1
|
Havens J, Su T, Wang Q, Yu CA, Yu L, Durham B, Millett F. Photoinduced electron transfer in cytochrome bc 1: Dynamics of rotation of the Iron-sulfur protein during bifurcated electron transfer from ubiquinol to cytochrome c 1 and cytochrome b L. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148957. [PMID: 36709837 DOI: 10.1016/j.bbabio.2023.148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
The electron transfer reactions within wild-type Rhodobacter sphaeroides cytochrome bc1 (cyt bc1) were studied using a binuclear ruthenium complex to rapidly photooxidize cyt c1. When cyt c1, the iron‑sulfur center Fe2S2, and cyt bH were reduced before the reaction, photooxidation of cyt c1 led to electron transfer from Fe2S2 to cyt c1 with a rate constant of ka = 80,000 s-1, followed by bifurcated reduction of both Fe2S2 and cyt bL by QH2 in the Qo site with a rate constant of k2 = 3000 s-1. The resulting Q then traveled from the Qo site to the Qi site and oxidized one equivalent each of cyt bL and cyt bH with a rate constant of k3 = 340 s-1. The rate constant ka was decreased in a nonlinear fashion by a factor of 53 as the viscosity was increased to 13.7. A mechanism that is consistent with the effect of viscosity involves rotational diffusion of the iron‑sulfur protein from the b state with reduced Fe2S2 close to cyt bL to one or more intermediate states, followed by rotation to the final c1 state with Fe2S2 close to cyt c1, and rapid electron transfer to cyt c1.
Collapse
Affiliation(s)
- Jeffrey Havens
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States of America; Vaccines and Therapeutics Division, Chemical and Biological Technologies, Defense Threat Reduction Agency, Fort Belvoir, VA 22060, United States of America
| | - Ting Su
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States of America; ABclonal Technology Woburn, MA 01801, United States of America
| | - Qiyu Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States of America; Vesigen Therapeutics Cambridge, MA 02139, United States of America
| | - Chang-An Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Linda Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Bill Durham
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Francis Millett
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
2
|
Camilo SRG, Curtolo F, Galassi VV, Arantes GM. Tunneling and Nonadiabatic Effects on a Proton-Coupled Electron Transfer Model for the Q o Site in Cytochrome bc1. J Chem Inf Model 2021; 61:1840-1849. [PMID: 33793213 DOI: 10.1021/acs.jcim.1c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome bc1 is a fundamental enzyme for cellular respiration and photosynthesis. This dimeric protein complex catalyzes a proton-coupled electron transfer (PCET) from the reduced coenzyme-Q substrate (Q) to a bimetallic iron-sulfur cluster in the Qo active site. Herein, we combine molecular dynamics simulations of the complete cytochrome bc1 protein with electronic-structure calculations of truncated models and a semiclassical tunneling theory to investigate the electron-proton adiabaticity of the initial reaction catalyzed in the Qo site. After sampling possible orientations between the Q substrate and a histidine side chain that functions as hydrogen acceptor, we find that a truncated model composed by ubiquinol-methyl and imidazole-iron(III)-sulfide captures the expected changes in oxidation and spin states of the electron donor and acceptor. Diabatic electronic surfaces obtained for this model with multiconfigurational wave function calculations demonstrate that this reaction is electronic nonadiabatic, and proton tunneling is faster than mixing of electronic configurations. These results indicate the formalism that should be used to calculate vibronic couplings and kinetic parameters for the initial reaction in the Qo site of cytochrome bc1. This framework for molecular simulation may also be applied to investigate other PCET reactions in the Q-cycle or in various metalloproteins that catalyze proton translocation coupled to redox processes.
