1
|
Endutkin AV, Yakovlev AO, Zharkov TD, Golyshev VM, Yudkina AV, Zharkov DO. Error-Prone DNA Synthesis on Click-Ligated Templates. DOKL BIOCHEM BIOPHYS 2024; 518:376-381. [PMID: 39196527 DOI: 10.1134/s1607672924600416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 08/29/2024]
Abstract
Click ligation is a technology of joining DNA fragments based on azide-alkyne cycloaddition. In the most common variant, click ligation introduces a 4-methyl-1,2,3-triazole (trz) group instead of the phosphodiester bond between two adjacent nucleosides. While this linkage is believed to be biocompatible, little is known about the possibility of its recognition by DNA repair systems or its potential for DNA polymerase stalling and miscoding. Here we report that trz linkage is resistant to several human and bacterial endonucleases involved in DNA repair. At the same time, it strongly blocks some DNA polymerases (Pfu, DNA polymerase β) while allowing bypass by others (phage RB69 polymerase, Klenow fragment). All polymerases, except for DNA polymerase β, showed high frequency of misinsertion at the trz site, incorporating dAMP instead of the next complementary nucleotide. Thus, click ligation can be expected to produce a large amount of errors if used in custom gene synthesis.
Collapse
Affiliation(s)
- A V Endutkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - A O Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - T D Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - V M Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Yudkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - D O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
2
|
Tokuyama Y, Mori K, Isobe M, Terato H. Comparison of mutation spectra induced by gamma-rays and carbon ion beams. JOURNAL OF RADIATION RESEARCH 2024; 65:491-499. [PMID: 38940734 PMCID: PMC11262859 DOI: 10.1093/jrr/rrae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Indexed: 06/29/2024]
Abstract
The ionizing radiation with high linear energy transfer (LET), such as a heavy ion beam, induces more serious biological effects than low LET ones, such as gamma- and X-rays. This indicates a difference in the DNA damage produced by low and high LET radiations and their biological effects. We have been studying the differences in DNA damage produced by gamma-rays and carbon ion beams. Therefore, we analyze mutations induced by both ionizing radiations to discuss the differences in their biological effects in this study. pUC19 plasmid DNA was irradiated by carbon ion beams in the solution containing 1M dimethyl sulfoxide to mimic a cellular condition. The irradiated DNA was cloned in competent cells of Escherichia coli. The clones harboring some mutations in the region of lacZα were selected, and the sequence alterations were analyzed. A one-deletion mutation is significant in the carbon-irradiated DNA, and the C:G↔T:A transition is minor. On the other hand, the gamma-irradiated DNA shows mainly G:C↔T:A transversion. These results suggest that carbon ion beams produce complex DNA damage, and gamma-rays are prone to single oxidative base damage, such as 8-oxoguanine. Carbon ion beams can also introduce oxidative base damage, and the damage species is 5-hydroxycytosine. This was consistent with our previous results of DNA damage caused by heavy ion beams. We confirmed the causal DNA damage by mass spectrometry for these mutations.
Collapse
Affiliation(s)
- Yuka Tokuyama
- Analytical Research Center for Experimental Science, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Kanae Mori
- Analytical Research Center for Experimental Science, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Midori Isobe
- Advanced Science Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroaki Terato
- Advanced Science Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Neurauter CG, Pannone M, Sousa MMLD, Wang W, Kuśnierczyk A, Luna L, Sætrom P, Scheffler K, Bjørås M. Enhanced glutathione levels confer resistance to apoptotic and ferroptotic programmed cell death in NEIL DNA glycosylase deficient HAP1 cells. Free Radic Biol Med 2024; 213:470-487. [PMID: 38301978 DOI: 10.1016/j.freeradbiomed.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
The NTHL1 and NEIL1-3 DNA glycosylases are major enzymes in the removal of oxidative DNA base lesions, via the base excision repair (BER) pathway. It is expected that lack of these DNA glycosylases activities would render cells vulnerable to oxidative stress, promoting cell death. Intriguingly, we found that single, double, triple, and quadruple DNA glycosylase knockout HAP1 cells are, however, more resistant to oxidative stress caused by genotoxic agents than wild type cells. Furthermore, glutathione depletion in NEIL deficient cells further enhances resistance to cell death induced via apoptosis and ferroptosis. Finally, we observed higher basal level of glutathione and differential expression of NRF2-regulated genes associated with glutathione homeostasis in the NEIL triple KO cells. We propose that lack of NEIL DNA glycosylases causes aberrant transcription and subsequent errors in protein synthesis. This leads to increased endoplasmic reticulum stress and proteotoxic stress. To counteract the elevated intracellular stress, an adaptive response mediated by increased glutathione basal levels, rises in these cells. This study reveals an unforeseen role of NEIL glycosylases in regulation of resistance to oxidative stress, suggesting that modulation of NEIL glycosylase activities is a potential approach to improve the efficacy of e.g. anti-inflammatory therapies.
