1
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
2
|
Yu Z, Wang J. Strategies and procedures to generate chimeric DNA polymerases for improved applications. Appl Microbiol Biotechnol 2024; 108:445. [PMID: 39167106 PMCID: PMC11339088 DOI: 10.1007/s00253-024-13276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Chimeric DNA polymerase with notable performance has been generated for wide applications including DNA amplification and molecular diagnostics. This rational design method aims to improve specific enzymatic characteristics or introduce novel functions by fusing amino acid sequences from different proteins with a single DNA polymerase to create a chimeric DNA polymerase. Several strategies prove to be efficient, including swapping homologous domains between polymerases to combine benefits from different species, incorporating additional domains for exonuclease activity or enhanced binding ability to DNA, and integrating functional protein along with specific protein structural pattern to improve thermal stability and tolerance to inhibitors, as many cases in the past decade shown. The conventional protocol to develop a chimeric DNA polymerase with desired traits involves a Design-Build-Test-Learn (DBTL) cycle. This procedure initiates with the selection of a parent polymerase, followed by the identification of relevant domains and devising a strategy for fusion. After recombinant expression and purification of chimeric polymerase, its performance is evaluated. The outcomes of these evaluations are analyzed for further enhancing and optimizing the functionality of the polymerase. This review, centered on microorganisms, briefly outlines typical instances of chimeric DNA polymerases categorized, and presents a general methodology for their creation. KEY POINTS: • Chimeric DNA polymerase is generated by rational design method. • Strategies include domain exchange and addition of proteins, domains, and motifs. • Chimeric DNA polymerase exhibits improved enzymatic properties or novel functions.
Collapse
Affiliation(s)
- Zhuoxuan Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Xiang R, Liu GY, Hou Y, Xie LX, Wang QS, Hu SQ. Double domain fusion improves the reverse transcriptase activity and inhibitor tolerance of Bst DNA polymerase. Int J Biol Macromol 2024; 274:133243. [PMID: 38901507 DOI: 10.1016/j.ijbiomac.2024.133243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/μL sodium heparin, 0.8 ng/μL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/μL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.
Collapse
Affiliation(s)
- Rong Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guang-Yi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangzhou Enzyvalley Biotech Co., Ltd., Guangzhou 510555, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long-Xu Xie
- Guangzhou Hybribio Pharmaceutical Technology Co., Ltd., Guangzhou 510700, China
| | - Qing-Song Wang
- Guangzhou Hybribio Pharmaceutical Technology Co., Ltd., Guangzhou 510700, China
| | - Song-Qing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Li J, Li Y, Li Y, Ma Y, Xu W, Wang J. An enhanced activity and thermostability of chimeric Bst DNA polymerase for isothermal amplification applications. Appl Microbiol Biotechnol 2023; 107:6527-6540. [PMID: 37672070 DOI: 10.1007/s00253-023-12751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a widely used method for clinical diagnosis, customs quarantine, and disease prevention. However, the low catalytic activity of Bst DNA polymerase has made it challenging to develop rapid and reliable point-of-care testing. Herein, we developed a series of Bst DNA polymerase mutants with enhanced activity by predicting and analyzing the activity sites. Among these mutants, single mutants K431D and K431E showed a 1.93- and 2.03-fold increase in catalytic efficiency, respectively. We also created a chimeric protein by fusing the DNA-binding domain of DNA ligase from Pyrococcus abyssi (DBD), namely DBD-K431E, which enabled real-time LAMP at high temperatures up to 73 ℃ and remained active after heating at 70 ℃ for 8 h. The chimeric DBD-K431E remained active in the presence of 50 U/mL heparin, 10% ethanol, and up to 100 mM NaCl, and showed higher activity in 110 mM (NH4)2SO4, 110 mM KCl, and 12 mM MgSO4. Notably, it generated a fluorescence signal during the detection of Salmonella typhimurium at 2 × 102 ag/μL of genomic DNA and 1.24 CFU/mL of bacterial colony, outperforming the wild type and the commercial counterpart Bst 2.0. Our results suggest that the DBD-K431E variant could be a promising tool for general molecular biology research and clinical diagnostics. KEY POINTS: • Residue K431 is probably a key site of Bst DNA polymerase activity • The chimeric DBD-K431E is more inhibitor tolerant and thermostable than Bst-LF • The DBD-K431E variant can detect Salmonella typhimurium at 102 ag/μL or 100 CFU/mL.
