1
|
Hatton N, Nabarro J, Yates NDJ, Parkin A, Wilson LG, Baumann CG, Fascione MA. Mannose-Presenting "Glyco-Colicins" Convert the Bacterial Cell Surface into a Multivalent Adsorption Site for Adherent Bacteria. JACS AU 2024; 4:2122-2129. [PMID: 38938796 PMCID: PMC11200225 DOI: 10.1021/jacsau.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Biofilm formation is integral to the pathogenesis of numerous adherent bacteria and contributes to antimicrobial resistance (AMR). The rising threat of AMR means the need to develop novel nonbactericidal antiadhesion approaches against such bacteria is more urgent than ever. Both adherent-invasive Escherichia coli (AIEC, implicated in inflammatory bowel disease) and uropathogenic E. coli (UPEC, responsible for ∼80% of urinary tract infections) adhere to terminal mannose sugars on epithelial glycoproteins through the FimH adhesin on their type 1 pilus. Although mannose-based inhibitors have previously been explored to inhibit binding of adherent bacteria to epithelial cells, this approach has been limited by monovalent carbohydrate-protein interactions. Herein, we pioneer a novel approach to this problem through the preparation of colicin E9 bioconjugates that bind to the abundant BtuB receptor in the outer membrane of bacteria, which enables multivalent presentation of functional motifs on the cell surface. We show these bioconjugates label the surface of live E. coli and furthermore demonstrate that mannose-presenting "glyco-colicins" induce E. coli aggregation, thereby using the bacteria, itself, as a multivalent platform for mannose display, which triggers binding to adjacent FimH-presenting bacteria.
Collapse
Affiliation(s)
- Natasha
E. Hatton
- Department
of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Joe Nabarro
- Department
of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | | | - Alison Parkin
- Department
of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Laurence G. Wilson
- Department
of Physics, University of York, York, YO10 5DD, United Kingdom
| | | | - Martin A. Fascione
- Department
of Chemistry, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Caffrey PJ, Eckenroth BE, Burkhart BW, Zatopek KM, McClung CM, Santangelo TJ, Doublié S, Gardner AF. Thermococcus kodakarensis TK0353 is a novel AP lyase with a new fold. J Biol Chem 2024; 300:105503. [PMID: 38013090 PMCID: PMC10731606 DOI: 10.1016/j.jbc.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Hyperthermophilic organisms thrive in extreme environments prone to high levels of DNA damage. Growth at high temperature stimulates DNA base hydrolysis resulting in apurinic/apyrimidinic (AP) sites that destabilize the genome. Organisms across all domains have evolved enzymes to recognize and repair AP sites to maintain genome stability. The hyperthermophilic archaeon Thermococcus kodakarensis encodes several enzymes to repair AP site damage including the essential AP endonuclease TK endonuclease IV. Recently, using functional genomic screening, we discovered a new family of AP lyases typified by TK0353. Here, using biochemistry, structural analysis, and genetic deletion, we have characterized the TK0353 structure and function. TK0353 lacks glycosylase activity on a variety of damaged bases and is therefore either a monofunctional AP lyase or may be a glycosylase-lyase on a yet unidentified substrate. The crystal structure of TK0353 revealed a novel fold, which does not resemble other known DNA repair enzymes. The TK0353 gene is not essential for T. kodakarensis viability presumably because of redundant base excision repair enzymes involved in AP site processing. In summary, TK0353 is a novel AP lyase unique to hyperthermophiles that provides redundant repair activity necessary for genome maintenance.
Collapse
Affiliation(s)
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | | |
Collapse
|
3
|
Singewald K, Wilkinson JA, Hasanbasri Z, Saxena S. Beyond structure: Deciphering site-specific dynamics in proteins from double histidine-based EPR measurements. Protein Sci 2022; 31:e4359. [PMID: 35762707 PMCID: PMC9202549 DOI: 10.1002/pro.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022]
Abstract
Site-specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site-specific β-sheet dynamics. Here, we employed EPR spectroscopy to measure site-specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) - nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α-helical and β-sheet sites. Spectral simulations of the resulting CW-EPR report unique site-specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes in gǁ values for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA-based EPR measurements to probe information beyond distance constraints.
Collapse
Affiliation(s)
- Kevin Singewald
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| | | | | | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
4
|
Yakobov I, Mandato A, Hofmann L, Singewald K, Shenberger Y, Gevorkyan‐Airapetov L, Saxena S, Ruthstein S. Allostery-driven changes in dynamics regulate the activation of bacterial copper transcription factor. Protein Sci 2022; 31:e4309. [PMID: 35481642 PMCID: PMC9004249 DOI: 10.1002/pro.4309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/27/2022]
Abstract
Metalloregulators bind and respond to metal ions by regulating the transcription of metal homeostasis genes. Copper efflux regulator (CueR) is a copper-responsive metalloregulator that is found in numerous Gram-negative bacteria. Upon Cu(I) coordination, CueR initiates transcription by bending the bound DNA promoter regions facilitating interaction with RNA polymerase. The structure of Escherichia coli CueR in presence of DNA and metal ion has been reported using X-ray crystallography and cryo-EM, providing information about the mechanism of action. However, the specific role of copper in controlling this transcription mechanism remains elusive. Herein, we use room temperature electron paramagnetic resonance (EPR) experiments to follow allosterically driven dynamical changes in E. coli CueR induced by Cu(I) binding. We suggest that more than one Cu(I) ion binds per CueR monomer, leading to changes in site-specific dynamics at the Cu(I) binding domain and at the distant DNA binding site. Interestingly, Cu(I) binding leads to an increase in dynamics about 27 Å away at the DNA binding domain. These changes in the dynamics of the DNA binding domain are important for exact coordination with the DNA. Thus, Cu(I) binding is critical to initiate a series of conformational changes that regulate and initiate gene transcription. BROAD AUDIENCE STATEMENT: The dynamics of metal transcription factors as a function of metal and DNA binding are complex. In this study, we use EPR spectroscopy to measure dynamical changes of Escherichia coli CueR as a function of copper and DNA binding. We show that copper controls the activation of the transcription processes by initiation a series of dynamical changes over the protein.