Collapse
Affiliation(s)
- Christine Gran Neurauter
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway.
| | - Marco Pannone
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Mirta Mittelstedt Leal de Sousa
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway.
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Katja Scheffler
- Department of Neurology, St.Olavs University Hospital, Trondheim, 7006, Norway; Department of Neuromedicine and Movement Science (INB), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| |
Collapse
|
4
|
Sakurai Y, Yamaguchi T, Yoshida T, Horiba M, Inoue T, Obika S. Synthesis and Properties of Nucleobase-Sugar Dual Modified Nucleic Acids: 2 '-OMe-RNA and scpBNA Bearing a 5-Hydroxycytosine Nucleobase. J Org Chem 2023; 88:154-162. [PMID: 36520114 DOI: 10.1021/acs.joc.2c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Naturally occurring 5-hydroxycytosine (5-OHCyt), which is associated with DNA damage, was recently found to reduce the hepatotoxicity of antisense oligonucleotides (ASOs) without compromising its antisense activity when used as a replacement for cytosine (Cyt). Additionally, sugar-modified nucleic acids, such as 2'-O-methylribonucleic acid (2'-OMe-RNA) and 2'-O,4'-C-spirocyclopropylene-bridged nucleic acid (scpBNA), have emerged as useful antisense materials. Herein, we aimed to combine these two advantages by designing dual modified nucleic acids 2'-OMe-RNA-5-OHCyt and scpBNA-5-OHCyt bearing the 5-OHCyt nucleobase to develop efficient and safe ASOs. We describe the synthesis of 2'-OMe-RNA-5-OHCyt and scpBNA-5-OHCyt phosphoramidites and their incorporation into oligonucleotides (ONs). The duplex-forming ability and base discrimination properties of 2'-OMe-RNA-5-OHCyt- and scpBNA-5-OHCyt-modified ONs were similar to those of 2'-OMe-RNA-Cyt- and scpBNA-mCyt-modified ONs, respectively. We also synthesized two 2'-OMe-RNA-5-OHCyt-modified ASOs, and one of the two was found to exhibit reduced hepatotoxicity while retaining target mRNA knockdown activity in in vivo experiments.
Collapse
Affiliation(s)
- Yota Sakurai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tokuyuki Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Masahiko Horiba
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Park J, Youn HS, An JY, Lee Y, Eom SH, Wang J. Structure of New Binary and Ternary DNA Polymerase Complexes From Bacteriophage RB69. Front Mol Biosci 2021; 8:704813. [PMID: 34869578 PMCID: PMC8639217 DOI: 10.3389/fmolb.2021.704813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA polymerase plays a critical role in passing the genetic information of any living organism to its offspring. DNA polymerase from enterobacteria phage RB69 (RB69pol) has both polymerization and exonuclease activities and has been extensively studied as a model system for B-family DNA polymerases. Many binary and ternary complex structures of RB69pol are known, and they all contain a single polymerase-primer/template (P/T) DNA complex. Here, we report a crystal structure of the exonuclease-deficient RB69pol with the P/T duplex in a dimeric form at a resolution of 2.2 Å. The structure includes one new closed ternary complex with a single divalent metal ion bound and one new open binary complex in the pre-insertion state with a vacant dNTP-binding pocket. These complexes suggest that initial binding of the correct dNTP in the open state is much weaker than expected and that initial binding of the second divalent metal ion in the closed state is also much weaker than measured. Additional conformational changes are required to convert these complexes to high-affinity states. Thus, the measured affinities for the correct incoming dNTP and divalent metal ions are average values from many conformationally distinctive states. Our structure provides new insights into the order of the complex assembly involving two divalent metal ions. The biological relevance of specific interactions observed between one RB69pol and the P/T duplex bound to the second RB69pol observed within this dimeric complex is discussed.
