1
|
Yadav S, Lyons RS, Readi-Brown Z, Siegler MA, Goldberg DP. Influence of the second coordination sphere on O 2 activation by a nonheme iron(II) thiolate complex. J Inorg Biochem 2025; 264:112776. [PMID: 39644805 DOI: 10.1016/j.jinorgbio.2024.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPAMe2S-) and its nonheme iron complex, FeII(BPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -20 °C generates a high-spin iron(III)-hydroxide complex, [FeIII(OH)(BPAMe2S)(Br)] (2), that was characterized by UV-vis, 57Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, FeII(BNPAMe2S)Br (BNPAMe2S- = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O2 at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O2 does not yield a stabilized Fe/O2 intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the FeIII(O2-•) intermediate with the BNPAMe2S- ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O2 activation by the nonheme iron center.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Robert S Lyons
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Zoe Readi-Brown
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States.
| |
Collapse
|
2
|
Adindu CS, Tombrello K, Martz LA, Zeczycki TN, Ellis HR. A distinct co-expressed sulfurtransferase extends the physiological role of mercaptopropionate dioxygenase in Pseudomonas aeruginosa PAO1. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141059. [PMID: 39471965 DOI: 10.1016/j.bbapap.2024.141059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Oxidation and assimilation of persulfides in bacteria is often catalyzed by a persulfide dioxygenase and sulfurtransferase in consecutive reactions. Enzymes responsible for the oxidation of persulfides have not been clearly defined in Pseudomonas aeruginosa PAO1. The characterized mercaptopropionate dioxygenase (MDO) in P. aeruginosa PAO1 has been proposed to catalyze the oxidation of 3-mercaptopropionate. However, the physiological role of MDO is uncertain given the expression of a sulfurtransferase (ST) enzyme on the same operon as the thiol dioxygenase. The st gene had a co-occurrence frequency with mdo of 0.94 demonstrating the co-expression and physiological link of the two genes. There are four tandem rhodanese domains in the ST enzyme with two of the domains containing potential catalytic Cys residues (Cys191 and Cys435) capable of forming a persulfide. Only Cys435 was accessible in thiol quantification assays, and results from H/D-X MS analyses further established the accessibility of the domain containing Cys435. Both thiosulfate and mercaptopyruvate served as sulfur donors to the ST enzyme, with Cys435 forming the persulfide intermediate. Kinetic investigations of MDO suggested the enzyme had a broader substrate specificity than previously identified, oxidizing both mercaptopropionate and mercaptopyruvate thiol and persulfide substrates. The results obtained from these investigations provide insight into the overall mechanism and physiological role of the mdo operon in sulfide oxidation and assimilation.
Collapse
Affiliation(s)
- Chukwuemeka S Adindu
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Katie Tombrello
- Takeda Pharmaceuticals, Social Circle, GA 30025, United States
| | - Luke A Martz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, United States
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States.
| |
Collapse
|
3
|
Liang J, Guo H, He H, Liu B, Zhang N, Xian L, Zhu K, Zhang D. The transcription factors HNF-4α and NF-κB activate the CDO gene to promote taurine biosynthesis in the golden pompano Trachinotus ovatus (Linnaeus 1758). Gene 2024; 928:148786. [PMID: 39047959 DOI: 10.1016/j.gene.2024.148786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Cysteine dioxygenase (CDO) is a rate-limiting enzyme in taurine biosynthesis. Taurine synthesis is limited in marine fish, and most taurine is provided by their diet. Although a nutritional study indicated that the transcription of ToCDO was significantly altered by treatment with 10.5 g/kg taurine in food, the regulatory mechanism of this biosynthesis has not been fully elucidated. In the present study, we identified the sequence features of Trachinotus ovatus cysteine dioxygenase (ToCDO), which consists of 201 amino acids. It is characterized by being a member of the cupin superfamily with two conserved cupin motifs located at amino acids 82-102 and 131-145 and with a glutamate residue substituted by a cysteine in its first motif. Moreover, phylogenetic analysis revealed that the similarity of the amino acid sequences between ToCDO and other species ranged from 84.58 % to 91.54 %. Furthermore, a high-performance liquid-phase assay of the activity of recombinantly purified ToCDO protein showed that ToCDO could catalyse the oxidation of cysteine to produce cysteine sulphite. Furthermore, the core promoter region of CDO was identified as -1182-+1 bp. Mutational analysis revealed that the HNF4α and NF-κB sites significantly and actively affected the transcription of CDO. To further investigate the binding of these two loci to the CDO promoter, an electrophoretic shift assay (EMSA) was performed to verify that HNF4α-1 and NF-κB-1 interact with the binding sites of the promoter and promote CDO gene expression, respectively. Additionally, cotransfection experiments showed that HNF4α or both HNF4α and NF-κB can significantly influence CDO promoter activity, and HNF4α was the dominant factor. Thus, HNF4α and NF-κB play important roles in CDO expression and may influence taurine biosynthesis within T. ovatus by regulating CDO expression.
