1
|
Iizuka A, Kajimoto K, Fujisawa T, Tsukamoto T, Aizawa T, Kamo N, Jung KH, Unno M, Demura M, Kikukawa T. Functional importance of the oligomer formation of the cyanobacterial H + pump Gloeobacter rhodopsin. Sci Rep 2019; 9:10711. [PMID: 31341208 PMCID: PMC6656774 DOI: 10.1038/s41598-019-47178-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Many microbial rhodopsins self-oligomerize, but the functional consequences of oligomerization have not been well clarified. We examined the effects of oligomerization of a H+ pump, Gloeobacter rhodopsin (GR), by using nanodisc containing trimeric and monomeric GR. The monomerization did not appear to affect the unphotolyzed GR. However, we found a significant impact on the photoreaction: The monomeric GR showed faint M intermediate formation and negligible H+ transfer reactions. These changes reflected the elevated pKa of the Asp121 residue, whose deprotonation is a prerequisite for the functional photoreaction. Here, we focused on His87, which is a neighboring residue of Asp121 and conserved among eubacterial H+ pumps but replaced by Met in an archaeal H+ pump. We found that the H87M mutation removes the “monomerization effects”: Even in the monomeric state, H87M contained the deprotonated Asp121 and showed both M formation and distinct H+ transfer reactions. Thus, for wild-type GR, monomerization probably strengthens the Asp121-His87 interaction and thereby elevates the pKa of Asp121 residue. This strong interaction might occur due to the loosened protein structure and/or the disruption of the interprotomer interaction of His87. Thus, the trimeric assembly of GR enables light-induced H+ transfer reactions through adjusting the positions of key residues.
Collapse
Affiliation(s)
- Azusa Iizuka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kousuke Kajimoto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
2
|
Nakamura S, Kikukawa T, Tamogami J, Kamiya M, Aizawa T, Hahn MW, Ihara K, Kamo N, Demura M. Photochemical characterization of actinorhodopsin and its functional existence in the natural host. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1900-1908. [PMID: 27659506 DOI: 10.1016/j.bbabio.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/29/2022]
Abstract
Actinorhodopsin (ActR) is a light-driven outward H+ pump. Although the genes of ActRs are widely spread among freshwater bacterioplankton, there are no prior data on their functional expression in native cell membranes. Here, we demonstrate ActR phototrophy in the native actinobacterium. Genome analysis showed that Candidatus Rhodoluna planktonica, a freshwater actinobacterium, encodes one microbial rhodopsin (RpActR) belonging to the ActR family. Reflecting the functional expression of RpActR, illumination induced the acidification of the actinobacterial cell suspension and then elevated the ATP content inside the cells. The photochemistry of RpActR was also examined using heterologously expressed RpActR in Escherichia coli membranes. The purified RpActR showed λmax at 534nm and underwent a photocycle characterized by the very fast formation of M intermediate. The subsequent intermediate, named P620, could be assigned to the O intermediate in other H+ pumps. In contrast to conventional O, the accumulation of P620 remains prominent, even at high pH. Flash-induced absorbance changes suggested that there exists only one kind of photocycle at any pH. However, above pH7, RpActR shows heterogeneity in the H+ transfer sequences: one first captures H+ and then releases it during the formation and decay of P620, while the other first releases H+ prior to H+ uptake during P620 formation.