Collapse
Affiliation(s)
- Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea
| | - Hyung-Seop Youn
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,BIO R&D Center, Ingredient Business Unit, Daesang Corporation, Gyeonggi-do, Korea
| | - Jun Yop An
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Virocure Inc., Seoul, Korea
| | - Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Metabolic Regulation Research Center, Korea Research Institute of BIoscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Department of Chemistry, GIST, Gwangju, Korea
| | - Jimin Wang
- Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Department of Molecular Biophysics and Biochemistry, New Haven, CT, United States
| |
Collapse
|
6
|
Wallace SS. Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers. Int J Radiat Biol 2021; 98:367-382. [PMID: 34187282 DOI: 10.1080/09553002.2021.1948141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To summarize succinctly the 50 years of research undertaken in my laboratory and to provide an overview of my career in science. It is certainly a privilege to have been asked by Carmel Mothersill and Penny Jeggo to contribute to this special issue of the International Journal of Radiation Biology focusing on the work of women in the radiation sciences. CONCLUSION My students, post-docs and I identified and characterized a number of the enzymes that recognize and remove radiation-damaged DNA bases, the DNA glycosylases, which are the first enzymes in the Base Excision Repair (BER) pathway. Although this pathway actually evolved to repair oxidative and other endogenous DNA damages, it is also responsible for removing the vast majority of radiation-induced DNA damages including base damages, alkali-labile lesions and single strand breaks. However, because of its high efficiency, attempted BER of clustered lesions produced by ionizing radiation, can have disastrous effects on cellular DNA. We also evaluated the potential biological consequences of many of the radiation-induced DNA lesions. In addition, with collaborators, we employed computational techniques, x-ray crystallography and single molecule approaches to answer many questions at the molecular level.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
7
|
Bacolla A, Sengupta S, Ye Z, Yang C, Mitra J, De-Paula R, Hegde ML, Ahmed Z, Mort M, Cooper D, Mitra S, Tainer JA. Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Res 2021; 49:221-243. [PMID: 33300026 PMCID: PMC7797072 DOI: 10.1093/nar/gkaa1120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Human genome stability requires efficient repair of oxidized bases, which is initiated via damage recognition and excision by NEIL1 and other base excision repair (BER) pathway DNA glycosylases (DGs). However, the biological mechanisms underlying detection of damaged bases among the million-fold excess of undamaged bases remain enigmatic. Indeed, mutation rates vary greatly within individual genomes, and lesion recognition by purified DGs in the chromatin context is inefficient. Employing super-resolution microscopy and co-immunoprecipitation assays, we find that acetylated NEIL1 (AcNEIL1), but not its non-acetylated form, is predominantly localized in the nucleus in association with epigenetic marks of uncondensed chromatin. Furthermore, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed non-random AcNEIL1 binding near transcription start sites of weakly transcribed genes and along highly transcribed chromatin domains. Bioinformatic analyses revealed a striking correspondence between AcNEIL1 occupancy along the genome and mutation rates, with AcNEIL1-occupied sites exhibiting fewer mutations compared to AcNEIL1-free domains, both in cancer genomes and in population variation. Intriguingly, from the evolutionarily conserved unstructured domain that targets NEIL1 to open chromatin, its damage surveillance of highly oxidation-susceptible sites to preserve essential gene function and to limit instability and cancer likely originated ∼500 million years ago during the buildup of free atmospheric oxygen.
