1
|
Baserga F, Storm J, Schlesinger R, Heberle J, Stripp ST. The catalytic reaction of cytochrome c oxidase probed by in situ gas titrations and FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149000. [PMID: 37516233 DOI: 10.1016/j.bbabio.2023.149000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Cytochrome c oxidase (CcO) is a transmembrane heme‑copper metalloenzyme that catalyzes the reduction of O2 to H2O at the reducing end of the respiratory electron transport chain. To understand this reaction, we followed the conversion of CcO from Rhodobacter sphaeroides between several active-ready and carbon monoxide-inhibited states via attenuated total reflection Fourier-transform infrared (ATR FTIR) difference spectroscopy. Utilizing a novel gas titration setup, we prepared the mixed-valence, CO-inhibited R2CO state as well as the fully-reduced R4 and R4CO states and induced the "active ready" oxidized state OH. These experiments are performed in the dark yielding FTIR difference spectra exclusively triggered by exposure to O2, the natural substrate of CcO. Our data demonstrate that the presence of CO at heme a3 does not impair the catalytic oxidation of CcO when the cycle starts from the fully-reduced states. Interestingly, when starting from the R2CO state, the release of the CO ligand upon purging with inert gas yield a product that is indistinguishable from photolysis-induced states. The observed changes at heme a3 in the catalytic binuclear center (BNC) result from the loss of CO and are unrelated to electronic excitation upon illumination. Based on our experiments, we re-evaluate the assignment of marker bands that appear in time-resolved photolysis and perfusion-induced experiments on CcO.
Collapse
Affiliation(s)
- Federico Baserga
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Julian Storm
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany; Technische Universität Berlin, Division of Physical Chemistry, Strasse des 17. Juni 115, D-10623 Berlin, Germany.
| |
Collapse
|
2
|
Baserga F, Vorkas A, Crea F, Schubert L, Chen JL, Redlich A, La Greca M, Storm J, Oldemeyer S, Hoffmann K, Schlesinger R, Heberle J. Membrane Protein Activity Induces Specific Molecular Changes in Nanodiscs Monitored by FTIR Difference Spectroscopy. Front Mol Biosci 2022; 9:915328. [PMID: 35769914 PMCID: PMC9234331 DOI: 10.3389/fmolb.2022.915328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
It is well known that lipids neighboring integral membrane proteins directly influence their function. The opposite effect is true as well, as membrane proteins undergo structural changes after activation and thus perturb the lipidic environment. Here, we studied the interaction between these molecular machines and the lipid bilayer by observing changes in the lipid vibrational bands via FTIR spectroscopy. Membrane proteins with different functionalities have been reconstituted into lipid nanodiscs: Microbial rhodopsins that act as light-activated ion pumps (the proton pumps NsXeR and UmRh1, and the chloride pump NmHR) or as sensors (NpSRII), as well as the electron-driven cytochrome c oxidase RsCcO. The effects of the structural changes on the surrounding lipid phase are compared to mechanically induced lateral tension exerted by the light-activatable lipid analogue AzoPC. With the help of isotopologues, we show that the ν(C = O) ester band of the glycerol backbone reports on changes in the lipids’ collective state induced by mechanical changes in the transmembrane proteins. The perturbation of the nanodisc lipids seems to involve their phase and/or packing state. 13C-labeling of the scaffold protein shows that its structure also responds to the mechanical expansion of the lipid bilayer.