Collapse
Affiliation(s)
- Junjie Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Hongxi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
4
|
Terahata T, Shimada Y, Maki C, Muroga S, Sakurai R, Kunichika K, Fujishiro T. Cysteine-Persulfide Sulfane Sulfur-Ligated Zn Complex of Sulfur-Carrying SufU in the SufCDSUB System for Fe-S Cluster Biosynthesis. Inorg Chem 2024; 63:19607-19618. [PMID: 39384553 DOI: 10.1021/acs.inorgchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
SufU, a component of the SufCDSUB Fe-S cluster biosynthetic system, serves as a Zn-dependent sulfur-carrying protein that delivers inorganic sulfur in the form of cysteine persulfide from SufS to SufBCD. To understand this sulfur delivery mechanism, we studied the X-ray crystal structure of SufU and its sulfur-carrying state (persulfurated SufU) and performed functional analysis of the conserved amino acid residues around the Zn sites. Interestingly, sulfur-carrying SufU with Cys41-persulfide (Cys41-Sγ-Sδ-) exhibited a unique Zn coordination structure, in which electrophilic Sγ is ligated to Zn and nucleophilic/anionic Sδ is bound to distally conserved Arg125. This structure is distinct from those of other Cys-persulfide-Sδ-ligated metals of metalloproteins, such as hybrid cluster proteins and SoxAX. Functional analysis of SufU variants with Zn-ligand and Arg125 substitutions revealed that both Zn and Arg125 are critical for the function of SufU with SufS. The Zn-persulfide structure of SufU provides insight into the sulfur-transfer process, suggesting that persulfide-Sδ- is stabilized via bridging by Zn and Arg125 of SufU.
Collapse
Affiliation(s)
- Takuya Terahata
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yukino Shimada
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Chisato Maki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Suguru Muroga
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Rina Sakurai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kouhei Kunichika
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
5
|
Li K, Zakharov LN, Pluth MD. Synthesis, Characterization, and Reactivity of a Synthetic End-On Cobalt(II) Alkyl Persulfide Complex as a Model Platform for Thiolate Persulfidation. J Am Chem Soc 2024; 146:21999-22007. [PMID: 39044627 DOI: 10.1021/jacs.4c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Persulfides (RSS-) are ubiquitous source of sulfides (S2-) in biology, and interactions between RSS- and bioinorganic metal centers play critical roles in biological hydrogen sulfide (H2S) biogenesis, signaling, and catabolism. Here, we report the use of contact-ion stabilized [Na(15-crown-5)][tBuSS] (1) as a simple synthon to access rare metal alkyl persulfide complexes and to investigate the reactivity of RSS- with transition metal centers to provide insights into metal thiolate persulfidation, including the fundamental difference between alkyl persulfides and alkyl thiolates. Reaction of 1 with [CoII(TPA)(OTf)]+ afforded the η1-alkyl persulfide complex [CoII(TPA)(SStBu)]+ (2), which was characterized by X-ray crystallography, UV-vis spectroscopy, and Raman spectroscopy. RSS- coordination to the Lewis acidic Co2+ center provided additional stability to the S-S bond, as evidenced by a significant increase in the Raman stretching frequency for 2 (vS-S = 522 cm-1, ΔvS-S = 66 cm-1). The effect of persulfidation on metal center redox potentials was further elucidated using cyclic voltammetry, in which the Co2+ → Co3+ oxidation potential of 2 (Ep,a = +89 mV vs SCE) is lowered by nearly 700 mV when compared to the corresponding thiolate complex [CoII(TPA)(StBu)]+ (3) (Ep,a = +818 mV vs SCE), despite persulfidation being generally seen as an oxidative post-translational modification. The reactivity of 2 toward reducing agents including PPh3, BH4-, and biologically relevant thiol reductant DTT led to different S2- output pathways, including formation of a dinuclear 2Co-2SH complex [CoII2(TPA)2(μ2-SH)2]2+(4).
