1
|
Iwata T, Kurahashi Y, Wijaya IMM, Kandori H. Spectroscopic Investigation of Na +-Dependent Conformational Changes of a Cyclobutane Pyrimidine Dimer-Repairing Deoxyribozyme. ACS OMEGA 2023; 8:37274-37281. [PMID: 37841180 PMCID: PMC10569015 DOI: 10.1021/acsomega.3c05083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
UV1C is an enzymatically active DNA sequence (deoxyribozyme, DNAzyme) that functions as a cyclobutane pyrimidine dimer (CPD) photolyase. UV1C forms parallel guanine quadruplexes (G-quadruplexes) with a DNA substrate in the presence of 240 mM Na+, the structure of which is important for the enzymatic activity. To investigate the repair mechanism of CPD by UV1C, we designed light-induced Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, circular dichroism (CD) spectroscopy was conducted to determine the Na+ concentration at which the most G-quadruplexes were formed. We found that UV1C also forms a hybrid G-quadruplex structure at over 500 mM Na+. By assuming a concentration equilibrium between G-quadruplexes and Na+, 1.3 and 1.8 Na+ were found to bind to parallel and hybrid G-quadruplexes, respectively. The hybrid G-quadruplex form of UV1C was also suggested to exhibit photolyase activity. Light-induced FTIR spectra recorded upon the photorepair of CPD by UV1C were compared for parallel G-quadruplex-rich and hybrid G-quadruplex-rich samples. Spectral variations were indicative of structural differences in parallel and hybrid G-quadruplexes before and after CPD cleavage. Differences were also observed when compared to the CPD repair spectrum by CPD photolyase. The spectral differences during CPD repair by either protein or DNAzyme suggest the local environment of the substrates, the surrounding protein, or the aqueous solution.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Department
of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Yuhi Kurahashi
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - I Made Mahaputra Wijaya
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Infrared nanospectroscopic imaging of DNA molecules on mica surface. Sci Rep 2022; 12:18972. [PMID: 36348038 PMCID: PMC9643503 DOI: 10.1038/s41598-022-23637-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Significant efforts have been done in last two decades to develop nanoscale spectroscopy techniques owning to their great potential for single-molecule structural detection and in addition, to resolve open questions in heterogeneous biological systems, such as protein-DNA complexes. Applying IR-AFM technique has become a powerful leverage for obtaining simultaneous absorption spectra with a nanoscale spatial resolution for studied proteins, however the AFM-IR investigation of DNA molecules on surface, as a benchmark for a nucleoprotein complexes nanocharacterization, has remained elusive. Herein, we demonstrate methodological approach for acquisition of AFM-IR mapping modalities with corresponding absorption spectra based on two different DNA deposition protocols on spermidine and Ni2+ pretreated mica surface. The nanoscale IR absorbance of distinctly formed DNA morphologies on mica are demonstrated through series of AFM-IR absorption maps with corresponding IR spectrum. Our results thus demonstrate the sensitivity of AFM-IR nanospectroscopy for a nucleic acid research with an open potential to be employed in further investigation of nucleoprotein complexes.
Collapse
|
3
|
Altwaijry N, Ain QT, Alnuwaysir H, Alamro A, Alghamdi A, Haq SH. A Time-Course Evaluation of DNA Damage and Neurotoxicity Induced by PEGylated Graphene Oxide Nanoparticle in Swiss Albino Mice. J Biomed Nanotechnol 2022; 18:1180-1186. [PMID: 35854454 DOI: 10.1166/jbn.2022.3306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PEGylated graphene oxide nanoparticle (PEG-nGO) has been commonly used as a carrier for therapeutic drugs and vaccines, because of its unique properties, such as high solubility, more stability and increased biocompatibility in physiological solutions. This study aimed to examine the DNA damage and neurotoxicity in young mice after up to 4 h of the treatment with PEG-nGO. A single dose (5 mg/kg) of intravenous injection was administered through the tail vein of adult mice. Total genomic DNA was isolated from the control and treated animals after 1 h, 2 h, and 4 h of treatments and examined for DNA damage by diphenyl assay, DNA fragmentation Assay, and FTIR (Fourier transform infrared) techniques. DNA damage studies indicated DNA fragmentation after 1 h and 2 h of treatments followed by recovery at 4 h. FTIR analysis further supported these results and showed a detailed molecular effect of the treatments that caused single and double-strand DNA breaks at 1 to 2 h after the treatments and indicated DNA damage response and recovery at 4 h. Histopathology showed neuronal apoptosis and lesions in the brain after 1 to 2 h and invasion of inflammatory response and chromatolysis after 4 h. PEG-nGO caused immediate DNA damage and cytotoxicity to the brain and its future use as a drug carrier should be considered with caution.