Collapse
Affiliation(s)
- Federico Baserga
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Antreas Vorkas
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Fucsia Crea
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Aoife Redlich
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | | | - Julian Storm
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Sabine Oldemeyer
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Kirsten Hoffmann
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger, ; Joachim Heberle,
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger, ; Joachim Heberle,
| |
Collapse
|
3
|
Baserga F, Dragelj J, Kozuch J, Mohrmann H, Knapp EW, Stripp ST, Heberle J. Quantification of Local Electric Field Changes at the Active Site of Cytochrome c Oxidase by Fourier Transform Infrared Spectroelectrochemical Titrations. Front Chem 2021; 9:669452. [PMID: 33987170 PMCID: PMC8111224 DOI: 10.3389/fchem.2021.669452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
Cytochrome c oxidase (CcO) is a transmembrane protein complex that reduces molecular oxygen to water while translocating protons across the mitochondrial membrane. Changes in the redox states of its cofactors trigger both O2 reduction and vectorial proton transfer, which includes a proton-loading site, yet unidentified. In this work, we exploited carbon monoxide (CO) as a vibrational Stark effect (VSE) probe at the binuclear center of CcO from Rhodobacter sphaeroides. The CO stretching frequency was monitored as a function of the electrical potential, using Fourier transform infrared (FTIR) absorption spectroelectrochemistry. We observed three different redox states (R4CO, R2CO, and O), determined their midpoint potential, and compared the resulting electric field to electrostatic calculations. A change in the local electric field strength of +2.9 MV/cm was derived, which was induced by the redox transition from R4CO to R2CO. We performed potential jump experiments to accumulate the R2CO and R4CO species and studied the FTIR difference spectra in the protein fingerprint region. The comparison of the experimental and computational results reveals that the key glutamic acid residue E286 is protonated in the observed states, and that its hydrogen-bonding environment is disturbed upon the redox transition of heme a3. Our experiments also suggest propionate A of heme a3 changing its protonation state in concert with the redox state of a second cofactor, heme a. This supports the role of propionic acid side chains as part of the proton-loading site.
Collapse
Affiliation(s)
- Federico Baserga
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jovan Dragelj
- Macromolecular Modelling Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Modeling of Biomolecular Systems, Technische Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Mohrmann
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ernst-Walter Knapp
- Macromolecular Modelling Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Kruse F, Nguyen AD, Dragelj J, Heberle J, Hildebrandt P, Mroginski MA, Weidinger IM. A Resonance Raman Marker Band Characterizes the Slow and Fast Form of Cytochrome c Oxidase. J Am Chem Soc 2021; 143:2769-2776. [PMID: 33560128 DOI: 10.1021/jacs.0c10767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome c oxidase (CcO) in its as-isolated form is known to exist in a slow and fast form, which differ drastically in their ability to bind oxygen and other ligands. While preparation methods have been established that yield either the fast or the slow form of the protein, the underlying structural differences have not been identified yet. Here, we have performed surface enhanced resonance Raman (SERR) spectroscopy of CcO immobilized on electrodes in both forms. SERR spectra obtained in resonance with the heme a3 metal-to-ligand charge transfer (MLCT) transition at 650 nm displayed a sharp vibrational band at 748 or 750 cm-1 when the protein was in its slow or fast form, respectively. DFT calculations identified the band as a mode of the His-419 ligand that is sensitive to the oxygen ligand and the protonation state of Tyr-288 within the binuclear complex. Potential-dependent SERR spectroscopy showed a redox-induced change of this band around 525 mV versus Ag/AgCl exclusively for the fast form, which coincides with the redox potential of the Tyr-O/Tyr-O- transition. Our data points to a peroxide ligand in the resting state of CcO for both forms. The observed frequencies and redox sensitivities of the Raman marker band suggest that a radical Tyr-288 is present in the fast form and a protonated Tyr-288 in the slow form.