Collapse
Affiliation(s)
- Keyan Li
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lev N Zakharov
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
6
|
Li J, Duan R, Liu A. Cobalt(II)-Substituted Cysteamine Dioxygenase Oxygenation Proceeds through a Cobalt(III)-Superoxo Complex. J Am Chem Soc 2024; 146:18292-18297. [PMID: 38941563 PMCID: PMC11608028 DOI: 10.1021/jacs.4c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
We investigated the metal-substituted catalytic activity of human cysteamine dioxygenase (ADO), an enzyme pivotal in regulating thiol metabolism and contributing to oxygen homeostasis. Our findings demonstrate the catalytic competence of cobalt(II)- and nickel(II)-substituted ADO in cysteamine oxygenation. Notably, Co(II)-ADO exhibited superiority over Ni(II)-ADO despite remaining significantly less active than the natural enzyme. Structural analyses through X-ray crystallography and cobalt K-edge excitation confirmed successful metal substitution with minimal structural perturbations. This provided a robust structural basis, supporting a conserved catalytic mechanism tailored to distinct metal centers. This finding challenges the proposed high-valent ferryl-based mechanism for thiol dioxygenases, suggesting a non-high-valent catalytic pathway in the native enzyme. Further investigation of the cysteamine-bound or a peptide mimic of N-terminus RGS5 bound Co(II)-ADO binary complex revealed the metal center's high-spin (S = 3/2) state. Upon reaction with O2, a kinetically and spectroscopically detectable intermediate emerged with a ground spin state of S = 1/2. This intermediate exhibits a characteristic 59Co hyperfine splitting (A = 67 MHz) structure in the EPR spectrum alongside UV-vis features, consistent with known low-spin Co(III)-superoxo complexes. This observation, unique for protein-bound thiolate-ligated cobalt centers in a protein, unveils the capacities for O2 activation in such metal environments. These findings provide valuable insights into the non-heme iron-dependent thiol dioxygenase mechanistic landscape, furthering our understanding of thiol metabolism regulation. The exploration of metal-substituted ADO sheds light on the intricate interplay between metal and catalytic activity in this essential enzyme.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ran Duan
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
7
|
Perri M, Licausi F. Thiol dioxygenases: from structures to functions. Trends Biochem Sci 2024; 49:545-556. [PMID: 38622038 DOI: 10.1016/j.tibs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.
Collapse
Affiliation(s)
- Monica Perri
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK
| | - Francesco Licausi
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Pierce BS, Schmittou AN, York NJ, Madigan RP, Nino PF, Foss FW, Lockart MM. Improved resolution of 3-mercaptopropionate dioxygenase active site provided by ENDOR spectroscopy offers insight into catalytic mechanism. J Biol Chem 2024; 300:105777. [PMID: 38395308 PMCID: PMC10966181 DOI: 10.1016/j.jbc.2024.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.
Collapse
Affiliation(s)
- Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| | - Allison N Schmittou
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan P Madigan
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Paula F Nino
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Frank W Foss
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, Homewood, Alabama, USA.
| |
Collapse
|
9
|
Yadav S, Yadav V, Siegler MA, Moënne-Loccoz P, Jameson GNL, Goldberg DP. A Nonheme Iron(III) Superoxide Complex Leads to Sulfur Oxygenation. J Am Chem Soc 2024; 146:7915-7921. [PMID: 38488295 PMCID: PMC11318076 DOI: 10.1021/jacs.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road,Parkville, Victoria 3010, Australia
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Abstract
Here, the choice of the first coordination shell of the metal center is analyzed from the perspective of charge maintenance in a binary enzyme-substrate complex and an O2-bound ternary complex in the nonheme iron oxygenases. Comparing homogentisate 1,2-dioxygenase and gentisate dioxygenase highlights the significance of charge maintenance after substrate binding as an important factor that drives the reaction coordinate. We then extend the charge analysis to several common types of nonheme iron oxygenases containing either a 2-His-1-carboxylate facial triad or a 3-His or 4-His ligand motif, including extradiol and intradiol ring-cleavage dioxygenases, thiol dioxygenases, α-ketoglutarate-dependent oxygenases, and carotenoid cleavage oxygenases. After forming the productive enzyme-substrate complex, the overall charge of the iron complex at the 0, +1, or +2 state is maintained in the remaining catalytic steps. Hence, maintaining a constant charge is crucial to promote the reaction of the iron center beginning from the formation of the Michaelis or ternary complex. The charge compensation to the iron ion is tuned not only by protein-derived carboxylate ligands but also by substrates. Overall, these analyses indicate that charge maintenance at the iron center is significant when all the necessary components form a productive complex. This charge maintenance concept may apply to most oxygen-activating metalloenzymes systems that do not draw electrons and protons step-by-step from a separate reactant, such as NADH, via a reductase. The charge maintenance perception may also be useful in proposing catalytic pathways or designing prototypical reactions using artificial or engineered enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
11
|
Flückger S, Igareta NV, Seebeck FP. Convergent Evolution of Fungal Cysteine Dioxygenases. Chembiochem 2020; 21:3082-3086. [PMID: 32543095 DOI: 10.1002/cbic.202000317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cupin-type cysteine dioxygenases (CDOs) are non-heme iron enzymes that occur in animals, plants, bacteria and in filamentous fungi. In this report, we show that agaricomycetes contain an entirely unrelated type of CDO that emerged by convergent evolution from enzymes involved in the biosynthesis of ergothioneine. The activity of this CDO type is dependent on the ergothioneine precursor N-α-trimethylhistidine. The metabolic link between ergothioneine production and cysteine oxidation suggests that the two processes might be part of the same chemical response in fungi, for example against oxidative stress.