Collapse
Affiliation(s)
- Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Zu Ye
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunying Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ruth B De-Paula
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
9
|
Alhmoud JF, Woolley JF, Al Moustafa AE, Malki MI. DNA Damage/Repair Management in Cancers. Cancers (Basel) 2020; 12:E1050. [PMID: 32340362 PMCID: PMC7226105 DOI: 10.3390/cancers12041050] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
DNA damage is well recognized as a critical factor in cancer development and progression. DNA lesions create an abnormal nucleotide or nucleotide fragment, causing a break in one or both chains of the DNA strand. When DNA damage occurs, the possibility of generated mutations increases. Genomic instability is one of the most important factors that lead to cancer development. DNA repair pathways perform the essential role of correcting the DNA lesions that occur from DNA damaging agents or carcinogens, thus maintaining genomic stability. Inefficient DNA repair is a critical driving force behind cancer establishment, progression and evolution. A thorough understanding of DNA repair mechanisms in cancer will allow for better therapeutic intervention. In this review we will discuss the relationship between DNA damage/repair mechanisms and cancer, and how we can target these pathways.
Collapse
Affiliation(s)
- Jehad F. Alhmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - John F. Woolley
- Department of Molecular & Clinical Pharmacology, Liverpool University, Liverpool L69 3GE, UK;
| | | | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, Doha P. O. Box 2713, Qatar;
| |
Collapse
|
10
|
Degtyareva NP, Saini N, Sterling JF, Placentra VC, Klimczak LJ, Gordenin DA, Doetsch PW. Mutational signatures of redox stress in yeast single-strand DNA and of aging in human mitochondrial DNA share a common feature. PLoS Biol 2019; 17:e3000263. [PMID: 31067233 PMCID: PMC6527239 DOI: 10.1371/journal.pbio.3000263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/20/2019] [Accepted: 04/25/2019] [Indexed: 11/18/2022] Open
Abstract
Redox stress is a major hallmark of cancer. Analysis of thousands of sequenced cancer exomes and whole genomes revealed distinct mutational signatures that can be attributed to specific sources of DNA lesions. Clustered mutations discovered in several cancer genomes were linked to single-strand DNA (ssDNA) intermediates in various processes of DNA metabolism. Previously, only one clustered mutational signature had been clearly associated with a subclass of ssDNA-specific apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases. Others remain to be elucidated. We report here deciphering of the mutational spectra and mutational signature of redox stress in ssDNA of budding yeast and the signature of aging in human mitochondrial DNA. We found that the predominance of C to T substitutions is a common feature of both signatures. Measurements of the frequencies of hydrogen peroxide-induced mutations in proofreading-defective yeast mutants supported the conclusion that hydrogen peroxide-induced mutagenesis is not the result of increased DNA polymerase misincorporation errors but rather is caused by direct damage to DNA. Proteins involved in modulation of chromatin status play a significant role in prevention of redox stress-induced mutagenesis, possibly by facilitating protection through modification of chromatin structure. These findings provide an opportunity for the search and identification of the mutational signature of redox stress in cancers and in other pathological conditions and could potentially be used for informing therapeutic decisions. In addition, the discovery of such signatures that may be present in related organisms should also advance our understanding of evolution.
Collapse
Affiliation(s)
- Natalya P. Degtyareva
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Natalie Saini
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Joan F. Sterling
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Victoria C. Placentra
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Paul W. Doetsch
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ren Z. Molecular events during translocation and proofreading extracted from 200 static structures of DNA polymerase. Nucleic Acids Res 2016; 44:7457-74. [PMID: 27325739 PMCID: PMC5009745 DOI: 10.1093/nar/gkw555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023] Open
Abstract
