1
|
Paul D, Mu H, Tavakoli A, Dai Q, Chakraborty S, He C, Ansari A, Broyde S, Min JH. Impact of DNA sequences on DNA 'opening' by the Rad4/XPC nucleotide excision repair complex. DNA Repair (Amst) 2021; 107:103194. [PMID: 34428697 PMCID: PMC8934541 DOI: 10.1016/j.dnarep.2021.103194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023]
Abstract
Rad4/XPC recognizes diverse DNA lesions to initiate nucleotide excision repair (NER). However, NER propensities among lesions vary widely and repair-resistant lesions are persistent and thus highly mutagenic. Rad4 recognizes repair-proficient lesions by unwinding ('opening') the damaged DNA site. Such 'opening' is also observed on a normal DNA sequence containing consecutive C/G's (CCC/GGG) when tethered to Rad4 to prevent protein diffusion. However, it was unknown if such tethering-facilitated DNA 'opening' could occur on any DNA or if certain structures/sequences would resist being 'opened'. Here, we report that DNA containing alternating C/G's (CGC/GCG) failed to be opened even when tethered; instead, Rad4 bound in a 180°-reversed manner, capping the DNA end. Fluorescence lifetime studies of DNA conformations in solution showed that CCC/GGG exhibits local pre-melting that is absent in CGC/GCG. In MD simulations, CGC/GCG failed to engage Rad4 to promote 'opening' contrary to CCC/GGG. Altogether, our study illustrates how local sequences can impact DNA recognition by Rad4/XPC and how certain DNA sites resist being 'opened' even with Rad4 held at that site indefinitely. The contrast between CCC/GGG and CGC/GCG sequences in Rad4-DNA recognition may help decipher a lesion's mutagenicity in various genomic sequence contexts to explain lesion-determined mutational hot and cold spots.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY, 10003, USA.
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
2
|
Jiang D, Zhang L, Dong K, Gong Y, Oger P. Biochemical characterization and mutational studies of a novel 3-methlyadenine DNA glycosylase II from the hyperthermophilic Thermococcus gammatolerans. DNA Repair (Amst) 2020; 97:103030. [PMID: 33360524 DOI: 10.1016/j.dnarep.2020.103030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023]
Abstract
The hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes a putative 3-methlyadenine DNA glycosylase II (Tg-AlkA). Herein, we report biochemical characterization and catalytic mechanism of Tg-AlkA. The recombinant Tg-AlkA can excise hypoxanthine (Hx) and 1-methlyadenine (1-meA) from dsDNA with varied efficiencies at high temperature. Notably, Tg-AlkA is a bi-functional glycosylase, which is sharply distinct from all the reported AlkAs. Biochemical data show that the optimal temperature and pH of Tg-AlkA for removing Hx from dsDNA are ca.70 °C and ca.7.0-8.0, respectively. Furthermore, the Tg-AlkA activity is independent of a divalent metal ion, and Mg2+ stimulates the Tg-AlkA activity whereas other divalent ions inhibit the enzyme activity with varied degrees. Mutational studies show that the Tg-AlkA W204A and D223A mutants abolish completely the excision activity, thereby suggesting that residues W204 and D223 are involved in catalysis. Surprisingly, the mutations of W204, D223, Y139 and W256 to alanine in Tg-AlkA lead to the increased affinity for binding DNA substrate with varied degrees, suggesting that these residues are flexible for conformational change of the enzyme. Therefore, Tg-AlkA is a novel AlkA that can remove Hx and 1-meA from dsDNA, thus providing insights into repair of deaminated and alkylated bases in DNA from hyperthermophilic Thermococcus.
Collapse
Affiliation(s)
- Donghao Jiang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, China
| | - Likui Zhang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, China; Guangling College, Yangzhou University, China.
| | - Kunming Dong
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China.
| | - Philippe Oger
- Univ Lyon, INSA De Lyon, CNRS UMR 5240, Lyon, France.
| |
Collapse
|
3
|
Thelen AZ, O'Brien PJ. Recognition of 1, N2-ethenoguanine by alkyladenine DNA glycosylase is restricted by a conserved active-site residue. J Biol Chem 2020; 295:1685-1693. [PMID: 31882538 PMCID: PMC7008384 DOI: 10.1074/jbc.ra119.011459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/19/2019] [Indexed: 12/30/2022] Open
Abstract
The adenine, cytosine, and guanine bases of DNA are susceptible to alkylation by the aldehyde products of lipid peroxidation and by the metabolic byproducts of vinyl chloride pollutants. The resulting adducts spontaneously cyclize to form harmful etheno lesions. Cells employ a variety of DNA repair pathways to protect themselves from these pro-mutagenic modifications. Human alkyladenine DNA glycosylase (AAG) is thought to initiate base excision repair of both 1,N6-ethenoadenine (ϵA) and 1,N2-ethenoguanine (ϵG). However, it is not clear how AAG might accommodate ϵG in an active site that is complementary to ϵA. This prompted a thorough investigation of AAG-catalyzed excision of ϵG from several relevant contexts. Using single-turnover and multiple-turnover kinetic analyses, we found that ϵG in its natural ϵG·C context is very poorly recognized relative to ϵA·T. Bulged and mispaired ϵG contexts, which can form during DNA replication, were similarly poor substrates for AAG. Furthermore, AAG could not recognize an ϵG site in competition with excess undamaged DNA sites. Guided by previous structural studies, we hypothesized that Asn-169, a conserved residue in the AAG active-site pocket, contributes to discrimination against ϵG. Consistent with this model, the N169S variant of AAG was 7-fold more active for excision of ϵG compared with the wildtype (WT) enzyme. Taken together, these findings suggest that ϵG is not a primary substrate of AAG, and that current models for etheno lesion repair in humans should be revised. We propose that other repair and tolerance mechanisms operate in the case of ϵG lesions.