Collapse
Affiliation(s)
- Fabian Kruse
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Anh Duc Nguyen
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Jovan Dragelj
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Inez M Weidinger
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
5
|
In Escherichia coli Ammonia Inhibits Cytochrome bo3 But Activates Cytochrome bd-I. Antioxidants (Basel) 2020; 10:antiox10010013. [PMID: 33375541 PMCID: PMC7824442 DOI: 10.3390/antiox10010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Interaction of two redox enzymes of Escherichia coli, cytochrome bo3 and cytochrome bd-I, with ammonium sulfate/ammonia at pH 7.0 and 8.3 was studied using high-resolution respirometry and absorption spectroscopy. At pH 7.0, the oxygen reductase activity of none of the enzymes is affected by the ligand. At pH 8.3, cytochrome bo3 is inhibited by the ligand, with 40% maximum inhibition at 100 mM (NH4)2SO4. In contrast, the activity of cytochrome bd-I at pH 8.3 increases with increasing the ligand concentration, the largest increase (140%) is observed at 100 mM (NH4)2SO4. In both cases, the effector molecule is apparently not NH4+ but NH3. The ligand induces changes in absorption spectra of both oxidized cytochromes at pH 8.3. The magnitude of these changes increases as ammonia concentration is increased, yielding apparent dissociation constants Kdapp of 24.3 ± 2.7 mM (NH4)2SO4 (4.9 ± 0.5 mM NH3) for the Soret region in cytochrome bo3, and 35.9 ± 7.1 and 24.6 ± 12.4 mM (NH4)2SO4 (7.2 ± 1.4 and 4.9 ± 2.5 mM NH3) for the Soret and visible regions, respectively, in cytochrome bd-I. Consistently, addition of (NH4)2SO4 to cells of the E. coli mutant containing cytochrome bd-I as the only terminal oxidase at pH 8.3 accelerates the O2 consumption rate, the highest one (140%) being at 27 mM (NH4)2SO4. We discuss possible molecular mechanisms and physiological significance of modulation of the enzymatic activities by ammonia present at high concentration in the intestines, a niche occupied by E. coli.
Collapse
|
6
|
Kruse F, Nguyen AD, Dragelj J, Schlesinger R, Heberle J, Mroginski MA, Weidinger IM. Characterisation of the Cyanate Inhibited State of Cytochrome c Oxidase. Sci Rep 2020; 10:3863. [PMID: 32123230 PMCID: PMC7052191 DOI: 10.1038/s41598-020-60801-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Heme-copper oxygen reductases are terminal respiratory enzymes, catalyzing the reduction of dioxygen to water and the translocation of protons across the membrane. Oxygen consumption is inhibited by various substances. Here we tested the relatively unknown inhibition of cytochrome c oxidase (CcO) with isocyanate. In contrast to other more common inhibitors like cyanide, inhibition with cyanate was accompanied with the rise of a metal to ligand charge transfer (MLCT) band around 638 nm. Increasing the cyanate concentration furthermore caused selective reduction of heme a. The presence of the CT band allowed for the first time to directly monitor the nature of the ligand via surface-enhanced resonance Raman (SERR) spectroscopy. Analysis of isotope sensitive SERR spectra in comparison with Density Functional Theory (DFT) calculations identified not only the cyanate monomer as an inhibiting ligand but suggested also presence of an uretdion ligand formed upon dimerization of two cyanate ions. It is therefore proposed that under high cyanate concentrations the catalytic site of CcO promotes cyanate dimerization. The two excess electrons that are supplied from the uretdion ligand lead to the observed physiologically inverse electron transfer from heme a3 to heme a.
Collapse
Affiliation(s)
- Fabian Kruse
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, 01069, Dresden, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Jovan Dragelj
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Inez M Weidinger
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, 01069, Dresden, Germany.
