1
|
Bui S, Gil-Guerrero S, van der Linden P, Carpentier P, Ceccarelli M, Jambrina PG, Steiner RA. Evolutionary adaptation from hydrolytic to oxygenolytic catalysis at the α/β-hydrolase fold. Chem Sci 2023; 14:10547-10560. [PMID: 37799987 PMCID: PMC10548524 DOI: 10.1039/d3sc03044j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Protein fold adaptation to novel enzymatic reactions is a fundamental evolutionary process. Cofactor-independent oxygenases degrading N-heteroaromatic substrates belong to the α/β-hydrolase (ABH) fold superfamily that typically does not catalyze oxygenation reactions. Here, we have integrated crystallographic analyses under normoxic and hyperoxic conditions with molecular dynamics and quantum mechanical calculations to investigate its prototypic 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) member. O2 localization to the "oxyanion hole", where catalysis occurs, is an unfavorable event and the direct competition between dioxygen and water for this site is modulated by the "nucleophilic elbow" residue. A hydrophobic pocket that overlaps with the organic substrate binding site can act as a proximal dioxygen reservoir. Freeze-trap pressurization allowed the structure of the ternary complex with a substrate analogue and O2 bound at the oxyanion hole to be determined. Theoretical calculations reveal that O2 orientation is coupled to the charge of the bound organic ligand. When 1-H-3-hydroxy-4-oxoquinaldine is uncharged, O2 binds with its molecular axis along the ligand's C2-C4 direction in full agreement with the crystal structure. Substrate activation triggered by deprotonation of its 3-OH group by the His-Asp dyad, rotates O2 by approximately 60°. This geometry maximizes the charge transfer between the substrate and O2, thus weakening the double bond of the latter. Electron density transfer to the O2(π*) orbital promotes the formation of the peroxide intermediate via intersystem crossing that is rate-determining. Our work provides a detailed picture of how evolution has repurposed the ABH-fold architecture and its simple catalytic machinery to accomplish metal-independent oxygenation.
Collapse
Affiliation(s)
- Soi Bui
- Randall Centre for Cell and Molecular Biophysics, King's College London London SE1 1UL UK
| | - Sara Gil-Guerrero
- Departamento de Química Física, University of Salamanca Salamanca 37008 Spain
| | - Peter van der Linden
- European Synchrotron Radiation Facility (ESRF), Partnership for Soft Condensed Matter (PSCM) 71 Avenue des Martyrs Grenoble 38000 France
| | - Philippe Carpentier
- European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38043 Grenoble France
- Université Grenoble Alpes, CNRS, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire Chimie et Biologie des Métaux (LCBM) UMR 5249 17 Avenue des Martyrs 38054 Grenoble France
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari Monserrato 09042 Italy
- IOM-CNR Unità di Cagliari, Cittadella Universitaria Monserrato 09042 Italy
| | - Pablo G Jambrina
- Departamento de Química Física, University of Salamanca Salamanca 37008 Spain
| | - Roberto A Steiner
- Randall Centre for Cell and Molecular Biophysics, King's College London London SE1 1UL UK
- Department of Biomedical Sciences, University of Padova Italy
| |
Collapse
|
2
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
3
|
den Boer D, de Heer HC, Buda F, Hetterscheid DGH. Challenges in Elucidating the Free Energy Scheme of the Laccase Catalyzed Reduction of Oxygen. ChemCatChem 2023; 15:e202200878. [PMID: 37082113 PMCID: PMC10107611 DOI: 10.1002/cctc.202200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Artificial redox catalysts are typically limited by unfavorable scaling relations of reaction intermediates leading to a significant overpotential in multi-electron redox reactions such as for example the oxygen reduction reaction (ORR). The multicopper oxidase laccase is able to catalyze the ORR in nature. In particular the high-potential variants show a remarkably low overpotential for the ORR and apparently do not suffer from such unfavorable scaling relations. Although laccases are intensively studied, it is presently unknown why the overpotential for ORR is so low and a clear description regarding the thermodynamics of the catalytic cycle and the underlying design principles is lacking. In order to understand the laccase catalyzed ORR from an electrochemical perspective, elucidation of the free energy scheme would be of high value. This article reviews the energetics of the proposed laccase catalyzed ORR mechanisms based on experimental and computational studies. However, there are still remaining challenges to overcome to elucidate the free energy scheme of laccase. Obtaining thermodynamic data on intermediates is hard or even impossible with analytical techniques. On the other hand, several computational studies have been performed with significantly different parameters and conditions, thus making a direct comparison difficult. For these reasons, a consensus on a clear free energy scheme is still lacking. We anticipate that ultimately conquering these challenges will result in a better understanding of laccase catalyzed ORR and will allow for the design of low overpotential redox catalysts.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | - Hendrik C. de Heer
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | - Francesco Buda
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | | |
Collapse
|
4
|
Fungal Laccases to Where and Where? Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Engilberge S, Wagner T, Carpentier P, Girard E, Shima S. Krypton-derivatization highlights O 2-channeling in a four-electron reducing oxidase. Chem Commun (Camb) 2020; 56:10863-10866. [DOI: 10.1039/d0cc04557h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kr-derivatization and X-ray structures indicated O2-channel and gating-loop that prevent side-reaction in reduction of O2 to water in F420H2 oxidase.