Collapse
Affiliation(s)
- Adam Z Thelen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0600.
| |
Collapse
|
4
|
Aag Hypoxanthine-DNA Glycosylase Is Synthesized in the Forespore Compartment and Involved in Counteracting the Genotoxic and Mutagenic Effects of Hypoxanthine and Alkylated Bases in DNA during Bacillus subtilis Sporulation. J Bacteriol 2016; 198:3345-3354. [PMID: 27698084 DOI: 10.1128/jb.00625-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Aag from Bacillus subtilis has been implicated in in vitro removal of hypoxanthine and alkylated bases from DNA. The regulation of expression of aag in B. subtilis and the resistance to genotoxic agents and mutagenic properties of an Aag-deficient strain were studied here. A strain with a transcriptional aag-lacZ fusion expressed low levels of β-galactosidase during growth and early sporulation but exhibited increased transcription during late stages of this developmental process. Notably, aag-lacZ expression was higher inside the forespore than in the mother cell compartment, and this expression was abolished in a sigG-deficient background, suggesting a forespore-specific mechanism of aag transcription. Two additional findings supported this suggestion: (i) expression of an aag-yfp fusion was observed in the forespore, and (ii) in vivo mapping of the aag transcription start site revealed the existence of upstream regulatory sequences possessing homology to σG-dependent promoters. In comparison with the wild-type strain, disruption of aag significantly reduced survival of sporulating B. subtilis cells following nitrous acid or methyl methanesulfonate treatments, and the Rifr mutation frequency was significantly increased in an aag strain. These results suggest that Aag protects the genome of developing B. subtilis sporangia from the cytotoxic and genotoxic effects of base deamination and alkylation. IMPORTANCE In this study, evidence is presented revealing that aag, encoding a DNA glycosylase implicated in processing of hypoxanthine and alkylated DNA bases, exhibits a forespore-specific pattern of gene expression during B. subtilis sporulation. Consistent with this spatiotemporal mode of expression, Aag was found to protect the sporulating cells of this microorganism from the noxious and mutagenic effects of base deamination and alkylation.
Collapse
|
5
|
Admiraal SJ, O'Brien PJ. Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links. Biochemistry 2015; 54:1849-57. [PMID: 25679877 DOI: 10.1021/bi501491z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrolysis of the N-glycosyl bond between a nucleobase and deoxyribose leaves an abasic site within duplex DNA. The abasic site can react with exocyclic amines of nucleobases on the complementary strand to form interstrand DNA-DNA cross-links (ICLs). We find that several enzymes from the base excision repair (BER) pathway protect an abasic site on one strand of a DNA duplex from cross-linking with an amine on the opposing strand. Human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) accomplish this by binding tightly to the abasic site and sequestering it. AAG protects an abasic site opposite T, the product of its canonical glycosylase reaction, by a factor of ∼10-fold, as estimated from its inhibition of the reaction of an exogenous amine with the damaged DNA. Human apurinic/apyrimidinic site endonuclease 1 and E. coli endonuclease III both decrease the amount of ICL at equilibrium by generating a single-strand DNA nick at the abasic position as it is liberated from the cross-link. The reversibility of the reaction between amines and abasic sites allows BER enzymes to counter the potentially disruptive effects of this type of cross-link on DNA transactions.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-5606, United States
| | | |
Collapse
|
6
|
Taylor EL, O'Brien PJ. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA. Biochemistry 2015; 54:898-908. [PMID: 25537480 PMCID: PMC4310629 DOI: 10.1021/bi501356x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Escherichia coli 3-methyladenine DNA glycosylase
II (AlkA), an adaptive response glycosylase with a broad substrate
range, initiates base excision repair by flipping a lesion out of
the DNA duplex and hydrolyzing the N-glycosidic bond. We used transient
and steady state kinetics to determine the minimal mechanism for recognition
and excision of 1,N6-ethenoadenine (εA)
by AlkA. The natural fluorescence of this endogenously produced lesion
allowed us to directly monitor the nucleotide flipping step. We found
that AlkA rapidly and reversibly binds and flips out εA prior
to N-glycosidic bond hydrolysis, which is the rate-limiting step of
the reaction. The binding affinity of AlkA for the εA-DNA lesion
is only 40-fold tighter than for a nonspecific site and 20-fold weaker
than for the abasic DNA site. The mechanism of AlkA-catalyzed excision
of εA was compared to that of the human alkyladenine DNA glycosylase
(AAG), an independently evolved glycosylase that recognizes many of
the same substrates. AlkA and AAG both catalyze N-glycosidic bond
hydrolysis to release εA, and their overall rates of reaction
are within 2-fold of each other. Nevertheless, we find dramatic differences
in the kinetics and thermodynamics for binding to εA-DNA. AlkA
catalyzes nucleotide flipping an order of magnitude faster than AAG;
however, the equilibrium for flipping is almost 3 orders of magnitude
more favorable for AAG than for AlkA. These results illustrate how
enzymes that perform the same chemistry can use different substrate
recognition strategies to effectively repair DNA damage.