Collapse
Affiliation(s)
- Nojood Altwaijry
- Department of Biochemistry, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Qura Tul Ain
- King Abdullah Center of Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hissah Alnuwaysir
- King Faisal Specialist Hospital and Research Centre, Riyadh, 3354, Kingdom of Saudi Arabia
| | - Abir Alamro
- Department of Biochemistry, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Amani Alghamdi
- Department of Biochemistry, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Samina Hyder Haq
- Department of Biochemistry, King Saud University, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
4
|
Yamada D, Yamamoto J, Getzoff ED, Iwata T, Kandori H. Structural Changes during the Photorepair and Binding Processes of Xenopus (6-4) Photolyase with (6-4) Photoproducts in Single- and Double-Stranded DNA. Biochemistry 2021; 60:3253-3261. [PMID: 34658241 DOI: 10.1021/acs.biochem.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photolyases (PHRs) repair ultraviolet (UV)-induced DNA photoproducts into normal bases. In this study, we measured the conformational changes upon photoactivation and photorepair processes of a PHR and its specific substrates, (6-4)PHR and a pyrimidine(6-4)pyrimidone photoproduct ((6-4)PP), by light-induced difference Fourier transform infrared (FT-IR) spectroscopy. The single-stranded DNA with (6-4)PP (ss(6-4)PP) was used as a substrate and the resultant FT-IR spectra were compared with the previous results on double-stranded DNA with (6-4)PP (ds(6-4)PP). In the excess amount of substrate to the enzyme, different ss(6-4)PP photorepair FT-IR signals were obtained in an illumination time-dependent manner. As reported for ds(6-4)PP, the early stages of the photoreaction involve the changes in the ss(6-4)PP only, while the late stages of the reaction involve the ss(6-4)PP repair-associated changes and dissociation from (6-4)PHR. From these spectra, difference spectra originating from the binding/dissociation spectrum were extracted. The signals of the C═O stretches of (6-4)PP and repaired thymines in the single- and double-stranded DNA were tentatively assigned. The C═O stretches of (6-4)PP were observed at frequencies that reflect single- and double-stranded DNA environments in aqueous solution, reflecting the different hydrogen-bonding environments. The conformational changes of PHR upon binding of ss(6-4)PP and ds(6-4)PP were similar, suggesting that the conformational change is limited to the (6-4)PP binding pocket region. We interpreted that ds(6-4)PP may be bound together without any special mechanism for flipping out.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tatsuya Iwata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
5
|
Kandori H. Structure/Function Study of Photoreceptive Proteins by FTIR Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
6
|
Yamada D, Dokainish HM, Iwata T, Yamamoto J, Ishikawa T, Todo T, Iwai S, Getzoff ED, Kitao A, Kandori H. Functional Conversion of CPD and (6-4) Photolyases by Mutation. Biochemistry 2016; 55:4173-83. [PMID: 27431478 DOI: 10.1021/acs.biochem.6b00361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet (UV) light from the sun damages DNA by forming a cyclobutane pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone photoproducts [(6-4) PP]. Photolyase (PHR) enzymes utilize near-UV/blue light for DNA repair, which is initiated by light-induced electron transfer from the fully reduced flavin adenine dinucleotide chromophore. Despite similar structures and repair mechanisms, the functions of PHR are highly selective; CPD PHR repairs CPD, but not (6-4) PP, and vice versa. In this study, we attempted functional conversion between CPD and (6-4) PHRs. We found that a triple mutant of (6-4) PHR is able to repair the CPD photoproduct, though the repair efficiency is 1 order of magnitude lower than that of wild-type CPD PHR. Difference Fourier transform infrared spectra for repair demonstrate the lack of secondary structural alteration in the mutant, suggesting that the triple mutant gains substrate binding ability while it does not gain the optimized conformational changes from light-induced electron transfer to the release of the repaired DNA. Interestingly, the (6-4) photoproduct is not repaired by the reverse mutation of CPD PHR, and eight additional mutations (total of 11 mutations) introduced into CPD PHR are not sufficient. The observed asymmetric functional conversion is interpreted in terms of a more complex repair mechanism for (6-4) repair, which was supported by quantum chemical/molecular mechanical calculation. These results suggest that CPD PHR may represent an evolutionary origin for photolyase family proteins.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Hisham M Dokainish
- Institute of Molecular and Cellular Biosciences, The University of Tokyo , 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Tomoko Ishikawa