Collapse
Affiliation(s)
| | - Tristan Wagner
- Microbial Metabolism Group
- Max-Planck-Institut für Marine Mikrobiologie
- Celsiusstraße 1
- Bremen
- Germany
| | - Philippe Carpentier
- Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire Chimie et Biologie des Métaux (LCBM)
- Université Grenoble Alpes, CNRS, CEA
- Grenoble
- France
- European Synchrotron Radiation Facility (ESRF)
| | - Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS
- F-38000 Grenoble
- France
| | - Seigo Shima
- Microbial Protein Structure Group
- Max Planck Institute for Terrestrial Microbiology
- Karl-von-Frisch Straße 10
- 35043 Marburg
- Germany
| |
Collapse
|
6
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
7
|
Pietra F. On Dioxygen Permeation of MaL Laccase from the Thermophilic Fungus Melanocarpus albomyces: An all-Atom Molecular Dynamics Investigation. Chem Biodivers 2016; 13:1493-1501. [DOI: 10.1002/cbdv.201600062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/09/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Francesco Pietra
- Accademia Lucchese di Scienze, Lettere e Arti, Classe di Scienze; Palazzo Pretorio IT-55100 Lucca
| |
Collapse
|
8
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. All the O2 Consumed by Thermus thermophilus Cytochrome ba3 Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Biochemistry 2016; 55:1265-78. [PMID: 26845082 DOI: 10.1021/acs.biochem.5b01255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochrome ba3 is a proton-pumping heme-copper oxygen reductase from the extreme thermophile Thermus thermophilus. Despite the fact that the enzyme's active site is buried deep within the protein, the apparent second order rate constant for the initial binding of O2 to the active-site heme has been experimentally found to be 10(9) M(-1) s(-1) at 298 K, at or near the diffusion limit, and 2 orders of magnitude faster than for O2 binding to myoglobin. To provide quantitative and microscopic descriptions of the O2 delivery pathway and mechanism in cytochrome ba3, extensive molecular dynamics simulations of the enzyme in its membrane-embedded form have been performed, including different protocols of explicit ligand sampling (flooding) simulations with O2, implicit ligand sampling analysis, and in silico mutagenesis. The results show that O2 diffuses to the active site exclusively via a Y-shaped hydrophobic tunnel with two 25-Å long membrane-accessible branches that coincide with the pathway previously suggested by the crystallographically identified xenon binding sites. The two entrances of the bifurcated tunnel of cytochrome ba3 are located within the lipid bilayer, where O2 is preferentially partitioned from the aqueous phase. The largest barrier to O2 migration within the tunnel is estimated to be only 1.5 kcal/mol, allowing O2 to reach the enzyme active site virtually impeded by one-dimensional diffusion once it reaches a tunnel entrance at the protein surface. Unlike other O2-utilizing proteins, the tunnel is "open" with no transient barriers observed due to protein dynamics. This unique low-barrier passage through the protein ensures that O2 transit through the protein is never rate-limiting.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Robert B Gennis
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Morrison CN, Hoy JA, Zhang L, Einsle O, Rees DC. Substrate pathways in the nitrogenase MoFe protein by experimental identification of small molecule binding sites. Biochemistry 2015; 54:2052-60. [PMID: 25710326 PMCID: PMC4590346 DOI: 10.1021/bi501313k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
In
the nitrogenase molybdenum-iron (MoFe) protein, we have identified
five potential substrate access pathways from the protein surface
to the FeMo-cofactor (the active site) or the P-cluster using experimental
structures of Xe pressurized into MoFe protein crystals from Azotobacter vinelandii and Clostridium pasteurianum. Additionally, all published structures of the MoFe protein, including
those from Klebsiella pneumoniae, were analyzed for
the presence of nonwater, small molecules bound to the protein interior.