Collapse
Affiliation(s)
- Erin L Taylor
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
7
|
Admiraal SJ, O'Brien PJ. DNA-N-glycosylases process novel O-glycosidic sites in DNA. Biochemistry 2013; 52:4066-74. [PMID: 23688261 DOI: 10.1021/bi400218j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After the hydrolysis of the N-glycosyl bond between a damaged base and C1' of a deoxyribosyl moiety of DNA, human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) bind tightly to their abasic DNA products, potentially protecting these reactive species. Here we show that both AAG and AlkA catalyze reactions between bound abasic DNA and small, primary alcohols to form novel DNA-O-glycosides. The synthesis reactions are reversible, as the DNA-O-glycosides are converted back into abasic DNA upon being incubated with AAG or AlkA in the absence of alcohol. AAG and AlkA are therefore able to hydrolyze O-glycosidic bonds in addition to N-glycosyl bonds. The newly discovered DNA-O-glycosidase activities of both enzymes compare favorably with their known DNA-N-glycosylase activities: AAG removes both methanol and 1,N(6)-ethenoadenine (εA) from DNA with single-turnover rate constants that are 2.9 × 10(5)-fold greater than the corresponding uncatalyzed rates, whereas the rate enhancement of 3.7 × 10(7) for removal of methanol from DNA by AlkA is 300-fold greater than its rate enhancement for removal of εA from DNA. Although the biological significance of the DNA-O-glycosidase reactions is not known, the evolution of new DNA repair pathways may be aided by enzymes that practice catalytic promiscuity, such as these two unrelated DNA glycosylases.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | | |
Collapse
|
8
|
Robinson JL, Brynildsen MP. A kinetic platform to determine the fate of nitric oxide in Escherichia coli. PLoS Comput Biol 2013; 9:e1003049. [PMID: 23658508 PMCID: PMC3642044 DOI: 10.1371/journal.pcbi.1003049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/19/2013] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO•) is generated by the innate immune response to neutralize pathogens. NO• and its autoxidation products have an extensive biochemical reaction network that includes reactions with iron-sulfur clusters, DNA, and thiols. The fate of NO• inside a pathogen depends on a kinetic competition among its many targets, and is of critical importance to infection outcomes. Due to the complexity of the NO• biochemical network, where many intermediates are short-lived and at extremely low concentrations, several species can be measured, but stable products are non-unique, and damaged biomolecules are continually repaired or regenerated, kinetic models are required to understand and predict the outcome of NO• treatment. Here, we have constructed a comprehensive kinetic model that encompasses the broad reactivity of NO• in Escherichia coli. The incorporation of spontaneous and enzymatic reactions, as well as damage and repair of biomolecules, allowed for a detailed analysis of how NO• distributes in E. coli cultures. The model was informed with experimental measurements of NO• dynamics, and used to identify control parameters of the NO• distribution. Simulations predicted that NO• dioxygenase (Hmp) functions as a dominant NO• consumption pathway at O2 concentrations as low as 35 µM (microaerobic), and interestingly, loses utility as the NO• delivery rate increases. We confirmed these predictions experimentally by measuring NO• dynamics in wild-type and mutant cultures at different NO• delivery rates and O2 concentrations. These data suggest that the kinetics of NO• metabolism must be considered when assessing the importance of cellular components to NO• tolerance, and that models such as the one described here are necessary to rigorously investigate NO• stress in microbes. This model provides a platform to identify novel strategies to potentiate the effects of NO•, and will serve as a template from which analogous models can be generated for other organisms.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
9
|
Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Recent advances in the structural mechanisms of DNA glycosylases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:247-71. [PMID: 23076011 DOI: 10.1016/j.bbapap.2012.10.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.
Collapse
Affiliation(s)
- Sonja C Brooks
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
10
|
Michelson AZ, Chen M, Wang K, Lee JK. Gas-Phase Studies of Purine 3-Methyladenine DNA Glycosylase II (AlkA) Substrates. J Am Chem Soc 2012; 134:9622-33. [DOI: 10.1021/ja211960r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Zhachkina Michelson
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick,
New Jersey 08901, United States
| | - Mu Chen
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick,
New Jersey 08901, United States
| | - Kai Wang
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick,
New Jersey 08901, United States
| | - Jeehiun K. Lee
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick,
New Jersey 08901, United States
| |
Collapse
|