Collapse
Affiliation(s)
- Idan Yakobov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| | - Alysia Mandato
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| | - Kevin Singewald
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| | - Lada Gevorkyan‐Airapetov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| |
Collapse
|
5
|
Singewald K, Bogetti X, Sinha K, Rule GS, Saxena S. Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site‐Specific Elucidation of Hidden Dynamics in Enzymes. Angew Chem Int Ed Engl 2020; 59:23040-23044. [DOI: 10.1002/anie.202009982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Singewald
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaowei Bogetti
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Kaustubh Sinha
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Gordon S Rule
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
6
|
Singewald K, Bogetti X, Sinha K, Rule GS, Saxena S. Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site‐Specific Elucidation of Hidden Dynamics in Enzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kevin Singewald
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaowei Bogetti
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Kaustubh Sinha
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Gordon S Rule
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
7
|
Probing the Y 2 Receptor on Transmembrane, Intra- and Extra-Cellular Sites for EPR Measurements. Molecules 2020; 25:molecules25184143. [PMID: 32927734 PMCID: PMC7571237 DOI: 10.3390/molecules25184143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
The function of G protein-coupled receptors is intrinsically linked to their conformational dynamics. In conjugation with site-directed spin labeling, electron paramagnetic resonance (EPR) spectroscopy provides powerful tools to study the highly dynamic conformational states of these proteins. Here, we explored positions for nitroxide spin labeling coupled to single cysteines, introduced at transmembrane, intra- and extra-cellular sites of the human neuropeptide Y2 receptor. Receptor mutants were functionally analyzed in cell culture system, expressed in Escherichia coli fermentation with yields of up to 10 mg of purified protein per liter expression medium and functionally reconstituted into a lipid bicelle environment. Successful spin labeling was confirmed by a fluorescence assay and continuous wave EPR measurements. EPR spectra revealed mobile and immobile populations, indicating multiple dynamic conformational states of the receptor. We found that the singly mutated positions by MTSL ((1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl) methyl methanesulfonothioate) have a water exposed immobilized conformation as their main conformation, while in case of the IDSL (bis(1-oxyl-2,2,5,5-tetramethyl-3-imidazolin-4-yl) disulfide) labeled positions, the main conformation are mainly of hydrophobic nature. Further, double cysteine mutants were generated and examined for potential applications of distance measurements by double electron–electron resonance (DEER) pulsed EPR technique on the receptor.
Collapse
|
8
|
Softley CA, Bostock MJ, Popowicz GM, Sattler M. Paramagnetic NMR in drug discovery. JOURNAL OF BIOMOLECULAR NMR 2020; 74:287-309. [PMID: 32524233 PMCID: PMC7311382 DOI: 10.1007/s10858-020-00322-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 05/05/2023]
Abstract
The presence of an unpaired electron in paramagnetic molecules generates significant effects in NMR spectra, which can be exploited to provide restraints complementary to those used in standard structure-calculation protocols. NMR already occupies a central position in drug discovery for its use in fragment screening, structural biology and validation of ligand-target interactions. Paramagnetic restraints provide unique opportunities, for example, for more sensitive screening to identify weaker-binding fragments. A key application of paramagnetic NMR in drug discovery, however, is to provide new structural restraints in cases where crystallography proves intractable. This is particularly important at early stages in drug-discovery programs where crystal structures of weakly-binding fragments are difficult to obtain and crystallization artefacts are probable, but structural information about ligand poses is crucial to guide medicinal chemistry. Numerous applications show the value of paramagnetic restraints to filter computational docking poses and to generate interaction models. Paramagnetic relaxation enhancements (PREs) generate a distance-dependent effect, while pseudo-contact shift (PCS) restraints provide both distance and angular information. Here, we review strategies for introducing paramagnetic centers and discuss examples that illustrate the utility of paramagnetic restraints in drug discovery. Combined with standard approaches, such as chemical shift perturbation and NOE-derived distance information, paramagnetic NMR promises a valuable source of information for many challenging drug-discovery programs.