Each pathway is based on identification of plausible routes from buried
small molecule binding sites to both the protein surface and a metallocluster.
Of these five pathways, two have been previously suggested as substrate
access pathways. While the small molecule binding sites are not conserved
among the three species of MoFe protein, residues lining the pathways
are generally conserved, indicating that the proposed pathways may
be accessible in all three species. These observations imply that
there is unlikely a unique pathway utilized for substrate access from
the protein surface to the active site; however, there may be preferred
pathways such as those described here.
Collapse
Affiliation(s)
- Christine N Morrison
- †Division of Chemistry and Chemical Engineering, California Institute of Technology 114-96, Pasadena, California 91125, United States
| | - Julie A Hoy
- †Division of Chemistry and Chemical Engineering, California Institute of Technology 114-96, Pasadena, California 91125, United States
| | - Limei Zhang
- †Division of Chemistry and Chemical Engineering, California Institute of Technology 114-96, Pasadena, California 91125, United States
| | - Oliver Einsle
- ‡Institut für Biochemie and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Douglas C Rees
- †Division of Chemistry and Chemical Engineering, California Institute of Technology 114-96, Pasadena, California 91125, United States.,§Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci 2015; 72:857-68. [PMID: 25586561 PMCID: PMC11113281 DOI: 10.1007/s00018-014-1827-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Laccases are phenol oxidases that belong to the family of multi-copper oxidases and the superfamily of cupredoxins. A number of potential industrial applications for laccases have led to intensive structure-function studies and an increased amount of crystal structures has been solved. The objective of this review is to summarize and analyze available crystal structures of laccases. The experimental crystallographic data are now easily available from the websites and electron density maps can be used for the interpretation of the structural models. The crystal structures can give valuable insights into the functional mechanisms and may serve as the basis for the development of laccases for industrial applications.
Collapse
Affiliation(s)
- N Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO Box 111, 80101, Joensuu, Finland,
| | | |
Collapse
|
11
|
Damas JM, Baptista AM, Soares CM. The Pathway for O2 Diffusion inside CotA Laccase and Possible Implications on the Multicopper Oxidases Family. J Chem Theory Comput 2014; 10:3525-31. [DOI: 10.1021/ct500196e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- João M. Damas
- Instituto de Tecnologia Química
Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António M. Baptista
- Instituto de Tecnologia Química
Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cláudio M. Soares
- Instituto de Tecnologia Química
Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
12
|
Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, Pedroza-Rodríguez AM, RodrÍguez-Vázquez R, Delgado-Boada JM. Fungal laccases. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Frankel LK, Sallans L, Bellamy H, Goettert JS, Limbach PA, Bricker TM. Radiolytic mapping of solvent-contact surfaces in Photosystem II of higher plants: experimental identification of putative water channels within the photosystem. J Biol Chem 2013; 288:23565-72. [PMID: 23814046 DOI: 10.1074/jbc.m113.487033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH(•) and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.
Collapse
Affiliation(s)
- Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | |
Collapse
|
14
|
Water oxidation by a cytochrome p450: mechanism and function of the reaction. PLoS One 2013; 8:e61897. [PMID: 23634216 PMCID: PMC3636257 DOI: 10.1371/journal.pone.0061897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/18/2013] [Indexed: 12/18/2022] Open
Abstract
P450(cam) (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450(cam) catalysis is controlled by oxygen levels: at high O2 concentration, P450(cam) catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using (17)O and (2)H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450(cam) , and we present a plausible mechanism that accounts for the 1:1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450(cam) and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce.
Collapse
|
15
|
Rulíšek L, Ryde U. Theoretical studies of the active-site structure, spectroscopic and thermodynamic properties, and reaction mechanism of multicopper oxidases. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Naphthol radical couplings determine structural features and enantiomeric excess of dalesconols in Daldinia eschscholzii. Nat Commun 2012; 3:1039. [DOI: 10.1038/ncomms2031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/30/2012] [Indexed: 01/04/2023] Open
|
17
|
Pietra F. Molecular-Dynamics Simulation of Dioxygen Egress from 12/15-LipoxygenaseArachidonic Acid Complex. Chem Biodivers 2012; 9:1019-32. [DOI: 10.1002/cbdv.201100305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|