DNA polymerases in family B are workhorses of DNA replication that carry out the bulk of the job at a high speed with high accuracy. A polymerase in this family relies on a built-in exonuclease for proofreading. It has not been observed at the atomic resolution how the polymerase advances one nucleotide space on the DNA template strand after a correct nucleotide is incorporated, that is, a process known as translocation. It is even more puzzling how translocation is avoided after the primer strand is excised by the exonuclease and returned back to the polymerase active site once an error occurs. The structural events along the bifurcate pathways of translocation and proofreading have been unwittingly captured by hundreds of structures in Protein Data Bank. This study analyzes all available structures of a representative member in family B and reveals the orchestrated event sequence during translocation and proofreading.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA Renz Research, Inc., Westmont, IL 60559, USA
| |
Collapse
|
12
|
Karolak A, van der Vaart A. Molecular Dynamics Simulations of 5-Hydroxycytosine Damaged DNA. J Phys Chem B 2016; 120:42-8. [PMID: 26654566 DOI: 10.1021/acs.jpcb.5b09250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidation of cytosine is a leading cause of mutations and can lead to cancer. Here we report molecular dynamics simulations that characterized the structure and flexibility of 5-hydroxycytosine damaged DNA. A total of four systems were studied: undamaged DNA, damaged DNA base paired to a matching guanine, damaged DNA base paired to a mismatching adenine, and the corresponding undamaged mismatched strand. The simulations showed high spatial similarity between undamaged and damaged DNA; however, the matched damaged strand had greater overtwisting flexibility, and for both the matched and unmatched strands sugar puckering was much more flexible at the damaged site. The mismatch introduced larger changes, notably a loss in hydrogen bonding and a gain in stacking interactions, as well as effects on base pair and step geometry and solvation. Implications for damage recognition are discussed.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
13
|
Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer. Proc Natl Acad Sci U S A 2015; 112:E4571-80. [PMID: 26243878 DOI: 10.1073/pnas.1507709112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During chronic inflammation, neutrophil-secreted hypochlorous acid can damage nearby cells inducing the genomic accumulation of 5-chlorocytosine (5ClC), a known inflammation biomarker. Although 5ClC has been shown to promote epigenetic changes, it has been unknown heretofore if 5ClC directly perpetrates a mutagenic outcome within the cell. The present work shows that 5ClC is intrinsically mutagenic, both in vitro and, at a level of a single molecule per cell, in vivo. Using biochemical and genetic approaches, we have quantified the mutagenic and toxic properties of 5ClC, showing that this lesion caused C→T transitions at frequencies ranging from 3-9% depending on the polymerase traversing the lesion. X-ray crystallographic studies provided a molecular basis for the mutagenicity of 5ClC; a snapshot of human polymerase β replicating across a primed 5ClC-containing template uncovered 5ClC engaged in a nascent base pair with an incoming dATP analog. Accommodation of the chlorine substituent in the template major groove enabled a unique interaction between 5ClC and the incoming dATP, which would facilitate mutagenic lesion bypass. The type of mutation induced by 5ClC, the C→T transition, has been previously shown to occur in substantial amounts both in tissues under inflammatory stress and in the genomes of many inflammation-associated cancers. In fact, many sequence-specific mutational signatures uncovered in sequenced cancer genomes feature C→T mutations. Therefore, the mutagenic ability of 5ClC documented in the present study may constitute a direct functional link between chronic inflammation and the genetic changes that enable and promote malignant transformation.
Collapse
|
14
|
Yang J, Giles LJ, Ruppelt C, Mendel RR, Bittner F, Kirk ML. Oxyl and hydroxyl radical transfer in mitochondrial amidoxime reducing component-catalyzed nitrite reduction. J Am Chem Soc 2015; 137:5276-9. [PMID: 25897643 PMCID: PMC4872596 DOI: 10.1021/jacs.5b01112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combination of electron paramagnetic resonance (EPR) spectroscopy and computational approaches has provided insight into the nature of the reaction coordinate for the one-electron reduction of nitrite by the mitochondrial amidoxime reducing component (mARC) enzyme. The results show that a paramagnetic Mo(V) species is generated when reduced enzyme is exposed to nitrite, and an analysis of the resulting EPR hyperfine parameters confirms that mARC is remarkably similar to the low-pH form of sulfite oxidase. Two mechanisms for nitrite reduction have been considered. The first shows a modest reaction barrier of 14 kcal/mol for the formation of ·NO from unprotonated nitrite substrate. In marked contrast, protonation of the substrate oxygen proximal to Mo in the Mo(IV)-O-N-O substrate-bound species results in barrierless conversion to products. A fragment orbital analysis reveals a high degree of Mo-O(H)-N-O covalency that provides a π-orbital pathway for one-electron transfer to the substrate and defines orbital constraints on the Mo-substrate geometry for productive catalysis in mARC and other pyranopterin molybdenum enzymes that catalyze this one-electron transformation.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001