Collapse
Affiliation(s)
- Jiaxuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Oscorbin I, Filipenko M. Bst polymerase - a humble relative of Taq polymerase. Comput Struct Biotechnol J 2023; 21:4519-4535. [PMID: 37767105 PMCID: PMC10520511 DOI: 10.1016/j.csbj.2023.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
DNA polymerases are a superfamily of enzymes synthesizing DNA using DNA as a template. They are essential for nucleic acid metabolism and for DNA replication and repair. Modern biotechnology and molecular diagnostics rely heavily on DNA polymerases in analyzing nucleic acids. Among a variety of discovered DNA polymerases, Bst polymerase, a large fragment of DNA polymerase I from Geobacillus stearothermophilus, is one of the most commonly used but is not as well studied as Taq polymerase. The ability of Bst polymerase to displace an upstream DNA strand during synthesis, coupled with its moderate thermal stability, has provided the basis for several isothermal DNA amplification methods, including LAMP, WGA, RCA, and many others. Bst polymerase is one of the key components defining the robustness and analytical characteristics of diagnostic test systems based on isothermal amplification. Here, we present an overview of the biochemical and structural features of Bst polymerase and provide information on its mutated analogs.
Collapse
Affiliation(s)
- Igor Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Ordóñez CD, Redrejo-Rodríguez M. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions. Int J Mol Sci 2023; 24:9331. [PMID: 37298280 PMCID: PMC10253169 DOI: 10.3390/ijms24119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
In the same way that specialized DNA polymerases (DNAPs) replicate cellular and viral genomes, only a handful of dedicated proteins from various natural origins as well as engineered versions are appropriate for competent exponential amplification of whole genomes and metagenomes (WGA). Different applications have led to the development of diverse protocols, based on various DNAPs. Isothermal WGA is currently widely used due to the high performance of Φ29 DNA polymerase, but PCR-based methods are also available and can provide competent amplification of certain samples. Replication fidelity and processivity must be considered when selecting a suitable enzyme for WGA. However, other properties, such as thermostability, capacity to couple replication, and double helix unwinding, or the ability to maintain DNA replication opposite to damaged bases, are also very relevant for some applications. In this review, we provide an overview of the different properties of DNAPs widely used in WGA and discuss their limitations and future research directions.
Collapse
Affiliation(s)
- Carlos D. Ordóñez
- CIC bioGUNE, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain
| | - Modesto Redrejo-Rodríguez
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
7
|
Diatlova EA, Mechetin GV, Yudkina AV, Zharkov VD, Torgasheva NA, Endutkin AV, Shulenina OV, Konevega AL, Gileva IP, Shchelkunov SN, Zharkov DO. Correlated Target Search by Vaccinia Virus Uracil-DNA Glycosylase, a DNA Repair Enzyme and a Processivity Factor of Viral Replication Machinery. Int J Mol Sci 2023; 24:ijms24119113. [PMID: 37298065 DOI: 10.3390/ijms24119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The protein encoded by the vaccinia virus D4R gene has base excision repair uracil-DNA N-glycosylase (vvUNG) activity and also acts as a processivity factor in the viral replication complex. The use of a protein unlike PolN/PCNA sliding clamps is a unique feature of orthopoxviral replication, providing an attractive target for drug design. However, the intrinsic processivity of vvUNG has never been estimated, leaving open the question whether it is sufficient to impart processivity to the viral polymerase. Here, we use the correlated cleavage assay to characterize the translocation of vvUNG along DNA between two uracil residues. The salt dependence of the correlated cleavage, together with the similar affinity of vvUNG for damaged and undamaged DNA, support the one-dimensional diffusion mechanism of lesion search. Unlike short gaps, covalent adducts partly block vvUNG translocation. Kinetic experiments show that once a lesion is found it is excised with a probability ~0.76. Varying the distance between two uracils, we use a random walk model to estimate the mean number of steps per association with DNA at ~4200, which is consistent with vvUNG playing a role as a processivity factor. Finally, we show that inhibitors carrying a tetrahydro-2,4,6-trioxopyrimidinylidene moiety can suppress the processivity of vvUNG.