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University , Osaka 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University , Osaka 565-0871, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo , 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
7
|
Yamada D, Yamamoto J, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Iwai S, Kandori H. Structural Changes of the Active Center during the Photoactivation of Xenopus (6-4) Photolyase. Biochemistry 2016; 55:715-23. [PMID: 26719910 DOI: 10.1021/acs.biochem.5b01111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photolyases (PHRs) repair the UV-induced photoproducts, cyclobutane pyrimidine dimer (CPD) or pyrimidine-pyrimidone (6-4) photoproduct [(6-4) PP], restoring normal bases to maintain genetic integrity. CPD and (6-4) PP are repaired by substrate-specific PHRs, CPD PHR and (6-4) PHR, respectively. Flavin adenine dinucleotide (FAD) is the chromophore of both PHRs, and the resting oxidized form (FAD(ox)), at least under in vitro purified conditions, is first photoconverted to the neutral semiquinoid radical (FADH(•)) form, followed by photoconversion into the enzymatically active fully reduced (FADH(-)) form. Previously, we reported light-induced difference Fourier transform infrared (FTIR) spectra corresponding to the photoactivation process of Xenopus (6-4) PHR. Spectral differences between the absence and presence of (6-4) PP were observed in the photoactivation process. To identify the FTIR signals where these differences appeared, we compared the FTIR spectra of photoactivation (i) in the presence and absence of (6-4) PP, (ii) of (13)C labeling, (15)N labeling, and [(14)N]His/(15)N labeling, and (iii) of H354A and H358A mutants. We successfully assigned the vibrational bands for (6-4) PP, the α-helix and neutral His residue(s). In particular, we assigned three bands to the C ═ O groups of (6-4) PP in the three different redox states of FAD. Furthermore, the changed hydrogen bonding environments of C ═ O groups of (6-4) PP suggested restructuring of the binding pocket of the DNA lesion in the process of photoactivation.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Yu Zhang
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Kenichi Hitomi
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States.,Life Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
8
|
Yamada D, Iwata T, Yamamoto J, Hitomi K, Todo T, Iwai S, Getzoff ED, Kandori H. Structural role of two histidines in the (6-4) photolyase reaction. Biophys Physicobiol 2015; 12:139-44. [PMID: 27493863 PMCID: PMC4736838 DOI: 10.2142/biophysico.12.0_139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022] Open
Abstract
Photolyases (PHRs) are DNA repair enzymes that revert UV-induced photoproducts, either cyclobutane pyrimidine dimers (CPD) or (6-4) photoproducts (PPs), into normal bases to maintain genetic integrity. (6-4) PHR must catalyze not only covalent bond cleavage, but also hydroxyl or amino group transfer, yielding a more complex mechanism than that postulated for CPD PHR. Previous mutation analysis revealed the importance of two histidines in the active center, H354 and H358 for Xenopus (6-4) PHR, whose mutations significantly lowered the enzymatic activity. Based upon highly sensitive FTIR analysis of the repair function, here we report that both H354A and H358A mutants of Xenopus (6-4) PHR still maintain their repair activity, although the efficiency is much lower than that of the wild type. Similar difference FTIR spectra between the wild type and mutant proteins suggest a common mechanism of repair in which (6-4) PP binds to the active center of each mutant, and is released after repair, as occurs in the wild type. Similar FTIR spectra also suggest that a decrease in volume by the H-to-A mutation is possibly compensated by the addition of water molecule( s). Such a modified environment is sufficient for the repair function that is probably controlled by proton-coupled electron transfer between the enzyme and substrate. On the other hand, two histidines must work in a concerted manner in the active center of the wild-type enzyme, which significantly raises the repair efficiency.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenichi Hitomi
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
9
|
Mahaputra Wijaya IM, Iwata T, Yamamoto J, Hitomi K, Iwai S, Getzoff ED, Kandori H. FTIR study of CPD photolyase with substrate in single strand DNA. Biophysics (Nagoya-shi) 2015; 11:39-45. [PMID: 27493513 PMCID: PMC4736783 DOI: 10.2142/biophysics.11.39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 12/01/2022] Open
Abstract