Collapse
Affiliation(s)
- Charlotte A Softley
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
9
|
Izmailov SA, Rabdano SO, Hasanbasri Z, Podkorytov IS, Saxena S, Skrynnikov NR. Structural and dynamic origins of ESR lineshapes in spin-labeled GB1 domain: the insights from spin dynamics simulations based on long MD trajectories. Sci Rep 2020; 10:957. [PMID: 31969574 PMCID: PMC6976580 DOI: 10.1038/s41598-019-56750-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/06/2019] [Indexed: 12/04/2022] Open
Abstract
Site-directed spin labeling (SDSL) ESR is a valuable tool to probe protein systems that are not amenable to characterization by x-ray crystallography, NMR or EM. While general principles that govern the shape of SDSL ESR spectra are known, its precise relationship with protein structure and dynamics is still not fully understood. To address this problem, we designed seven variants of GB1 domain bearing R1 spin label and recorded the corresponding MD trajectories (combined length 180 μs). The MD data were subsequently used to calculate time evolution of the relevant spin density matrix and thus predict the ESR spectra. The simulated spectra proved to be in good agreement with the experiment. Further analysis confirmed that the spectral shape primarily reflects the degree of steric confinement of the R1 tag and, for the well-folded protein such as GB1, offers little information on local backbone dynamics. The rotameric preferences of R1 side chain are determined by the type of the secondary structure at the attachment site. The rotameric jumps involving dihedral angles χ1 and χ2 are sufficiently fast to directly influence the ESR lineshapes. However, the jumps involving multiple dihedral angles tend to occur in (anti)correlated manner, causing smaller-than-expected movements of the R1 proxyl ring. Of interest, ESR spectra of GB1 domain with solvent-exposed spin label can be accurately reproduced by means of Redfield theory. In particular, the asymmetric character of the spectra is attributable to Redfield-type cross-correlations. We envisage that the current MD-based, experimentally validated approach should lead to a more definitive, accurate picture of SDSL ESR experiments.
Collapse
Affiliation(s)
- Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Sevastyan O Rabdano
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Nyenhuis SB, Thapa A, Cafiso DS. Phosphatidylinositol 4,5 Bisphosphate Controls the cis and trans Interactions of Synaptotagmin 1. Biophys J 2019; 117:247-257. [PMID: 31301806 DOI: 10.1016/j.bpj.2019.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022] Open
Abstract
Synaptotagmin 1 acts as the Ca2+ sensor for synchronous neurotransmitter release; however, the mechanism by which it functions is not understood and is presently a topic of considerable interest. Here, we describe measurements on full-length membrane-reconstituted synaptotagmin 1 using site-directed spin labeling in which we characterize the linker region as well as the cis (vesicle membrane) and trans (cytoplasmic membrane) binding of its two C2 domains. In the full-length protein, the C2A domain does not undergo membrane insertion in the absence of Ca2+; however, the C2B domain will bind to and penetrate in trans to a membrane containing phosphatidylinositol 4,5 bisphosphate, even if phosphatidylserine (PS) is present in the cis membrane. In the presence of Ca2+, the Ca2+ binding loops of C2A and C2B both insert into the membrane interface; moreover, C2A preferentially inserts into PS-containing bilayers and will bind in a cis configuration to membranes containing PS even if a phosphatidylinositol 4,5 bisphosphate membrane is presented in trans. The data are consistent with a bridging activity for synaptotagmin 1 in which the two domains bind to opposing vesicle and plasma membranes. The failure of C2A to bind membranes in the absence of Ca2+ and the long unstructured segment linking C2A to the vesicle membrane indicates that synaptotagmin 1 could act to significantly shorten the vesicle-plasma membrane distance with increasing levels of Ca2+.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Anusa Thapa
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
11
|
Roche DB, Viet PD, Bakulina A, Hirsh L, Tosatto SCE, Kajava AV. Classification of β-hairpin repeat proteins. J Struct Biol 2017; 201:130-138. [PMID: 29017817 DOI: 10.1016/j.jsb.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
In recent years, a number of new protein structures that possess tandem repeats have emerged. Many of these proteins are comprised of tandem arrays of β-hairpins. Today, the amount and variety of the data on these β-hairpin repeat (BHR) structures have reached a level that requires detailed analysis and further classification. In this paper, we classified the BHR proteins, compared structures, sequences of repeat motifs, functions and distribution across the major taxonomic kingdoms of life and within organisms. As a result, we identified six different BHR folds in tandem repeat proteins of Class III (elongated structures) and one BHR fold (up-and-down β-barrel) in Class IV ("closed" structures). Our survey reveals the high incidence of the BHR proteins among bacteria and viruses and their possible relationship to the structures of amyloid fibrils. It indicates that BHR folds will be an attractive target for future structural studies, especially in the context of age-related amyloidosis and emerging infectious diseases. This work allowed us to update the RepeatsDB database, which contains annotated tandem repeat protein structures and to construct sequence profiles based on BHR structural alignments.
Collapse
Affiliation(s)
- Daniel B Roche
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France
| | - Phuong Do Viet
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France
| | - Anastasia Bakulina
- Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia; State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Russia
| | - Layla Hirsh
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy; Engineering Department, Pontifical Catholic University of Peru, Lima 32, Peru
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France.