Collapse
Affiliation(s)
- Sebastian Flückger
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Nico V Igareta
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
12
|
Hua YL, Ma Q, Yuan ZW, Zhang XS, Yao WL, Ji P, Hu JJ, Wei YM. A novel approach based on metabolomics coupled with network pharmacology to explain the effect mechanisms of Danggui Buxue Tang in anaemia. Chin J Nat Med 2019; 17:275-290. [PMID: 31076131 DOI: 10.1016/s1875-5364(19)30031-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Danggui Buxue Tang (DBT) is a famous Chinese medicinal decoction. Mechanism of DBT action is wide ranging and unclear. Exploring new ways of treatment with DBT is useful. Sprague-Dawley(SD) rats were randomly divided into 3 groups including control (NC, Saline), the DBT (at a dose of 8.10 g-1), and blood deficiency(BD) (Cyclophosphamide (APH)-andCyclophosphamide(CTX)-induced anaemia). A metabolomics approach using Liquid Chromatography-Quadrupole-Time-of-Flight/Mass Spectrometry (LC/Q-TOFMS) was developed to perform the plasma metabolic profiling analysis and differential metaboliteswerescreened according to the multivariate statistical analysiscomparing the NC and BD groups, andthe hub metabolites were outliers with high scores of the centrality indices. Anaemia disease-related protein target and compound of DBT databases were constructed. The TCMSP, ChemMapper and STITCH databases were used to predict the protein targets of DBT. Using the Cytoscape 3.2.1 to establish a phytochemical component-target protein interaction network and establish a component, protein and hub metabolite protein-protein interaction (PPI) network and merging the three PPI networks basing on BisoGenet. The gene enrichment analysis was used to analyse the relationship between proteins based on the relevant genetic similarity by ClueGO. The results shown DBT effectively treated anaemia in vivo. 11 metabolic pathways are involved in the therapeutic effect of DBT in vivo; S-adenosyl-l-methionine, glycine, l-cysteine, arachidonic acid (AA) and phosphatidylcholine(PC) were screened as hub metabolites in APH-and CTX-induced anaemia. A total of 288 targets were identified as major candidates for anaemia progression. The gene-set enrichment analysis revealed that the targets are involved in iron ion binding, haemopoiesis, reactive oxygen species production, inflammation and apoptosis. The results also showed that these targets were associated with iron ion binding, haemopoiesis, ROS production, apoptosis, inflammation and related signalling pathways. DBT can promote iron ion binding and haemopoiesis activities, restrain inflammation, production of reactive oxygen, block apoptosis, and contribute significantly to the DBT treat anaemia.