Photolyases (PHRs) utilize near UV/blue light to specifically repair the major photoproducts (PPs) of UV-induced damaged DNA. The cyclobutane pyrimidine dimer (CPD)-PHR binds flavin adenine dinucleotide (FAD) as a cofactor and repairs CPD lesions in double-stranded DNA. To understand the activation and repair mechanism of CPD-PHR, we applied light-induced difference Fourier transform infrared (FTIR) spectroscopy to CPD-PHR, whose signals were identified by use of isotope-labeling. To further investigate the enzymatic function, here we study the activation and repair mechanism of CPD-PHR with the substrate in single strand DNA, and the obtained FTIR spectra are compared with those in double-stranded DNA, the natural substrate. The difference spectra of photoactivation, the fully-reduced (FADH−) minus semiquinone (FADH•) spectra, are almost identical in the presence of single strand and double-stranded DNA, except for slight spectral modification in the amide-I region. On the other hand, the difference spectra of photorepair were highly substrate dependent. Strong bands of the C=O stretch (1,720–1,690 cm−1) and phosphate vibrations (1,090–1,060 cm−1) of double-stranded DNA may have disappeared in the case of single strand DNA. However, an isotope-labeled enzyme study revealed that spectral features upon DNA repair are similar between both substrates, and the main reason for the apparent spectral difference originates from structural flexibility of DNA after repair.
Collapse
Affiliation(s)
- I M Mahaputra Wijaya
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenichi Hitomi
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Spexard M, Thöing C, Beel B, Mittag M, Kottke T. Response of the Sensory Animal-like Cryptochrome aCRY to Blue and Red Light As Revealed by Infrared Difference Spectroscopy. Biochemistry 2014; 53:1041-50. [DOI: 10.1021/bi401599z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Meike Spexard
- Physical
and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Christian Thöing
- Physical
and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Benedikt Beel
- Institute
of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Maria Mittag
- Institute
of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Tilman Kottke
- Physical
and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
11
|
Abstract
Light-induced difference Fourier transform infrared (FTIR) spectroscopy is a powerful, sensitive, and informative method to study structure-function relationships in photoreceptive proteins. Strong absorption of water in the IR region is always problematic in this method, but if water content in the sample is controlled during measurements, this method can provide useful information on a single protein-bound water molecule. We established three kinds of sample preparations: hydrated film, redissolved sample, and concentrated solution. Hydrated films were used for the measurements of LOV and BLUF domains, where accurate difference FTIR spectra were obtained in the whole mid-IR region (4,000-800 cm(-1)). Vibrations of S-H stretch of cysteine, O-H stretch of water, and O-H stretch of tyrosine provide important information on hydrogen bonds in these proteins. Redissolved samples were used for the measurements of (6-4) photolyase, in which enzymatic turnover takes place. From the illumination time-dependence of excess amount of substrate, it is possible to isolate the signal originating from the binding of enzyme to substrate. If proteins are less tolerant to drying, as for example cryptochromes of the DASH type, concentrated solution is used. Detailed methodological aspects in light-induced difference FTIR spectroscopy are reviewed by mainly focusing on our results.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | | |
Collapse
|
12
|
Iwai S. Preparation of oligodeoxyribonucleotides containing the pyrimidine(6-4)pyrimidone photoproduct by using a dinucleotide building block. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 4:4.56.1-4.56.18. [PMID: 23775809 DOI: 10.1002/0471142700.nc0456s53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This unit describes procedures for the synthesis of a dinucleotide-type building block of the pyrimidine(6-4)pyrimidone photoproduct [(6-4) photoproduct], which is one of the major DNA lesions induced by ultraviolet (UV) light, and its incorporation into oligodeoxyribonucleotides. Although this type of lesion is frequently found at thymine-cytosine sites, the building block of the (6-4) photoproduct formed at thymine-thymine sites can be synthesized much more easily. The problem in the oligonucleotide synthesis is that the (6-4) photoproduct is labile under alkaline conditions. Therefore, building blocks with an amino-protecting group that can be removed by a brief treatment with ammonia water at room temperature must be used for the incorporation of the normal bases. Byproduct formation by the coupling of phosphoramidites with the N3 of the 5' component should also be considered. This side reaction can be avoided by using benzimidazolium triflate as an activator.