| | - Logan J. Giles
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001
| | - Christian Ruppelt
- Department of Plant Biology, Braunschweig University of Technology, Humboldtstrasse 1, 38023 Braunschweig, Germany
| | - Ralf R. Mendel
- Department of Plant Biology, Braunschweig University of Technology, Humboldtstrasse 1, 38023 Braunschweig, Germany
| | - Florian Bittner
- Department of Plant Biology, Braunschweig University of Technology, Humboldtstrasse 1, 38023 Braunschweig, Germany
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001
| |
Collapse
|
15
|
Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain. Pharmacol Rep 2015; 67:560-8. [PMID: 25933970 DOI: 10.1016/j.pharep.2014.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 02/02/2023]
Abstract
Oxidative stress is a dysfunctional state of living cells, caused by the disturbance of the pro-/antioxidative equilibrium. This dynamic equilibrium, constitutive for all aerobic organisms, is an inevitable necessity of maintaining the level of oxidative factors on non-destructive value to the cell. Among these factors reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the best known molecules. This review article shows the current state of knowledge on the chemical specificity, relative reactivity and main sources of ROS and RNS in biological systems. As a Part 1 to the report about the role of oxidative stress in psychiatric disorders (see Smaga et al., Pharmacological Reports, this issue), special emphasis is placed on biochemical determinants in nervous tissue, which predisposed it to oxidative damage. Oxidative stress can be identified based on the analysis of various biochemical indicators showing the status of antioxidant barrier or size of the damage. In our article, we have compiled the most commonly used biomarkers of oxidative stress described in the literature with special regard to potentially effective in the early diagnosis of neurodegenerative processes.
Collapse
|
16
|
Gold B, Stone MP, Marky LA. Looking for Waldo: a potential thermodynamic signature to DNA damage. Acc Chem Res 2014; 47:1446-54. [PMID: 24702131 PMCID: PMC3993888 DOI: 10.1021/ar500061p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
DNA in its
simplest form is an ensemble of nucleic acids, water,
and ions, and the conformation of DNA is dependent on the relative
proportions of all three components. When DNA is covalently damaged
by endogenous or exogenous reactive species, including those produced
by some anticancer drugs, the ensemble undergoes localized changes
that affect nucleic acid structure, thermodynamic stability, and the
qualitative and quantative arrangement of associated cations and water
molecules. Fortunately, the biological effects of low levels of DNA
damage are successfully mitigated by a large number of proteins that
efficiently recognize and repair DNA damage in the midst of a vast
excess of canonical DNA. In this Account, we explore the impact
of DNA modifications on
the high resolution and dynamic structure of DNA, DNA stability, and
the uptake of ions and water and explore how these changes may be
sensed by proteins whose function is to initially locate DNA lesions.
We discuss modifications on the nucleobases that are located in the
major and minor grooves of DNA and include lesions that are observed in vivo, including oxidized bases, as well as some synthetic
nucleobases that allow us to probe how the location and nature of
different substituents affect the thermodynamics and structure of
the DNA ensemble. It is demonstrated that disruption of a cation binding
site in the major groove by modification of the N7-position on the
purines, which is the major site for DNA alkylation, is enthalpically
destabilizing. Accordingly, tethering a cationic charge in the major
groove is enthalpically stabilizing. The combined structural
and thermodynamic studies provide a detailed
picture of how different DNA lesions affect the dynamics of DNA and
how modified bases interact with their environment. Our work supports
the hypothesis that there is a “thermodynamic signature”
to DNA lesions that can be exploited in the initial search that requires
differentiation between canonical DNA and DNA with a lesion. The differentiation
between a lesion and a cognate lesion that is a substrate for a particular
enzyme involves another layer of thermodynamic and kinetic factors.
