber T, Otting G. DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra. Bioconjug Chem 2011; 22:2118-25. [PMID: 21877751 DOI: 10.1021/bc200353c] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structural studies of proteins and protein-ligand complexes by nuclear magnetic resonance (NMR) spectroscopy can be greatly enhanced by site-specific attachment of lanthanide ions to create paramagnetic centers. In particular, pseudocontact shifts (PCS) generated by paramagnetic lanthanides contain important and unique long-range structure information. Here, we present a high-affinity lanthanide binding tag that can be attached to single cysteine residues of proteins. The new tag has many advantageous features that are not available in this combination from previously published tags: (i) it binds lanthanide ions very tightly, minimizing the generation of nonspecific effects, (ii) it produces PCSs with high reliability as its bulkiness prevents complete motional averaging of PCSs, (iii) it can be attached to single cysteine residues, alleviating the need of detailed prior knowledge of the 3D structure of the target protein, and (iv) it does not display conformational exchange phenomena that would increase the number of signals in the NMR spectrum. The performance of the tag is demonstrated with the N-terminal domain of the E. coli arginine repressor and the A28C mutant of human ubiquitin.
Collapse
Affiliation(s)
- Bim Graham
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The catalytic domain of MMP-1 studied through tagged lanthanides. FEBS Lett 2011; 586:557-67. [DOI: 10.1016/j.febslet.2011.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 11/22/2022]
|
47
|
Jia X, Maleckis A, Huber T, Otting G. 4,4′-Dithiobisdipicolinic Acid: A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy. Chemistry 2011; 17:6830-6. [DOI: 10.1002/chem.201003573] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Indexed: 11/09/2022]
|
48
|
Schiffler B, Zöllner A, Bernhardt R. Kinetic and optical biosensor study of adrenodoxin mutant AdxS112W displaying an enhanced interaction towards the cholesterol side chain cleavage enzyme (CYP11A1). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1275-82. [PMID: 21526428 DOI: 10.1007/s00249-011-0703-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/18/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
Abstract
In mammals, steroid hormones are synthesized from cholesterol that is metabolized by the mitochondrial CYP11A1 system leading to pregnenolone. The reduction equivalents for this reaction are provided by NADPH, via a small electron transfer chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). The reaction partners are involved in a series of transient interactions to realize the electron transfer from NADPH to CYP11A1. Here, we compared the ionic strength effect on the AdR/Adx and Adx/CYP11A1 interactions for wild-type Adx and mutant AdxS112W. Using surface plasmon resonance measurements, stopped flow kinetic investigations and analyses of the product formation, we were able to obtain new insights into the mechanism of these interactions. The replacement of serine 112 by tryptophan was demonstrated to lead to a dramatically decreased k (off) rate of the Adx/CYP11A1 complex, resulting in a four-fold decreased K (d) value and indicating a much higher stability of the complex involving the mutant. Stopped flow analysis at various ionic strengths and in different mixing modes revealed that the binding of reduced Adx to CYP11A1 seems to display the limiting step for electron transfer to CYP11A1 with pre-reduced AdxS112W being much more efficient than wild-type Adx. Finally, the dramatic increase in pregnenolone formation at higher ionic strength using the mutant demonstrates that the interaction of CYP11A1 with Adx is the rate-limiting step in substrate conversion and that hydrophobic interactions may considerably improve this interaction and the efficiency of product formation. The data are discussed using published structural data of the complexes.
Collapse
Affiliation(s)
- Burkhard Schiffler
- Naturwissenschaftlich-Technische Fakultät III, Lehrstuhl für Biochemie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | |
Collapse
|
49
|
Swarbrick JD, Ung P, Chhabra S, Graham B. An Iminodiacetic Acid Based Lanthanide Binding Tag for Paramagnetic Exchange NMR Spectroscopy. Angew Chem Int Ed Engl 2011; 50:4403-6. [DOI: 10.1002/anie.201007221] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/31/2011] [Indexed: 11/09/2022]
|
50
|
Swarbrick JD, Ung P, Chhabra S, Graham B. An Iminodiacetic Acid Based Lanthanide Binding Tag for Paramagnetic Exchange NMR Spectroscopy. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|