Collapse
Affiliation(s)
- Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China.
| | - Qi Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| |
Collapse
|
13
|
Goudarzi S, Babicz JT, Kabil O, Banerjee R, Solomon EI. Spectroscopic and Electronic Structure Study of ETHE1: Elucidating the Factors Influencing Sulfur Oxidation and Oxygenation in Mononuclear Nonheme Iron Enzymes. J Am Chem Soc 2018; 140:14887-14902. [PMID: 30362717 DOI: 10.1021/jacs.8b09022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ETHE1 is a member of a growing subclass of nonheme Fe enzymes that catalyzes transformations of sulfur-containing substrates without a cofactor. ETHE1 dioxygenates glutathione persulfide (GSSH) to glutathione (GSH) and sulfite in a reaction which is similar to that of cysteine dioxygenase (CDO), but with monodentate (vs bidentate) substrate coordination and a 2-His/1-Asp (vs 3-His) ligand set. In this study, we demonstrate that GSS- binds directly to the iron active site, causing coordination unsaturation to prime the site for O2 activation. Nitrosyl complexes without and with GSSH were generated and spectroscopically characterized as unreactive analogues for the invoked ferric superoxide intermediate. New spectral features from persulfide binding to the FeIII include the appearance of a low-energy FeIII ligand field transition, an energy shift of a NO- to FeIII CT transition, and two new GSS- to FeIII CT transitions. Time-dependent density functional theory calculations were used to simulate the experimental spectra to determine the persulfide orientation. Correlation of these spectral features with those of monodentate cysteine binding in isopenicillin N synthase (IPNS) shows that the persulfide is a poorer donor but still results in an equivalent frontier molecular orbital for reactivity. The ETHE1 persulfide dioxygenation reaction coordinate was calculated, and while the initial steps are similar to the reaction coordinate of CDO, an additional hydrolysis step is required in ETHE1 to break the S-S bond. Unlike ETHE1 and CDO, which both oxygenate sulfur, IPNS oxidizes sulfur through an initial H atom abstraction. Thus, factors that determine oxygenase vs oxidase reactivity were evaluated. In general, sulfur oxygenation is thermodynamically favored and has a lower barrier for reactivity. However, in IPNS, second-sphere residues in the active site pocket constrain the substrate, raising the barrier for sulfur oxygenation relative to oxidation via H atom abstraction.
Collapse
Affiliation(s)
- Serra Goudarzi
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Jeffrey T Babicz
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Omer Kabil
- Department of Biological Chemistry , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Ruma Banerjee
- Department of Biological Chemistry , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States.,SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| |
Collapse
|
14
|
Brandt U, Galant G, Meinert-Berning C, Steinbüchel A. Functional analysis of active amino acid residues of the mercaptosuccinate dioxygenase of Variovorax paradoxus B4. Enzyme Microb Technol 2018; 120:61-68. [PMID: 30396400 DOI: 10.1016/j.enzmictec.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/23/2018] [Accepted: 09/20/2018] [Indexed: 01/20/2023]
Abstract
Thiol dioxygenases are non-heme mononuclear-iron proteins and belong to the cupin superfamily. In 2014, mercaptosuccinate dioxygenase (Msdo) of Variovorax paradoxus B4 was identified as another bacterial cysteine dioxygenase (Cdo) homolog catalyzing the conversion of mercaptosuccinate (MS) into succinate and sulfite. To gain further insights into potentially important amino acid residues for enzyme activity, seven enzyme variants were generated and analyzed. (i) Three variants comprised the substitution of one conserved histidine residue each by leucine, either supposed to be mandatory for coordination of the Fe(II) cofactor (H93 and H95) or to be important for substrate positioning within the active site (H163). The corresponding enzyme variants were completely inactive confirming their essential roles for enzyme activity. (ii) Mutation C100S resulted as well in an inactive enzyme demonstrating its importance for either stability or activity of the protein. (iii) For eukaryotic Cdo, a hydrogen bond network for substrate positioning was postulated, and the corresponding amino acids are basically present in Msdo. Albeit the MsdoQ64A mutation exhibited an increased Km of 0.29 mM when compared to the wildtype with 0.06 mM, it did not significantly affect the specific activity. (iv) The variant MsdoR66A showed only very low activity even when high amounts of enzyme were applied indicating that this residue might be important for catalysis. (v) No strong effect had the mutation Y165F for which a specific enzyme activity of 10.22 μmol min-1 mg-1 protein and a Km value of 0.06 mM with high similarity to those of the wildtype enzyme were obtained. This residue corresponds to Y157 of human Cdo, which is part of the catalytic triad and is supposed to be involved in substrate positioning. Apparently, another residue could fulfill this role in Msdo, since the loss of Y165 did not have a strong effect.