Collapse
Affiliation(s)
- Evgeniia A Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Grigory V Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Vasily D Zharkov
- Biology Department, Tomsk State University, 634050 Tomsk, Russia
| | - Natalia A Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Olga V Shulenina
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Andrey L Konevega
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Irina P Gileva
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Sergei N Shchelkunov
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Hu W, Wang J, Li J, Yang M, Li Z, Zhang X, Wu F, Zhang Y, Luo Z, Xu H. Improvement of duplex-specific nuclease salt tolerance by fusing DNA-binding domain of DNase from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix. Extremophiles 2023; 27:11. [PMID: 37178420 DOI: 10.1007/s00792-023-01296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Salt tolerance is an important property of duplex-specific nuclease (DSN). DSN with high salt tolerance can be more widely used in genetic engineering, especially in the production of nucleic acid drugs. To improve the salt tolerance of DSN, we selected five DNA-binding domains from extremophilic organisms, which have been shown the ability to improve salt tolerance of DNA polymerases and nucleases. The experimental results demonstrated that the fusion protein TK-DSN produced by fusing a N-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs domain from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix, has a significantly improved salt tolerance. TK-DSN can tolerate the concentration of NaCl up to 800 mM; in addition, the ability of digesting DNA was also enhanced during in vitro transcription and RNA purification. This strategy provides the method for the personalized customization of biological tool enzymes for different applications.
Collapse
Affiliation(s)
- Wenhao Hu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Juan Li
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, Wuhan, 430040, China
| | - Mengxia Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhixing Li
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuning Zhang
- Jiangsu BestEnzymes Biotech Co. Ltd, Lianyungang, 222005, China
| | - Fang Wu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yaqi Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhidan Luo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Henghao Xu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
9
|
Akram F, Shah FI, Ibrar R, Fatima T, Haq IU, Naseem W, Gul MA, Tehreem L, Haider G. Bacterial thermophilic DNA polymerases: A focus on prominent biotechnological applications. Anal Biochem 2023; 671:115150. [PMID: 37054862 DOI: 10.1016/j.ab.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; The University of Lahore, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahmood Ayaz Gul
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Tehreem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ghanoor Haider
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
10
|
Paik I, Ngo PHT, Shroff R, Diaz DJ, Maranhao AC, Walker DJ, Bhadra S, Ellington AD. Improved Bst DNA Polymerase Variants Derived via a Machine Learning Approach. Biochemistry 2023; 62:410-418. [PMID: 34762799 PMCID: PMC9514386 DOI: 10.1021/acs.biochem.1c00451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The DNA polymerase I from Geobacillus stearothermophilus (also known as Bst DNAP) is widely used in isothermal amplification reactions, where its strand displacement ability is prized. More robust versions of this enzyme should be enabled for diagnostic applications, especially for carrying out higher temperature reactions that might proceed more quickly. To this end, we appended a short fusion domain from the actin-binding protein villin that improved both stability and purification of the enzyme. In parallel, we have developed a machine learning algorithm that assesses the relative fit of individual amino acids to their chemical microenvironments at any position in a protein and applied this algorithm to predict sequence substitutions in Bst DNAP. The top predicted variants had greatly improved thermotolerance (heating prior to assay), and upon combination, the mutations showed additive thermostability, with denaturation temperatures up to 2.5 °C higher than the parental enzyme. The increased thermostability of the enzyme allowed faster loop-mediated isothermal amplification assays to be carried out at 73 °C, where both Bst DNAP and its improved commercial counterpart Bst 2.0 are inactivated. Overall, this is one of the first examples of the application of machine learning approaches to the thermostabilization of an enzyme.