Collapse
Affiliation(s)
- Shintaro Nakamura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Masakatsu Kamiya
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Martin W Hahn
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Tamogami J, Sato K, Kurokawa S, Yamada T, Nara T, Demura M, Miyauchi S, Kikukawa T, Muneyuki E, Kamo N. Formation of M-Like Intermediates in Proteorhodopsin in Alkali Solutions (pH ≥ ∼8.5) Where the Proton Release Occurs First in Contrast to the Sequence at Lower pH. Biochemistry 2016; 55:1036-48. [DOI: 10.1021/acs.biochem.5b01196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Tamogami
- College
of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keitaro Sato
- Department
of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Sukuna Kurokawa
- Department
of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Takumi Yamada
- Department
of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Toshifumi Nara
- College
of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Makoto Demura
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Seiji Miyauchi
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty
of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan
| | - Takashi Kikukawa
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Eiro Muneyuki
- Department
of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Naoki Kamo
- College
of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Dalgleish S, Reissig L, Sudo Y, Awaga K. On-tip photodetection: a simple and universal platform for optoelectronic screening. Chem Commun (Camb) 2015; 51:16401-4. [PMID: 26413587 DOI: 10.1039/c5cc06237c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel platform for transient photodetector component screening has been developed whereby an optical fiber tip serves as the counter electrode when placed in a variety of dielectric media, connected to a photoresponsive working electrode. The soft processing conditions allow for ubiquitous photodetection for organic and biological systems.
Collapse
Affiliation(s)
- S Dalgleish
- Department of Chemistry and Research Centre for Material Science, Nagoya University, Furo-cho, Chikusa, 464-8602 Nagoya, Japan. and Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa, 464-8601 Nagoya, Japan
| | - L Reissig
- Department of Chemistry and Research Centre for Material Science, Nagoya University, Furo-cho, Chikusa, 464-8602 Nagoya, Japan. and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, 464-8602 Nagoya, Japan.
| | - Y Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, 464-8602 Nagoya, Japan. and Division of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kitaku, 700-8530 Okayama, Japan
| | - K Awaga
- Department of Chemistry and Research Centre for Material Science, Nagoya University, Furo-cho, Chikusa, 464-8602 Nagoya, Japan. and CREST, JST, Nagoya University, Furo-cho, Chikusa, 464-8602 Nagoya, Japan
| |
Collapse
|
5
|
Yomoda H, Makino Y, Tomonaga Y, Hidaka T, Kawamura I, Okitsu T, Wada A, Sudo Y, Naito A. Color-Discriminating Retinal Configurations of Sensory Rhodopsin I by Photo-Irradiation Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Ogren JI, Mamaev S, Russano D, Li H, Spudich JL, Rothschild KJ. Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae. Biochemistry 2014; 53:3961-70. [PMID: 24869998 PMCID: PMC4072394 DOI: 10.1021/bi500445c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Channelrhodopsins (ChRs), which form
a distinct branch of the microbial
rhodopsin family, control phototaxis in green algae. Because ChRs
can be expressed and function in neuronal membranes as light-gated
cation channels, they have rapidly become an important optogenetic
tool in neurobiology. While channelrhodopsin-2 from the unicellular
alga Chlamydomonas reinhardtii (CrChR2) is the most commonly used and extensively studied optogenetic
ChR, little is known about the properties of the diverse group of
other ChRs. In this study, near-infrared confocal resonance Raman
spectroscopy along with hydrogen–deuterium exchange and site-directed
mutagenesis were used to study the structure of red-shifted ChR1 from Chlamydomonas augustae (CaChR1). These
measurements reveal that (i) CaChR1 has an all-trans-retinal structure similar to those of the light-driven
proton pump bacteriorhodopsin (BR) and sensory rhodopsin II but different
from that of the mixed retinal composition of CrChR2,
(ii) lowering the pH from 7 to 2 or substituting neutral residues
for Glu169 or Asp299 does not significantly shift the ethylenic stretch
frequency more than 1–2 cm–1 in contrast
to BR in which a downshift of 7–9 cm–1 occurs
reflecting neutralization of the Asp85 counterion, and (iii) the CaChR1 protonated Schiff base (SB) has stronger hydrogen
bonding than BR. A model is proposed to explain these results whereby
at pH 7 the predominant counterion to the SB is Asp299 (the homologue
to Asp212 in BR) while Glu169 (the homologue to Asp85 in BR) exists
in a neutral state. We observe an unusual constancy of the resonance
Raman spectra over the broad range from pH 9 to 2 and discuss its
implications. These results are in accord with recent visible absorption
and current measurements of CaChR1 [Sineshchekov,
O. A., et al. (2013) Intramolecular proton transfer in channelrhodopsins. Biophys. J. 104, 807–817; Li, H., et al. (2014) Role
of a helix B lysine residue in the photoactive site in channelrhodopsins. Biophys. J. 106, 1607–1617].