| |
Collapse
|
12
|
Marsh D. Spin-label Order Parameter Calibrations for Slow Motion. APPLIED MAGNETIC RESONANCE 2017; 49:97-106. [PMID: 29367808 PMCID: PMC5752820 DOI: 10.1007/s00723-017-0940-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Calibrations are given to extract orientation order parameters from pseudo-powder electron paramagnetic resonance line shapes of 14N-nitroxide spin labels undergoing slow rotational diffusion. The nitroxide z-axis is assumed parallel to the long molecular axis. Stochastic-Liouville simulations of slow-motion 9.4-GHz spectra for molecular ordering with a Maier-Saupe orientation potential reveal a linear dependence of the splittings, [Formula: see text] and [Formula: see text], of the outer and inner peaks on order parameter [Formula: see text] that depends on the diffusion coefficient [Formula: see text] which characterizes fluctuations of the long molecular axis. This results in empirical expressions for order parameter and isotropic hyperfine coupling: [Formula: see text] and [Formula: see text], respectively. Values of the calibration constants [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are given for different values of [Formula: see text] in fast and slow motional regimes. The calibrations are relatively insensitive to anisotropy of rotational diffusion [Formula: see text], and corrections are less significant for the isotropic hyperfine coupling than for the order parameter.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
13
|
Katti S, Nyenhuis SB, Her B, Srivastava AK, Taylor AB, Hart PJ, Cafiso DS, Igumenova TI. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions. Biochemistry 2017; 56:3283-3295. [PMID: 28574251 DOI: 10.1021/acs.biochem.7b00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca2+-dependent manner. In these cases, membrane association is triggered by Ca2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd2+, in lieu of Ca2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd2+-complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca2+ ion binding to the C2 domain loop regions.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University , 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Sarah B Nyenhuis
- Department of Chemistry and Biophysics Program, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Bin Her
- Department of Biochemistry and Biophysics, Texas A&M University , 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Atul K Srivastava
- Department of Biochemistry and Biophysics, Texas A&M University , 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology and the X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - P John Hart
- Department of Biochemistry and Structural Biology and the X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - David S Cafiso
- Department of Chemistry and Biophysics Program, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University , 300 Olsen Boulevard, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Zdanowicz R, Kreutzberger A, Liang B, Kiessling V, Tamm LK, Cafiso DS. Complexin Binding to Membranes and Acceptor t-SNAREs Explains Its Clamping Effect on Fusion. Biophys J 2017; 113:1235-1250. [PMID: 28456331 DOI: 10.1016/j.bpj.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Complexin-1 is a SNARE effector protein that decreases spontaneous neurotransmitter release and enhances evoked release. Complexin binds to the fully assembled four-helical neuronal SNARE core complex as revealed in competing molecular models derived from x-ray crystallography. Presently, it is unclear how complexin binding to the postfusion complex accounts for its effects upon spontaneous and evoked release in vivo. Using a combination of spectroscopic and imaging methods, we characterize in molecular detail how complexin binds to the 1:1 plasma membrane t-SNARE complex of syntaxin-1a and SNAP-25 while simultaneously binding the lipid bilayer at both its N- and C-terminal ends. These interactions are cooperative, and binding to the prefusion acceptor t-SNARE complex is stronger than to the postfusion core complex. This complexin interaction reduces the affinity of synaptobrevin-2 for the 1:1 complex, thereby retarding SNARE assembly and vesicle docking in vitro. The results provide the basis for molecular models that account for the observed clamping effect of complexin beginning with the acceptor t-SNARE complex and the subsequent activation of the clamped complex by Ca2+ and synaptotagmin.
Collapse
Affiliation(s)
- Rafal Zdanowicz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia
| | - Alex Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
15
|
Pérez-Lara Á, Thapa A, Nyenhuis SB, Nyenhuis DA, Halder P, Tietzel M, Tittmann K, Cafiso DS, Jahn R. PtdInsP 2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. eLife 2016; 5. [PMID: 27791979 PMCID: PMC5123861 DOI: 10.7554/elife.15886] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
The Ca2+-sensor synaptotagmin-1 that triggers neuronal exocytosis binds to negatively charged membrane lipids (mainly phosphatidylserine (PtdSer) and phosphoinositides (PtdIns)) but the molecular details of this process are not fully understood. Using quantitative thermodynamic, kinetic and structural methods, we show that synaptotagmin-1 (from Rattus norvegicus and expressed in Escherichia coli) binds to PtdIns(4,5)P2 via a polybasic lysine patch in the C2B domain, which may promote the priming or docking of synaptic vesicles. Ca2+ neutralizes the negative charges of the Ca2+-binding sites, resulting in the penetration of synaptotagmin-1 into the membrane, via binding of PtdSer, and an increase in the affinity of the polybasic lysine patch to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). These Ca2+-induced events decrease the dissociation rate of synaptotagmin-1 membrane binding while the association rate remains unchanged. We conclude that both membrane penetration and the increased residence time of synaptotagmin-1 at the plasma membrane are crucial for triggering exocytotic membrane fusion. DOI:http://dx.doi.org/10.7554/eLife.15886.001 The human nervous system contains billions of neurons that communicate with each other across junctions called synapses. When a neuron is activated, the levels of calcium ions inside the cell rise. This causes molecules called neurotransmitters to be released from the neuron at a synapse to make contact with the second neuron. The neurotransmitters are stored inside cells within compartments known as synaptic vesicles and are released when these vesicles fuse with the membrane surrounding the cell. Proteins called SNAREs regulate the membrane fusion process. These proteins assemble into bundles that help to drive vesicle and cell membranes together. Another protein called synaptotagmin-1 sticks out from the vesicle membrane and senses the levels of calcium ions in the cell to trigger membrane fusion at the right time. Synaptotagmin-1 has two regions that can bind to calcium ions, known as the C2 domains. When calcium ion levels rise, these domains insert into the cell membrane by binding to two fat molecules in the membrane called phosphatidylserine (PtdSer) and phosphatidylinositol 4,5-bisphosphate (PtdInsP2). Synaptotagmin-1 also interacts with the SNARE proteins, but it is