Collapse
Affiliation(s)
- Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, the University of Texas at Austin, Austin, Texas 78712, United States; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H. T. Ngo
- Department of Molecular Biosciences, College of Natural Sciences, the University of Texas at Austin, Austin, Texas 78712, United States; Center for Systems and Synthetic Biology and Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raghav Shroff
- Department of Molecular Biosciences, College of Natural Sciences, the University of Texas at Austin, Austin, Texas 78712, United States; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States; CCDC Army Research Lab-South, Austin, Texas 78712, United States
| | - Daniel J. Diaz
- Center for Systems and Synthetic Biology and Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andre C. Maranhao
- Department of Molecular Biosciences, College of Natural Sciences, the University of Texas at Austin, Austin, Texas 78712, United States; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - David J.F. Walker
- Department of Molecular Biosciences, College of Natural Sciences, the University of Texas at Austin, Austin, Texas 78712, United States; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, the University of Texas at Austin, Austin, Texas 78712, United States; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, the University of Texas at Austin, Austin, Texas 78712, United States; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Oscorbin IP, Wong PF, Boyarskikh UA, Khrapov EA, Filipenko ML. The attachment of a DNA-binding Sso7d-like protein improves processivity and resistance to inhibitors of M-MuLV reverse transcriptase. FEBS Lett 2020; 594:4338-4356. [PMID: 32970841 DOI: 10.1002/1873-3468.13934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022]
Abstract
Reverse transcriptases (RTs) are a standard tool in both fundamental studies and diagnostics. RTs should possess elevated temperature optimum, high thermal stability, processivity and tolerance to contaminants. Here, we constructed a set of chimeric RTs, based on the combination of the Moloney murine leukaemia virus (M-MuLV) RT and either of two DNA-binding domains: the DNA-binding domain of the DNA ligase from Pyrococcus abyssi or the DNA-binding Sto7d protein from Sulfolobus tokodaii. The processivity and efficiency of cDNA synthesis of the chimeric RT with Sto7d at the C-end are increased several fold. The attachment of Sto7d enhances the tolerance of M-MuLV RT to the most common amplification inhibitors: NaCl, urea, guanidinium chloride, formamide, components of human whole blood and human blood plasma. Thus, fusing M-MuLV RT with an additional domain results in more robust and efficient RTs.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Pei Fong Wong
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Ulyana A Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Evgeny A Khrapov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maksim L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
12
|
Identification of Thermus aquaticus DNA polymerase variants with increased mismatch discrimination and reverse transcriptase activity from a smart enzyme mutant library. Sci Rep 2019; 9:590. [PMID: 30679705 PMCID: PMC6345897 DOI: 10.1038/s41598-018-37233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
DNA polymerases the key enzymes for several biotechnological applications. Obviously, nature has not evolved these enzymes to be compatible with applications in biotechnology. Thus, engineering of a natural scaffold of DNA polymerases may lead to enzymes improved for several applications. Here, we investigated a two-step approach for the design and construction of a combinatorial library of mutants of KlenTaq DNA polymerase. First, we selected amino acid sites for saturation mutagenesis that interact with the primer/template strands or are evolutionarily conserved. From this library, we identified mutations that little interfere with DNA polymerase activity. Next, these functionally active mutants were combined randomly to construct a second library with enriched sequence diversity. We reasoned that the combination of mutants that have minuscule effect on enzyme activity and thermostability, will result in entities that have an increased mutation load but still retain activity. Besides activity and thermostability, we screened the library for entities with two distinct properties. Indeed, we identified two different KlenTaq DNA polymerase variants that either exhibit increased mismatch extension discrimination or increased reverse transcription PCR activity, respectively.