Collapse
Affiliation(s)
- John I Ogren
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | |
Collapse
|
7
|
Yomoda H, Makino Y, Tomonaga Y, Hidaka T, Kawamura I, Okitsu T, Wada A, Sudo Y, Naito A. Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2014; 53:6960-4. [PMID: 24846351 DOI: 10.1002/anie.201309258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/17/2014] [Indexed: 12/20/2022]
Abstract
SRI (sensory rhodopsin I) can discriminate multiple colors for the attractant and repellent phototaxis. Studies aimed at revealing the color-dependent mechanism show that SRI is a challenging system not only in photobiology but also in photochemistry. During the photoreaction of SRI, an M-intermediate (attractant) transforms into a P-intermediate (repellent) by absorbing blue light. Consequently, SRI then cycles back to the G-state. The photoreactions were monitored with the (13)C NMR signals of [20-(13)C]retnal-SrSRI using in situ photo-irradiation solid-state NMR spectroscopy. The M-intermediate was trapped at -40 °C by illumination at 520 nm. It was transformed into the P-intermediate by subsequent illumination at 365 nm. These results reveal that the G-state could be directly transformed to the P-intermediate by illumination at 365 nm. Thus, the stationary trapped M- and P-intermediates are responsible for positive and negative phototaxis, respectively.
Collapse
Affiliation(s)
- Hiroki Yomoda
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sudo Y, Mizuno M, Wei Z, Takeuchi S, Tahara T, Mizutani Y. The Early Steps in the Photocycle of a Photosensor Protein Sensory Rhodopsin I from Salinibacter ruber. J Phys Chem B 2014; 118:1510-8. [DOI: 10.1021/jp4112662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuki Sudo
- Division
of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Department
of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Zhengrong Wei
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Inoue K, Tsukamoto T, Sudo Y. Molecular and evolutionary aspects of microbial sensory rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:562-77. [PMID: 23732219 DOI: 10.1016/j.bbabio.2013.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 02/03/2023]
Abstract
Retinal proteins (~rhodopsins) are photochemically reactive membrane-embedded proteins, with seven transmembrane α-helices which bind the chromophore retinal (vitamin A aldehyde). They are widely distributed through all three biological kingdoms, eukarya, bacteria and archaea, indicating the biological significance of the retinal proteins. Light absorption by the retinal proteins triggers a photoisomerization of the chromophore, leading to the biological function, light-energy conversion or light-signal transduction. This article reviews molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors and their related proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Japan.
| |
Collapse
|
10
|
Oren A. Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 2013; 342:1-9. [PMID: 23373661 DOI: 10.1111/1574-6968.12094] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/17/2022] Open
Abstract
The existence of large number of a member of the Bacteroidetes in NaCl-saturated brines in saltern crystallizer ponds was first documented in 1999 based on fluorescence in situ hybridization studies. Isolation of the organism and its description as Salinibacter ruber followed soon. It is a rod-shaped, red-orange pigmented, extreme halophile that grows optimally at 20-30% salt. The genus is distributed worldwide in hypersaline environments. Today, the genus Salinibacter includes three species, and a somewhat less halophilic relative, Salisaeta longa, has also been documented. Although belonging to the Bacteria, Salinibacter shares many features with the Archaea of the family Halobacteriaceae that live in the same habitat. Both groups use KCl for osmotic adjustment of their cytoplasm, both mainly possess salt-requiring enzymes with a large excess of acidic amino acids, and both contain different retinal pigments: light-driven proton pumps, chloride pumps, and light sensors. Salinibacter produces an unusual carotenoid, salinixanthin that forms a light antenna and transfers energy to the retinal group of xanthorhodopsin, a light-driven proton pump. Other unusual features of Salinibacter and Salisaeta include the presence of novel sulfonolipids (halocapnine derivatives). Salinibacter has become an excellent model for metagenomic, biogeographic, ecological, and evolutionary studies.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|