not known whether synaptotagmin-1 triggers fusion by binding directly to SNAREs, or by the way it inserts into the cell membrane. Pérez-Lara et al. used several biophysical methods to investigate how synaptotagmin-1 binds to PtdSer and PtdInsP2. The experiments show that these molecules bind to different regions of synaptotagmin-1 and work together to attach the protein to the cell membrane and insert the C2 domains. Calcium ions increase the affinity of synaptotagmin-1 binding to the cell membrane by making it harder for synaptotagmin-1 to separate from the membrane, rather than by increasing its ability to bind to it. Further experiments show that synaptotagmin-1 prefers to bind to membranes that contain PtdInsP2 over binding to the SNARE proteins. Together, the findings of Pérez-Lara et al. suggest that calcium ions may trigger the release of neurotransmitters by trapping synaptotagmin-1 at the cell membrane rather than by directly affecting how it interacts with SNARE proteins. Further work will be needed to establish exactly how the SNARE proteins, PtdInsP2 and synaptotagmin-1 interact. DOI:http://dx.doi.org/10.7554/eLife.15886.002
Collapse
Affiliation(s)
- Ángel Pérez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anusa Thapa
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - Sarah B Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - David A Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - Partho Halder
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Tietzel
- Department of Molecular Enzymology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
16
|
Cunningham TF, Pornsuwan S, Horne WS, Saxena S. Rotameric preferences of a protein spin label at edge-strand β-sheet sites. Protein Sci 2016; 25:1049-60. [PMID: 26948069 DOI: 10.1002/pro.2918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/20/2022]
Abstract
Protein spin labeling to yield the nitroxide-based R1 side chain is a powerful method to measure protein dynamics and structure by electron spin resonance. However, R1 measurements are complicated by the flexibility of the side chain. While analysis approaches for solvent-exposed α-helical environment have been developed to partially account for flexibility, similar work in β-sheets is lacking. The goal of this study is to provide the first essential steps for understanding the conformational preferences of R1 within edge β-strands using X-ray crystallography and double electron electron resonance (DEER) distance measurements. Crystal structures yielded seven rotamers for a non-hydrogen-bonded site and three rotamers for a hydrogen-bonded site. The observed rotamers indicate contextual differences in R1 conformational preferences compared to other solvent-exposed environments. For the DEER measurements, each strand site was paired with the same α-helical site elsewhere on the protein. The most probable distance observed by DEER is rationalized based on the rotamers observed in the crystal structure. Additionally, the appropriateness of common molecular modeling methods that account for R1 conformational preferences are assessed for the β-sheet environment. These results show that interpretation of R1 behavior in β-sheets is difficult and indicate further development is needed for these computational methods to correctly relate DEER distances to protein structure at edge β-strand sites.
Collapse
Affiliation(s)
- Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania, 15260
| | - Soraya Pornsuwan
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania, 15260
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania, 15260
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
17
|
Altenbach C, López CJ, Hideg K, Hubbell WL. Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. Methods Enzymol 2015; 564:59-100. [PMID: 26477248 DOI: 10.1016/bs.mie.2015.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structural and dynamical characterization of proteins is of central importance in understanding the mechanisms underlying their biological functions. Site-directed spin labeling (SDSL) combined with continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy has shown the capability of providing this information with site-specific resolution under physiological conditions for proteins of any degree of complexity, including those associated with membranes. This chapter introduces methods commonly employed for SDSL and describes selected CW EPR-based methods that can be applied to (1) map secondary and tertiary protein structure, (2) determine membrane protein topology, (3) measure protein backbone flexibility, and (4) reveal the existence of conformational exchange at equilibrium.
Collapse
Affiliation(s)
- Christian Altenbach
- Department of Chemistry and Biochemistry, Jules Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Carlos J López
- Department of Chemistry and Biochemistry, Jules Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Wayne L Hubbell
- Department of Chemistry and Biochemistry, Jules Stein Eye Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
18
|
Lo RH, Kroncke BM, Solomon TL, Columbus L. Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements. Biophys J 2015; 107:1697-702. [PMID: 25296323 DOI: 10.1016/j.bpj.2014.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 11/26/2022] Open
Abstract
The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins.
Collapse
Affiliation(s)
- Ryan H Lo
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Brett M Kroncke
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Tsega L Solomon
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
19
|
Cunningham TF, Putterman MR, Desai A, Horne WS, Saxena S. The double-histidine Cu²⁺-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements. Angew Chem Int Ed Engl 2015; 54:6330-4. [PMID: 25821033 DOI: 10.1002/anie.201501968] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/07/2022]
Abstract
The development of ESR methods that measure long-range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein-backbone structure. Herein we present the double-histidine (dHis) Cu(2+)-binding motif as a rigid spin probe for double electron-electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X-ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 Å of the experimental value. Cu(2+) DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein-backbone structure and flexibility.
Collapse
Affiliation(s)
- Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA)
| | - Miriam R Putterman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA)
| | - Astha Desai
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA)
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA).
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA).
| |
Collapse
|
20
|
Cunningham TF, Putterman MR, Desai A, Horne WS, Saxena S. The Double-Histidine Cu2+-Binding Motif: A Highly Rigid, Site-Specific Spin Probe for Electron Spin Resonance Distance Measurements. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Tangprasertchai NS, Zhang X, Ding Y, Tham K, Rohs R, Haworth IS, Qin PZ. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids. Methods Enzymol 2015; 564:427-53. [PMID: 26477260 PMCID: PMC4641853 DOI: 10.1016/bs.mie.2015.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements.