Collapse
|
13
|
Oscorbin IP, Belousova EA, Boyarskikh UA, Zakabunin AI, Khrapov EA, Filipenko ML. Derivatives of Bst-like Gss-polymerase with improved processivity and inhibitor tolerance. Nucleic Acids Res 2017; 45:9595-9610. [PMID: 28934494 PMCID: PMC5766155 DOI: 10.1093/nar/gkx645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
At the moment, one of the actual trends in medical diagnostics is a development of methods for practical applications such as point-of-care testing, POCT or research tools, for example, whole genome amplification, WGA. All the techniques are based on using of specific DNA polymerases having strand displacement activity, high synthetic processivity, fidelity and, most significantly, tolerance to contaminants, appearing from analysed biological samples or collected under purification procedures. Here, we have designed a set of fusion enzymes based on catalytic domain of DNA polymerase I from Geobacillus sp. 777 with DNA-binding domain of DNA ligase Pyrococcus abyssi and Sto7d protein from Sulfolobus tokodaii, analogue of Sso7d. Designed chimeric DNA polymerases DBD-Gss, Sto-Gss and Gss-Sto exhibited the same level of thermal stability, thermal transferase activity and fidelity as native Gss; however, the processivity was increased up to 3-fold, leading to about 4-fold of DNA product in WGA which is much more exiting. The attachment of DNA-binding proteins enhanced the inhibitor tolerance of chimeric polymerases in loop-mediated isothermal amplification to several of the most common DNA sample contaminants—urea and whole blood, heparin, ethylenediaminetetraacetic acid, NaCl, ethanol. Therefore, chimeric Bst-like Gss-polymerase will be promising tool for both WGA and POCT due to increased processivity and inhibitor tolerance.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation.,Laboratory of genomic technologies, Novosibirsk State University, Pirogova street 2, Novosibirsk 630090, Russian Federation
| | - Ekaterina A Belousova
- Laboratory of Bioorganic chemistry of enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation
| | - Ulyana A Boyarskikh
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation
| | - Aleksandr I Zakabunin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation
| | - Evgeny A Khrapov
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation
| | - Maksim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation.,Laboratory of genomic technologies, Novosibirsk State University, Pirogova street 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
14
|
DNA polymerases and biotechnological applications. Curr Opin Biotechnol 2017; 48:187-195. [PMID: 28618333 DOI: 10.1016/j.copbio.2017.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 01/04/2023]
Abstract
A multitude of biotechnological techniques used in basic research as well as in clinical diagnostics on an everyday basis depend on DNA polymerases and their intrinsic capability to replicate DNA strands with astoundingly high fidelity. Applications with fundamental importance to modern molecular biology, including the polymerase chain reaction and DNA sequencing, would not be feasible without the advances made in characterizing these enzymes over the course of the last 60 years. Nonetheless, the still growing application scope of DNA polymerases necessitates the identification of novel enzymes with tailor-made properties. In the recent past, DNA polymerases optimized for diverse PCR and sequencing applications as well as enzymes that accept a variety of unnatural substrates for the synthesis and reverse transcription of modified nucleic acids have been developed.
Collapse
|
15
|
Chakravorty D, Khan MF, Patra S. Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles 2017; 21:419-444. [PMID: 28283770 DOI: 10.1007/s00792-016-0908-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Research on extremostable proteins has seen immense growth in the past decade owing to their industrial importance. Basic research of attributes related to extreme-stability requires further exploration. Modern mechanistic approaches to engineer such proteins in vitro will have more impact in industrial biotechnology economy. Developing a priori knowledge about the mechanism behind extreme-stability will nurture better understanding of pathways leading to protein molecular evolution and folding. This review is a vivid compilation about all classes of extremostable proteins and the attributes that lead to myriad of adaptations divulged after an extensive study of 6495 articles belonging to extremostable proteins. Along with detailing on the rationale behind extreme-stability of proteins, emphasis has been put on modern approaches that have been utilized to render proteins extremostable by protein engineering. It was understood that each protein shows different approaches to extreme-stability governed by minute differences in their biophysical properties and the milieu in which they exist. Any general rule has not yet been drawn regarding adaptive mechanisms in extreme environments. This review was further instrumental to understand the drawback of the available 14 stabilizing mutation prediction algorithms. Thus, this review lays the foundation to further explore the biophysical pleiotropy of extreme-stable proteins to deduce a global prediction model for predicting the effect of mutations on protein stability.