Collapse
Affiliation(s)
- Sofia R G Camilo
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Felipe Curtolo
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Vanesa V Galassi
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Guilherme M Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
3
|
Geiss AF, Khandelwal R, Baurecht D, Bliem C, Reiner-Rozman C, Boersch M, Ullmann GM, Loew LM, Naumann RLC. pH and Potential Transients of the bc 1 Complex Co-Reconstituted in Proteo-Lipobeads with the Reaction Center from Rb. sphaeroides. J Phys Chem B 2017; 121:143-152. [PMID: 27992230 DOI: 10.1021/acs.jpcb.6b11116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
His-tag technology is employed to bind membrane proteins, such as the bc1 complex and the reaction center (RC) from Rhodobacter sphaeroides, to spherical as well as planar surfaces in a strict orientation. Subsequently, the spherical and planar surfaces are subjected to in situ dialysis to form proteo-lipobeads (PLBs) and protein-tethered bilayer membranes, respectively. PLBs based on Ni-nitrileotriacetic acid-functionalized agarose beads that have diameters ranging from 50 to 150 μm are used to assess proton release and membrane potential parameters by confocal laser-scanning microscopy. The pH and potential transients are thus obtained from bc1 activated by the RC. To assess the turnover of bc1 excited by the RC in a similar setting, we used the planar surface of an attenuated total reflection crystal modified with a thin gold layer to carry out time-resolved surface-enhanced IR absorption spectroscopy triggered by flash lamp excitation. The experiments suggest that both proteins interact in a cyclic manner in both environments. The activity of the proteins seems to be preserved in the same manner as that in chromatophores or reconstituted in liposomes.
Collapse
Affiliation(s)
- Andreas F Geiss
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT , Donau-City Street 1, 1220 Vienna, Austria.,University of Natural Resources and Life Sciences , Gregor-Mendel-Straße 33, 1180 Wien, Austria
| | - Raghav Khandelwal
- Indian Institute of Technology Kanpur , Kalyanpur, Kanpur, Uttar Pradesh 208016, India
| | - Dieter Baurecht
- Faculty of Chemistry, Department of Physical Chemistry, University of Vienna , Währinger Straße 42, 1090 Vienna, Austria
| | - Christina Bliem
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT , Donau-City Street 1, 1220 Vienna, Austria.,Center of Electrochemical Surface Technology, CEST , Viktor-Kaplan-Str. 2, 2700 Wiener Neustadt, Austria
| | - Ciril Reiner-Rozman
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT , Donau-City Street 1, 1220 Vienna, Austria.,Center of Electrochemical Surface Technology, CEST , Viktor-Kaplan-Str. 2, 2700 Wiener Neustadt, Austria
| | - Michael Boersch
- Single-Molecule Microscopy Group, Jena University Hospital , Nonnenplan 2-4, 07743 Jena, Germany
| | - G Matthias Ullmann
- Computational Biochemistry Group, University of Bayreuth , Universitätsstraße 30, NWI, 95447 Bayreuth, Germany
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Renate L C Naumann
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT , Donau-City Street 1, 1220 Vienna, Austria
| |
Collapse
|
4
|
Vladkova R. Chlorophyllais the crucial redox sensor and transmembrane signal transmitter in the cytochromeb6fcomplex. Components and mechanisms of state transitions from the hydrophobic mismatch viewpoint. J Biomol Struct Dyn 2015; 34:824-54. [DOI: 10.1080/07391102.2015.1056551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Lanciano P, Khalfaoui-Hassani B, Selamoglu N, Daldal F. Intermonomer electron transfer between the b hemes of heterodimeric cytochrome bc(1). Biochemistry 2013; 52:7196-206. [PMID: 24028549 DOI: 10.1021/bi400561e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubihydroquinone:cytochrome c oxidoreductase, or cytochrome bc1, is a central component of respiratory and photosynthetic energy transduction pathways in many organisms. It contributes to the generation of membrane potential and proton gradient used for cellular energy (ATP) production. The three-dimensional structures of cytochrome bc1 show a homodimeric organization of its three catalytic subunits. The unusual architecture revived the issue of whether the monomers operate independently or function cooperatively during the catalytic cycle of the enzyme. In recent years, different genetic approaches allowed the successful production of heterodimeric cytochrome bc1 variants and evidenced the occurrence of intermonomer electron transfer between the monomers of this enzyme. Here we used a version of the "two-plasmid" genetic system, also described in the preceding paper (DOI: 10.1021/bi400560p), to study a new heterodimeric mutant variant of cytochrome bc1. The strain producing this heterodimeric variant sustained photosynthetic growth of Rhodobacter capsulatus and yielded an active heterodimer. Interestingly, kinetic data showed equilibration of electrons among the four b heme cofactors of the heterodimer, via "reverse" intermonomer electron transfer between the bL hemes. Both inactive homodimeric and active heterodimeric cytochrome bc1 variants were purified to homogeneity from the same cells, and purified samples were subjected to mass spectrometry analyses. The data unequivocally supported the idea that the cytochrome b subunits carried the expected mutations and their associated epitope tags. Implications of these findings on our interpretation of light-activated transient cytochrome b and c redox kinetics and the mechanism of function of a dimeric cytochrome bc1 are discussed with respect to the previously proposed heterodimeric Q cycle model.