Collapse
Affiliation(s)
- Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Wijaya IMM, Zhang Y, Iwata T, Yamamoto J, Hitomi K, Iwai S, Getzoff ED, Kandori H. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy. Biochemistry 2013; 52:1019-27. [PMID: 23331252 DOI: 10.1021/bi3016179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photolyases (PHRs) utilize near-ultraviolet (UV)-blue light to specifically repair the major photoproducts (PPs) of UV-induced damaged DNA. The cyclobutane pyrimidine dimer PHR (CPD-PHR) from Escherichia coli binds flavin adenine dinucleotide (FAD) as a cofactor and 5,10-methenyltetrahydrofolate as a light-harvesting pigment and specifically repairs CPD lesions. By comparison, a second photolyase known as (6-4) PHR, present in a range of higher organisms, uniquely repairs (6-4) PPs. To understand the repair mechanism and the substrate specificity that distinguish CPD-PHR from (6-4) PHR, we applied Fourier transform infrared (FTIR) spectroscopy to bacterial CPD-PHR in the presence or absence of a well-defined DNA substrate, as we have studied previously for vertebrate (6-4) PHR. PHRs show light-induced reduction of FAD, and photorepair by CPD-PHR involves the transfer of an electron from the photoexcited reduced FAD to the damaged DNA for cleaving the dimers to maintain the DNA's integrity. Here, we measured and analyzed difference FTIR spectra for the photoactivation and DNA photorepair processes of CPD-PHR. We identified light-dependent signals only in the presence of substrate. The signals, presumably arising from a protonated carboxylic acid or the DNA substrate, implicate conformational rearrangements of the protein and substrate during the repair process. Deuterium exchange FTIR measurements of CPD-PHR highlight potential differences in the photoactivation and photorepair mechanisms in comparison to those of (6-4) PHR. Although CPD-PHR and (6-4) PHR appear to exhibit similar overall structures, our studies indicate that distinct conformational rearrangements, especially in the α-helices, are initiated within these enzymes upon binding of their respective DNA substrates.
Collapse
Affiliation(s)
- I M Mahaputra Wijaya
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology.
Collapse
Affiliation(s)
- Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
15
|
Reissig L, Iwata T, Kikukawa T, Demura M, Kamo N, Kandori H, Sudo Y. Influence of Halide Binding on the Hydrogen Bonding Network in the Active Site of Salinibacter Sensory Rhodopsin I. Biochemistry 2012; 51:8802-13. [DOI: 10.1021/bi3009592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Louisa Reissig
- Division of
Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555,
Japan
- Center for Fostering
Young and
Innovative Researchers, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555,
Japan
| | - Yuki Sudo
- Division of
Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi,
Saitama, 332-0012, Japan
| |
Collapse
|
16
|
Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H. Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase. Biochemistry 2012; 51:5774-83. [PMID: 22747528 DOI: 10.1021/bi300530x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Photolyases (PHRs) are blue light-activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The flavin adenine dinucleotide (FAD) chromophore of PHRs has four different redox states: oxidized (FAD(ox)), anion radical (FAD(•-)), neutral radical (FADH(•)), and fully reduced (FADH(-)). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FAD(ox) is converted to semiquinone via light-induced one-electron and one-proton transfers and then to FADH(-) by light-induced one-electron transfer. We successfully trapped FAD(•-) at 200 K, where electron transfer occurs but proton transfer does not. UV-visible spectroscopy following 450 nm illumination of FAD(ox) at 277 K defined the FADH(•)/FADH(-) mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested by UV-visible and FTIR analysis of FAD(•-) at 200 K. Spectral analysis of amide I vibrations revealed structural perturbation of the protein's β-sheet during initial electron transfer (FAD(•-) formation), a transient increase in α-helicity during proton transfer (FADH(•) formation), and reversion to the initial amide I signal following subsequent electron transfer (FADH(-) formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH(-) did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of these FTIR observations.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | | | | | | | | | | |
Collapse
|