Collapse
Affiliation(s)
| | - Xiaojun Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Yuan Ding
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Kenneth Tham
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Remo Rohs
- Department of Chemistry, University of Southern California, Los Angeles, California, USA,Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Ian S. Haworth
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, California, USA,Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA,Corresponding author:
| |
Collapse
|
22
|
Cafiso DS. Identifying and quantitating conformational exchange in membrane proteins using site-directed spin labeling. Acc Chem Res 2014; 47:3102-9. [PMID: 25152957 PMCID: PMC4204925 DOI: 10.1021/ar500228s] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Protein structures are not static but sample different conformations
over a range of amplitudes and time scales. These fluctuations may
involve relatively small changes in bond angles or quite large rearrangements
in secondary structure and tertiary fold. The equilibrium between
discrete structural substates on the microsecond to millisecond time
scale is sometimes termed conformational exchange. Protein dynamics
and conformational exchange are believed to provide the basis for
many important activities, such as protein–protein and protein–ligand
interactions, enzymatic activity and protein allostery; however, for
many proteins, the dynamics and conformational exchange that lead
to function are poorly defined. Spectroscopic methods, such
as NMR, are among the most important
methods to explore protein dynamics and conformational exchange; however,
they are difficult to implement in some systems and with some types
of exchange events. Site-directed spin labeling (SDSL) is an EPR based
approach that is particularly well-suited to high molecular-weight
systems such as membrane proteins. Because of the relatively fast
time scale for EPR spectroscopy, it is an excellent method to examine
exchange. Conformations that are in exchange are captured as distinct
populations in the EPR spectrum, and this feature when combined with
the use of methods that can shift the free energy of conformational
substates allows one to identify regions of proteins that are in dynamic
exchange. In addition, modern pulse EPR methods have the ability to
examine conformational heterogeneity, resolve discrete protein states,
and identify the substates in exchange. Protein crystallography
has provided high-resolution models for
a number of membrane proteins; but because of conformational exchange,
these models do not always reflect the structures that are present
when the protein is in a native bilayer environment. In the case of
the Escherichia coli vitamin B12 transporter,
BtuB, the energy coupling segment of this protein undergoes a substrate-dependent
unfolding, which acts to couple this outer-membrane protein to the
inner-membrane protein TonB. EPR spectroscopy demonstrates that the
energy coupling segment is in equilibrium between ordered and disordered
states, and that substrate binding shifts this equilibrium to favor
an unfolded state. However, in crystal structures of BtuB, this segment
is resolved and folded within the protein, and neither the presence
of this equilibrium nor the substrate-induced change is revealed.
This is a result of the solute environment and the crystal lattice,
both of which act to stabilize one conformational substate of the
transporter. Using SDSL, it can be shown that conformational
exchange is present
in other regions of BtuB and in other members of this transporter
family. Conformational exchange has also been examined in systems
such as the plasma membrane SNARE protein, syntaxin 1A, where dynamics
are controlled by regulatory proteins such as munc18. Regulating the
microsecond to millisecond time scale dynamics in the neuronal SNAREs
is likely to be a key feature that regulates assembly of the SNAREs
and neurotransmitter release.
Collapse
Affiliation(s)
- David S. Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
23
|
Lu B, Kiessling V, Tamm LK, Cafiso DS. The juxtamembrane linker of full-length synaptotagmin 1 controls oligomerization and calcium-dependent membrane binding. J Biol Chem 2014; 289:22161-71. [PMID: 24973220 DOI: 10.1074/jbc.m114.569327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synaptotagmin 1 (Syt1) is the calcium sensor for synchronous neurotransmitter release. The two C2 domains of Syt1, which may mediate fusion by bridging the vesicle and plasma membranes, are connected to the vesicle membrane by a 60-residue linker. Here, we use site-directed spin labeling and a novel total internal reflection fluorescence vesicle binding assay to characterize the juxtamembrane linker and to test the ability of reconstituted full-length Syt1 to interact with opposing membrane surfaces. EPR spectroscopy demonstrates that the majority of the linker interacts with the membrane interface, thereby limiting the extension of the C2A and C2B domains into the cytoplasm. Pulse dipolar EPR spectroscopy provides evidence that purified full-length Syt1 is oligomerized in the membrane, and mutagenesis indicates that a glycine zipper/GXXXG motif within the linker helps mediate oligomerization. The total internal reflection fluorescence-based vesicle binding assay demonstrates that full-length Syt1 that is reconstituted into supported lipid bilayers will capture vesicles containing negatively charged lipid in a Ca(2+)-dependent manner. Moreover, the rate of vesicle capture increases with Syt1 density, and mutations in the GXXXG motif that inhibit oligomerization of Syt1 reduce the rate of vesicle capture. This work demonstrates that modifications within the 60-residue linker modulate both the oligomerization of Syt1 and its ability to interact with opposing bilayers. In addition to controlling its activity, the oligomerization of Syt1 may play a role in organizing proteins within the active zone of membrane fusion.
Collapse
Affiliation(s)
- Bin Lu
- From the Departments of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Volker Kiessling
- the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904 Molecular Physiology and Biological Physics and
| | - Lukas K Tamm
- the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904 Molecular Physiology and Biological Physics and
| | - David S Cafiso
- From the Departments of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
24
|
Hubbell WL, López CJ, Altenbach C, Yang Z. Technological advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 2013; 23:725-33. [PMID: 23850140 DOI: 10.1016/j.sbi.2013.06.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022]
Abstract
Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion.