| |
Collapse
|
7
|
Redox induced protonation of heme propionates in cytochrome c oxidase: Insights from surface enhanced resonance Raman spectroscopy and QM/MM calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:103-108. [PMID: 27810193 DOI: 10.1016/j.bbabio.2016.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022]
Abstract
Understanding the coupling between heme reduction and proton translocation in cytochrome c oxidase (CcO) is still an open problem. The propionic acids of heme a3 have been proposed to act as a proton loading site (PLS) in the proton pumping pathway, yet this proposal could not be verified by experimental data so far. We have set up an experiment where the redox states of the two hemes in CcO can be controlled via external electrical potential. Surface enhanced resonance Raman (SERR) spectroscopy was applied to simultaneously monitor the redox state of the hemes and the protonation state of the heme propionates. Simulated spectra based on QM/MM calculations were used to assign the resonant enhanced CH2 twisting modes of the propionates to the protonation state of the individual heme a and heme a3 propionates respectively. The comparison between calculated and measured H2OD2O difference spectra allowed a sound band assignment. In the fully reduced enzyme at least three of the four heme propionates were found to be protonated whereas in the presence of a reduced heme a and an oxidized heme a3 only protonation of one heme a3 propionates was observed. Our data supports the postulated scenario where the heme a3 propionates are involved in the proton pathway.
Collapse
|
8
|
Lyons JA, Hilbers F, Caffrey M. Structure and Function of Bacterial Cytochrome c Oxidases. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Sezer M, Kielb P, Kuhlmann U, Mohrmann H, Schulz C, Heinrich D, Schlesinger R, Heberle J, Weidinger IM. Surface Enhanced Resonance Raman Spectroscopy Reveals Potential Induced Redox and Conformational Changes of Cytochrome c Oxidase on Electrodes. J Phys Chem B 2015; 119:9586-91. [PMID: 26135359 DOI: 10.1021/acs.jpcb.5b03206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immobilization of Cytochrome c oxidase (CcO) on electrodes makes voltage-driven reduction of oxygen to water possible. Efficient catalytic turnover in CcO/electrode systems is, however, often observed at large overpotentials that cannot be rationalized by the redox properties of the enzyme itself. To understand the structural basis for this observation, CcO was electrostatically adsorbed on amino-functionalized Ag electrodes, and the redox transitions of heme a and a3 were monitored via surface enhanced resonance Raman spectroscopy (SERRS) as a function of applied potential. Under completely anaerobic conditions, the reduction of heme a3 could be seen at potentials close to those measured in solution indicating an intact catalytic center. However, in the immobilized state, a new non-native heme species was observed that exhibited a redox potential much more negative than measured for the native hemes. Analysis of the high and low frequency SERR spectra indicated that this new species is formed from heme a upon axial loss of one histidine ligand. It is concluded that the formation of the non-native heme a species alters the potential-dependent electron supply to the catalytic reaction and, thus, can have a impact on the applicability of this enzyme in biofuel cells.
Collapse
Affiliation(s)
- Murat Sezer
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Patrycja Kielb
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Uwe Kuhlmann
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Hendrik Mohrmann
- ‡Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Claudia Schulz
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Dorothea Heinrich
- ‡Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ramona Schlesinger
- ‡Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- ‡Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Inez M Weidinger
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
10
|
Weidinger IM. Analysis of structure-function relationships in cytochrome c oxidase and its biomimetic analogs via resonance Raman and surface enhanced resonance Raman spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:119-25. [PMID: 25223590 DOI: 10.1016/j.bbabio.2014.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/08/2023]
Abstract
Cytochrome c oxidase (CcO) catalyzes the four electron reduction of molecular oxygen to water while avoiding the formation of toxic peroxide; a quality that is of high relevance for the development of oxygen-reducing catalysts. Resonance Raman spectroscopy has been used since many years as a technique to identify electron transfer pathways in cytochrome c oxidase and to identify the key intermediates in the catalytic cycle. This information can be compared to artificial systems such as modified heme-copper enzymes, molecular heme-copper catalysts or CcO/electrode complexes in order to shed light into the reaction mechanism of these non-natural systems. Understanding the structural commonalities and differences of CcO with its non-natural analogs is of great value for designing efficient oxygen-reducing catalysts. In this review therefore Raman spectroscopic measurements on artificial heme-copper enzymes and model complexes are summarized and compared to the natural enzyme cytochrome c oxidase. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Inez M Weidinger
- Department of Chemistry PC 14, Technische Universitaet Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|