Collapse
Affiliation(s)
- Debamitra Chakravorty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohd Faheem Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
16
|
Golyshina OV, Kublanov IV, Tran H, Korzhenkov AA, Lünsdorf H, Nechitaylo TY, Gavrilov SN, Toshchakov SV, Golyshin PN. Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments. Sci Rep 2016; 6:39034. [PMID: 27966672 PMCID: PMC5155288 DOI: 10.1038/srep39034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
Abstract
The order Thermoplasmatales (Euryarchaeota) is represented by the most acidophilic organisms known so far that are poorly amenable to cultivation. Earlier culture-independent studies in Iron Mountain (California) pointed at an abundant archaeal group, dubbed ‘G-plasma’. We examined the genomes and physiology of two cultured representatives of a Family Cuniculiplasmataceae, recently isolated from acidic (pH 1–1.5) sites in Spain and UK that are 16S rRNA gene sequence-identical with ‘G-plasma’. Organisms had largest genomes among Thermoplasmatales (1.87–1.94 Mbp), that shared 98.7–98.8% average nucleotide identities between themselves and ‘G-plasma’ and exhibited a high genome conservation even within their genomic islands, despite their remote geographical localisations. Facultatively anaerobic heterotrophs, they possess an ancestral form of A-type terminal oxygen reductase from a distinct parental clade. The lack of complete pathways for biosynthesis of histidine, valine, leucine, isoleucine, lysine and proline pre-determines the reliance on external sources of amino acids and hence the lifestyle of these organisms as scavengers of proteinaceous compounds from surrounding microbial community members. In contrast to earlier metagenomics-based assumptions, isolates were S-layer-deficient, non-motile, non-methylotrophic and devoid of iron-oxidation despite the abundance of methylotrophy substrates and ferrous iron in situ, which underlines the essentiality of experimental validation of bioinformatic predictions.
Collapse
Affiliation(s)
- Olga V Golyshina
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312, Russia
| | - Hai Tran
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| | | | - Heinrich Lünsdorf
- Central Unit of Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Taras Y Nechitaylo
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, 07745, Germany
| | - Sergey N Gavrilov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312, Russia
| | | | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| |
Collapse
|
17
|
Alzbutas G, Kaniusaite M, Lagunavicius A. Enhancement of DNaseI Salt Tolerance by Mimicking the Domain Structure of DNase from an Extremely Halotolerant Bacterium Thioalkalivibrio sp. K90mix. PLoS One 2016; 11:e0150404. [PMID: 26939122 PMCID: PMC4777378 DOI: 10.1371/journal.pone.0150404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/13/2016] [Indexed: 01/05/2023] Open
Abstract
In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently “donated” the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature’s evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used.
Collapse
Affiliation(s)
- Gediminas Alzbutas
- VU Institute of Biotechnology, V.A. Graiciuno 8, LT-02241 Vilnius, Lithuania
- Thermo Fisher Scientific, V.A. Graiciuno 8, LT-02241 Vilnius, Lithuania
- * E-mail:
| | - Milda Kaniusaite
- Thermo Fisher Scientific, V.A. Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | |
Collapse
|
18
|
Alzbutas G, Kaniusaite M, Grybauskas A, Lagunavicius A. Domain organization of DNase from Thioalkalivibrio sp. provides insights into retention of activity in high salt environments. Front Microbiol 2015; 6:661. [PMID: 26191053 PMCID: PMC4486849 DOI: 10.3389/fmicb.2015.00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/17/2015] [Indexed: 01/06/2023] Open
Abstract
Our study indicates that DNA binding domains are common in many halophilic or halotolerant bacterial DNases and they are potential activators of enzymatic activity at high ionic strength. Usually, proteins adapt to high ionic strength by increasing the number of negatively charged residues on the surface. However, in DNases such adaptation would hinder the binding to negatively charged DNA, a step critical for catalysis. In our study we demonstrate how evolution has solved this dilemma by engaging the DNA binding domain. We propose a mechanism, which enables the enzyme activity at salt concentrations as high as 4 M of sodium chloride, based on collected experimental data and domain structure analysis of a secreted bacterial DNase from the extremely halotolerant bacterium Thioalkalivibrio sp. K90mix. The enzyme harbors two domains: an N-terminal domain, that exhibits DNase activity, and a C-terminal domain, comprising a duplicate DNA binding helix-hairpin-helix motif. Here we present experimental data demonstrating that the C-terminal domain is responsible for the enzyme's resistance to high ionic strength.