Collapse
Affiliation(s)
- Barry Gold
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Michael P. Stone
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Luis A. Marky
- Department
of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
17
|
Degtyareva NP, Heyburn L, Sterling J, Resnick MA, Gordenin DA, Doetsch PW. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Res 2013; 41:8995-9005. [PMID: 23925127 PMCID: PMC3799438 DOI: 10.1093/nar/gkt671] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Localized hyper-mutability caused by accumulation of lesions in persistent single-stranded (ss) DNA has been recently found in several types of cancers. An increase in endogenous levels of reactive oxygen species (ROS) is considered to be one of the hallmarks of cancers. Employing a yeast model system, we addressed the role of oxidative stress as a potential source of hyper-mutability in ssDNA by modulation of the endogenous ROS levels and by exposing cells to oxidative DNA-damaging agents. We report here that under oxidative stress conditions the majority of base substitution mutations in ssDNA are caused by erroneous, DNA polymerase (Pol) zeta-independent bypass of cytosines, resulting in C to T transitions. For all other DNA bases Pol zeta is essential for ROS-induced mutagenesis. The density of ROS-induced mutations in ssDNA is lower, compared to that caused by UV and MMS, which suggests that ssDNA could be actively protected from oxidative damage. These findings have important implications for understanding mechanisms of oxidative mutagenesis, and could be applied to development of anticancer therapies and cancer prevention.
Collapse
Affiliation(s)
- Natalya P Degtyareva
- Department of Biochemistry, Winship Cancer Institute, Emory University School of Medicine, 4013 Rollins Research Center, Atlanta, GA 30322, USA, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIH, DHHS), Research Triangle Park, NC 27709, USA and Department of Radiation Oncology, Emory University School of Medicine, 4013 Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yao Q, Song CX, He C, Kumaran D, Dunn JJ. Heterologous expression and purification of Arabidopsis thaliana VIM1 protein: in vitro evidence for its inability to recognize hydroxymethylcytosine, a rare base in Arabidopsis DNA. Protein Expr Purif 2012; 83:104-11. [PMID: 22459921 DOI: 10.1016/j.pep.2012.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 01/10/2023]
Abstract
The discovery of 5-hydroxymethyl-cytosine (5hmC) in mammalian cells prompted us to look for this base in the DNA of Arabidopsis thaliana (thale cress), and to ask how well the Arabidopsis Variant in Methylation 1 (VIM1) protein, an essential factor in maintaining 5-cytosine methylation (5mC) homeostasis and epigenetic silencing in this plant, recognizes this novel base. We found that the DNA of Arabidopsis' leaves and flowers contain low levels of 5hmC. We also cloned and expressed in Escherichia coli full-length VIM1 protein, the archetypal member of the five Arabidopsis VIM gene family. Using in vitro binding assays, we observed that full-length VIM1 binds preferentially to hemi-methylated DNA with a single modified 5mCpG site; this result is consistent with its known role in preserving DNA methylation in vivo following DNA replication. However, when 5hmC replaces one or both cytosine residues at a palindromic CpG site, VIM1 binds with approximately ≥10-fold lower affinity. These results suggest that 5hmC may contribute to VIM-mediated passive loss of cytosine methylation in vivo during Arabidopsis DNA replication.
Collapse
Affiliation(s)
- Qin Yao
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | | | | | | | | |
Collapse
|
19
|
Ganguly M, Szulik MW, Donahue PS, Clancy K, Stone MP, Gold B. Thermodynamic signature of DNA damage: characterization of DNA with a 5-hydroxy-2'-deoxycytidine·2'-deoxyguanosine base pair. Biochemistry 2012; 51:2018-27. [PMID: 22332945 DOI: 10.1021/bi3000269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidation of DNA due to exposure to reactive oxygen species is a major source of DNA damage. One of the oxidation lesions formed, 5-hydroxy-2'-deoxycytidine, has been shown to miscode by some replicative DNA polymerases but not by error prone polymerases capable of translesion synthesis. The 5-hydroxy-2'-deoxycytidine lesion is repaired by DNA glycosylases that require the 5-hydroxycytidine base to be extrahelical so it can enter into the enzyme's active site where it is excised off the DNA backbone to afford an abasic site. The thermodynamic and nuclear magnetic resonance results presented here describe the effect of a 5-hydroxy-2'-deoxycytidine·2'-deoxyguanosine base pair on the stability of two different DNA duplexes. The results demonstrate that the lesion is highly destabilizing and that the energy barrier for the unstacking of 5-hydroxy-2'-deoxycytidine from the DNA duplex may be low. This could provide a thermodynamic mode of adduct identification by DNA glycosylases that requires the lesion to be extrahelical.
Collapse
Affiliation(s)
- Manjori Ganguly
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | | | |
Collapse
|