Collapse
Affiliation(s)
- Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States.
| | | | | | | |
Collapse
|
25
|
Warshaviak DT, Khramtzov VV, Cascio D, Altenbach C, Hubbell WL. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 232:53-61. [PMID: 23694751 PMCID: PMC3758229 DOI: 10.1016/j.jmr.2013.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 05/03/2023]
Abstract
A disulfide-linked imidazoline nitroxide side chain (V1) has a similar and highly constrained internal motion at diverse topological sites in a protein, unlike that for the disulfide-linked pyrroline nitroxide side chain (R1) widely used in site directed spin labeling EPR. Crystal structures of V1 at two positions in a helix of T4 Lysozyme and quantum mechanical calculations suggest the source of the constraints as intra-side chain interactions of the disulfide sulfur atoms with both the protein backbone and the 3-nitrogen in the imidazoline ring. These interactions apparently limit the conformation of the side chain to one of only three possible rotamers, two of which are observed in the crystal structure. An inter-spin distance measurement in frozen solution using double electron-electron resonance (DEER) gives a value essentially identical to that determined from the crystal structure of the protein containing two copies of V1, indicating that lattice forces do not dictate the rotamers observed. Collectively, the results suggest the possibility of predetermining a unique rotamer of V1 in helical structures. In general, the reduced rotameric space of V1 compared to R1 should simplify interpretation of inter-spin distance information in terms of protein structure, while the highly constrained internal motion is expected to extend the dynamic range for characterizing large amplitude nanosecond backbone fluctuations.
Collapse
Affiliation(s)
- Dora Toledo Warshaviak
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Valery V. Khramtzov
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Department of Internal Medicine, The Ohio State University, 473 West 12th Ave., room 201, Columbus, Ohio 43210
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Christian Altenbach
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Corresponding author , Jules Stein Eye Institute, UCLA, 100 Stein Plaza, Los Angeles, CA 90095, 310-206-8830
| |
Collapse
|
26
|
Jeschke G. Conformational dynamics and distribution of nitroxide spin labels. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 72:42-60. [PMID: 23731861 DOI: 10.1016/j.pnmrs.2013.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 06/02/2023]
Abstract
Long-range distance measurements based on paramagnetic relaxation enhancement (PRE) in NMR, quantification of surface water dynamics near biomacromolecules by Overhauser dynamic nuclear polarization (DNP) and sensitivity enhancement by solid-state DNP all depend on introducing paramagnetic species into an otherwise diamagnetic NMR sample. The species can be introduced by site-directed spin labeling, which offers precise control for positioning the label in the sequence of a biopolymer. However, internal flexibility of the spin label gives rise to dynamic processes that potentially influence PRE and DNP behavior and leads to a spatial distribution of the electron spin even in solid samples. Internal dynamics of spin labels and their static conformational distributions have been studied mainly by electron paramagnetic resonance spectroscopy and molecular dynamics simulations, with a large body of results for the most widely applied methanethiosulfonate spin label MTSL. These results are critically discussed in a unifying picture based on rotameric states of the group that carries the spin label. Deficiencies in our current understanding of dynamics and conformations of spin labeled groups and of their influence on NMR observables are highlighted and directions for further research suggested.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zürich, Laboratory Physical Chemistry, Zürich, Switzerland.
| |
Collapse
|
27
|
Cunningham TF, McGoff MS, Sengupta I, Jaroniec CP, Horne WS, Saxena S. High-resolution structure of a protein spin-label in a solvent-exposed β-sheet and comparison with DEER spectroscopy. Biochemistry 2012; 51:6350-9. [PMID: 22809334 DOI: 10.1021/bi300328w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X-ray crystallography has been a useful tool in the development of site-directed spin labeling by resolving rotamers of the nitroxide spin-label side chain in a variety of α-helical environments. In this work, the crystal structure of a doubly spin-labeled N8C/K28C mutant of the B1 immunoglobulin-binding domain of protein G (GB1) was solved. The double mutant formed a domain-swapped dimer under crystallization conditions. Two rotameric states of the spin-label were resolved at the solvent-exposed α-helical site, at residue 28; these are in good agreement with rotamers previously reported for helical structures. The second site, at residue 8 on an interior β-strand, shows the presence of three distinct solvent-exposed side-chain rotamers. One of these rotamers is rarely observed within crystal structures of R1 sites and suggests that the H(α) and S(δ) hydrogen bond that is common to α-helical sites is absent at this interior β-strand residue. Variable temperature continuous wave (CW) experiments of the β-strand site showed two distinct components that were correlated to the rotameric states observed in crystallography. Interestingly, the CW data at room temperature could be fit without the use of an order parameter, which is consistent with the lack of the H(α) and S(δ) interaction. Additionally, double electron electron resonance (DEER) spectroscopy was performed on the GB1 double mutant in its monomeric form and yielded a most probable interspin distance of 25 ± 1 Å. In order to evaluate the accuracy of the measured DEER distance, the rotamers observed in the crystal structure of the domain-swapped GB1 dimer were modeled into a high-resolution structure of the wild type monomeric GB1. The distances generated in the resulting GB1 structural models match the most probable DEER distance within ~2 Å. The results are interesting as they indicate by direct experimental measurement that the rotameric states of R1 found in this crystal provide a very close match to the most probable distance measured by DEER.