Collapse
Affiliation(s)
- Gediminas Alzbutas
- Department of Eukaryote Gene Engineering, VU Institute of Biotechnology, Vilnius University Vilnius, Lithuania ; Thermo Fisher Scientific Vilnius, Lithuania
| | | | - Algirdas Grybauskas
- Thermo Fisher Scientific Vilnius, Lithuania ; Faculty of Chemistry, Vilnius University Vilnius, Lithuania
| | | |
Collapse
|
19
|
Oscorbin IP, Boyarskikh UA, Zakabunin AI, Khrapov EA, Filipenko ML. DNA-Binding Domain of DNA Ligase from the Thermophilic Archaeon Pyrococcus abyssi: Improving Long-Range PCR and Neutralization of Heparin's Inhibitory Effect. Appl Biochem Biotechnol 2015; 176:1859-69. [PMID: 26026263 DOI: 10.1007/s12010-015-1683-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/25/2015] [Indexed: 01/06/2023]
Abstract
The DNA-binding domain of the DNA ligase from Pyrococcus abyssi (PabDBD) was mapped and cloned into two expression vectors. The resulting 6X His-tagged proteins, with a predicted molecular mass of approximately 30 kDa, were overexpressed, purified using Ni-NTA resin, and biochemically characterized. Both PabDBD derivatives bound to double-stranded DNA fragments at the temperature range of 40-70 °C, and both were inactivated via heating at 95 °C for 15 min. Complexes of the PabDBD variants with either double- and single-stranded DNA fragments were less stable than the native DNA ligase of P. abyssi. Inclusion of the C-terminally 6X His-tagged PabDBD in the reaction mixture during long-range polymerase chain reaction (PCR) increased the efficacy of amplification and eliminated the inhibitory effect of heparin.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation,
| | | | | | | | | |
Collapse
|
20
|
Ishino S, Ishino Y. DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front Microbiol 2014; 5:465. [PMID: 25221550 PMCID: PMC4148896 DOI: 10.3389/fmicb.2014.00465] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands according to the template DNA in living cells. Multiple enzymes have been identified from each organism, and the shared functions of these enzymes have been investigated. In addition to their fundamental role in maintaining genome integrity during replication and repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However, the more specific properties, including processivity, fidelity (synthesis accuracy), and substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of each DNA polymerase may lead to the potential development of unique reagents, and therefore searching for novel DNA polymerase has been one of the major focuses in this research field. In addition, protein engineering techniques to create mutant or artificial DNA polymerases have been successfully developing powerful DNA polymerases, suitable for specific purposes among the many kinds of DNA manipulations. Thermostable DNA polymerases are especially important for PCR-related techniques in molecular biology. In this review, we summarize the history of the research on developing thermostable DNA polymerases as reagents for genetic manipulation and discuss the future of this research field.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
21
|
Abstract
Thalassolituus oleivorans is one of the most prevalent marine gammaproteobacteria in microbial communities, emerging after oil spills in coastal, estuarine, and surface seawaters. Here, we present the assembled genome of strain T. oleivorans MIL-1 (DSM 14913(T)), which is 3,920,328 bp with a G+C content of 46.6%.
Collapse
|