Collapse
Affiliation(s)
- Pascal Lanciano
- Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
6
|
Al-Attar S, de Vries S. Energy transduction by respiratory metallo-enzymes: From molecular mechanism to cell physiology. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Millett F, Havens J, Rajagukguk S, Durham B. Design and use of photoactive ruthenium complexes to study electron transfer within cytochrome bc1 and from cytochrome bc1 to cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1309-19. [PMID: 22985600 DOI: 10.1016/j.bbabio.2012.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
The cytochrome bc1 complex (ubiquinone:cytochrome c oxidoreductase) is the central integral membrane protein in the mitochondrial respiratory chain as well as the electron-transfer chains of many respiratory and photosynthetic prokaryotes. Based on X-ray crystallographic studies of cytochrome bc1, a mechanism has been proposed in which the extrinsic domain of the iron-sulfur protein first binds to cytochrome b where it accepts an electron from ubiquinol in the Qo site, and then rotates by 57° to a position close to cytochrome c1 where it transfers an electron to cytochrome c1. This review describes the development of a ruthenium photooxidation technique to measure key electron transfer steps in cytochrome bc1, including rapid electron transfer from the iron-sulfur protein to cytochrome c1. It was discovered that this reaction is rate-limited by the rotational dynamics of the iron-sulfur protein rather than true electron transfer. A conformational linkage between the occupant of the Qo ubiquinol binding site and the rotational dynamics of the iron-sulfur protein was discovered which could play a role in the bifurcated oxidation of ubiquinol. A ruthenium photoexcitation method is also described for the measurement of electron transfer from cytochrome c1 to cytochrome c. This article is part of a Special Issue entitled: Respiratory Complex III and related bc complexes.
Collapse
Key Words
- 2,2′-bipyrazine
- 2,2′-bipyridine
- 2,2′:4′,4″:2″,2‴-quaterpyridine
- 2Fe2S
- 3,3′-bipyridazine
- 4,4′-dimethyl-2,2′-bipridine
- Cc
- CcO
- Cytochrome bc(1)
- Cytochrome c
- Electron transfer
- ISP
- JG144
- MOAS
- P(f)
- P(m)
- Q
- Q(i)
- Q(o)
- Q(o) site inhibitor which fixes ISP in b state
- Q(o) site inhibitor which promotes mobile state of ISP
- QH(2)
- R. sphaeroides
- Rhodobacter sphaeroides
- Rieske iron–sulfur center
- Ru(2)D
- Ruthenium
- S-3-anilino-5-methyl-5-(4,6-difluorophenyl)-1,3-oxazolidine-2,4-dione
- [Ru(bpy)(2)](2)qpy(4+)
- bpd
- bpy
- bpz
- cyt bc(1)
- cytochrome bc(1)
- cytochrome c
- cytochrome c oxidase
- dmb
- inside ubiquinone binding site
- iron–sulfur protein
- methoxyacrylate stilbene
- outside ubiquinol binding site
- qpy
- ubiquinol
- ubiquionone
- yCc
- yeast Cc
Collapse
Affiliation(s)
- Francis Millett
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | |
Collapse
|
8
|
Yang WC, Li H, Wang F, Zhu XL, Yang GF. Rieske Iron-Sulfur Protein of the Cytochrome bc1 Complex: A Potential Target for Fungicide Discovery. Chembiochem 2012; 13:1542-51. [DOI: 10.1002/cbic.201200295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Indexed: 01/17/2023]
|
9
|
Li HL, Zhou SM, Park D, Jeong HO, Chung HY, Yang JM, Meng FG, Hu WJ. Deceleration of Arginine Kinase Refolding by Induced Helical Structures. Protein J 2012; 31:267-74. [DOI: 10.1007/s10930-012-9397-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|