Collapse
Affiliation(s)
- Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
28
|
Flores Jiménez RH, Cafiso DS. The N-terminal domain of a TonB-dependent transporter undergoes a reversible stepwise denaturation. Biochemistry 2012; 51:3642-50. [PMID: 22497281 DOI: 10.1021/bi300118a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gram-negative bacteria contain a family of outer membrane transport proteins that function in the uptake of rare nutrients, such as iron and vitamin B(12). These proteins are termed TonB-dependent because transport requires an interaction with the inner-membrane protein TonB. Using a combination of site-directed spin labeling and chemical denaturation, we examined the site-specific unfolding of regions of the Escherichia coli vitamin B(12) transporter, BtuB. The data indicate that a portion of the N-terminal region of the protein, which occupies the lumen of the BtuB barrel, denatures prior to the unfolding of the barrel and that the free energy of folding for the N-terminus is smaller than that typically seen for globular proteins. Moreover, the data indicate that the N-terminal domain does not unfold in a single event but unfolds in a series of independent steps. The unfolding of the N-terminus is reversible, and removal of denaturant restores the native fold of the protein. These data are consistent with proposed transport mechanisms that involve a transient rearrangement or unfolding of the N-terminus of the protein, and they provide evidence of a specific protein conformation that might be an intermediate accessed during transport.
Collapse
Affiliation(s)
- Ricardo H Flores Jiménez
- Department of Chemistry, Biophysics Program, and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | | |
Collapse
|
29
|
Sarver JL, Townsend JE, Rajapakse G, Jen-Jacobson L, Saxena S. Simulating the dynamics and orientations of spin-labeled side chains in a protein-DNA complex. J Phys Chem B 2012; 116:4024-33. [PMID: 22404310 PMCID: PMC3325110 DOI: 10.1021/jp211094n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed spin labeling, wherein a nitroxide side chain is introduced into a protein at a selected mutant site, is increasingly employed to investigate biological systems by electron spin resonance (ESR) spectroscopy. An understanding of the packing and dynamics of the spin label is needed to extract the biologically relevant information about the macromolecule from ESR measurements. In this work, molecular dynamics (MD) simulations were performed on the spin-labeled restriction endonuclease, EcoRI in complex with DNA. Mutants of this homodimeric enzyme were previously constructed, and distance measurements were performed using the double electron electron resonance experiment. These correlated distance constraints have been leveraged with MD simulations to learn about side chain packing and preferred conformers of the spin label on sites in an α-helix and a β-strand. We found three dihedral angles of the spin label side chain to be most sensitive to the secondary structure where the spin label was located. Conformers sampled by the spin label differed between secondary structures as well. C(α)-C(α) distance distributions were constructed and used to extract details about the protein backbone mobility at the two spin labeled sites. These simulation studies enhance our understanding of the behavior of spin labels in proteins and thus expand the ability of ESR spectroscopy to contribute to knowledge of protein structure and dynamics.
Collapse
Affiliation(s)
- Jessica L. Sarver
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave., Pittsburgh, PA 15260
| | - Jacqueline E. Townsend
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave., Pittsburgh, PA 15260
| | - Gayathri Rajapakse
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave., Pittsburgh, PA 15260
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave., Pittsburgh, PA 15260
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave., Pittsburgh, PA 15260
| |
Collapse
|
30
|
Kroncke BM, Columbus L. Identification and removal of nitroxide spin label contaminant: impact on PRE studies of α-helical membrane proteins in detergent. Protein Sci 2012; 21:589-95. [PMID: 22389096 DOI: 10.1002/pro.2038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/06/2022]
Abstract
NMR paramagnetic relaxation enhancement (PRE) provides long-range distance constraints (~15-25 Å) that can be critical to determining overall protein topology, especially where long-range NOE information is unavailable such as in the case of larger proteins that require deuteration. However, several challenges currently limit the use of NMR PRE for α-helical membrane proteins. One challenge is the nonspecific association of the nitroxide spin label to the protein-detergent complex that can result in spurious PRE derived distance restraints. The effect of the nitroxide spin label contaminant is evaluated and quantified and a robust method for the removal of the contaminant is provided to advance the application of PRE restraints to membrane protein NMR structure determination.
Collapse
Affiliation(s)
- Brett M Kroncke
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
31
|
Jiménez RHF, Freed DM, Cafiso DS. Lipid and membrane mimetic environments modulate spin label side chain configuration in the outer membrane protein A. J Phys Chem B 2011; 115:14822-30. [PMID: 22034842 DOI: 10.1021/jp207420d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present work, the factors that determine EPR line shapes from spin labels at the protein-hydrocarbon interface of a β-barrel membrane protein are examined. The EPR spectra from hydrocarbon facing sites in the outer membrane protein A (OmpA) are highly dependent upon the detergent or lipid into which OmpA is reconstituted. In general, line shapes at these sites are correlated with the solvent accessibility in the supporting amphiphile. A notable exception is CHAPS, which yields rigid limit EPR line shapes for labels at every position along a transmembrane β-strand in OmpA. EPR line shapes from the surface of OmpA are not strongly influenced by steric interference with neighboring side chains, but are modulated by solutes that should interact with hydrophobic surfaces. These results suggest that differences in EPR spectra in different supporting environments are not the result of differences in protein dynamics but are a result of different configurations or rotameric states that are assumed by the label. This conclusion is supported by distance measurements across the OmpA β-barrel, which indicate that labels yielding more motionally restricted line shapes interact more closely with the protein surface. These results have implications for the use of spin-label-derived distance constraints in protein structure determination and demonstrate that spin labels on membrane proteins provide a highly sensitive probe for the environment surrounding a membrane protein.
Collapse
Affiliation(s)
- Ricardo H Flores Jiménez
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | | | | |
Collapse
|