Collapse
Affiliation(s)
- Ulrike Brandt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | - Gulsina Galant
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany; Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Cleavage of a carbon-fluorine bond by an engineered cysteine dioxygenase. Nat Chem Biol 2018; 14:853-860. [PMID: 29942080 PMCID: PMC6103799 DOI: 10.1038/s41589-018-0085-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/04/2018] [Indexed: 11/08/2022]
Abstract
Cysteine dioxygenase (CDO) plays an essential role in sulfur metabolism by regulating homeostatic levels of cysteine. Human CDO contains a post-translationally generated Cys93-Tyr157 cross-linked cofactor. Here, we investigated this Cys-Tyr cross-linking by incorporating unnatural tyrosines in place of Tyr157 via a genetic method. The catalytically active variants were obtained with a thioether bond between Cys93 and the halogen-substituted Tyr157, and we determined the crystal structures of both wild-type and engineered CDO variants in the purely uncross-linked form and with a mature cofactor. Along with mass spectrometry and 19F NMR, these data indicated that the enzyme could catalyze oxidative C-F or C-Cl bond cleavage, resulting in a substantial conformational change of both Cys93 and Tyr157 during cofactor assembly. These findings provide insights into the mechanism of Cys-Tyr cofactor biogenesis and may aid the development of bioinspired aromatic carbon-halogen bond activation.
Collapse
|
16
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 680] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
17
|
Wang Y, Li J, Liu A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J Biol Inorg Chem 2017; 22:395-405. [PMID: 28084551 DOI: 10.1007/s00775-017-1436-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022]
Abstract
Molecular oxygen is utilized in numerous metabolic pathways fundamental for life. Mononuclear nonheme iron-dependent oxygenase enzymes are well known for their involvement in some of these pathways, activating O2 so that oxygen atoms can be incorporated into their primary substrates. These reactions often initiate pathways that allow organisms to use stable organic molecules as sources of carbon and energy for growth. From the myriad of reactions in which these enzymes are involved, this perspective recounts the general mechanisms of aromatic dihydroxylation and oxidative ring cleavage, both of which are ubiquitous chemical reactions found in life-sustaining processes. The organic substrate provides all four electrons required for oxygen activation and insertion in the reactions mediated by extradiol and intradiol ring-cleaving catechol dioxygenases. In contrast, two of the electrons are provided by NADH in the cis-dihydroxylation mechanism of Rieske dioxygenases. The catalytic nonheme Fe center, with the aid of active site residues, facilitates these electron transfers to O2 as key elements of the activation processes. This review discusses some general questions for the catalytic strategies of oxygen activation and insertion into aromatic compounds employed by mononuclear nonheme iron-dependent dioxygenases. These include: (1) how oxygen is activated, (2) whether there are common intermediates before oxygen transfer to the aromatic substrate, and (3) are these key intermediates unique to mononuclear nonheme iron dioxygenases?
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
18
|
Holm RH, Lo W. Structural Conversions of Synthetic and Protein-Bound Iron–Sulfur Clusters. Chem Rev 2016; 116:13685-13713. [DOI: 10.1021/acs.chemrev.6b00276] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. H. Holm
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Wayne Lo
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
19
|
Peck SC, van der Donk WA. Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes. J Biol Inorg Chem 2016; 22:381-394. [PMID: 27783267 DOI: 10.1007/s00775-016-1399-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the current mechanistic understanding of a group of mononuclear non-heme iron-dependent enzymes that catalyze four-electron oxidation of their organic substrates without the use of any cofactors or cosubstrates. One set of enzymes acts on α-ketoacid-containing substrates, coupling decarboxylation to oxygen activation. This group includes 4-hydroxyphenylpyruvate dioxygenase, 4-hydroxymandelate synthase, and CloR involved in clorobiocin biosynthesis. A second set of enzymes acts on substrates containing a thiol group that coordinates to the iron. This group is comprised of isopenicillin N synthase, thiol dioxygenases, and enzymes involved in the biosynthesis of ergothioneine and ovothiol. The final group of enzymes includes HEPD and MPnS that both carry out the oxidative cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate but generate different products. Commonalities amongst many of these enzymes are discussed and include the initial substrate oxidation by a ferric-superoxo-intermediate and a second oxidation by a ferryl species.
Collapse
Affiliation(s)
- Spencer C Peck
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
20
|
Driggers CM, Kean KM, Hirschberger LL, Cooley RB, Stipanuk MH, Karplus PA. Structure-Based Insights into the Role of the Cys-Tyr Crosslink and Inhibitor Recognition by Mammalian Cysteine Dioxygenase. J Mol Biol 2016; 428:3999-4012. [PMID: 27477048 DOI: 10.1016/j.jmb.2016.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
In mammals, the non-heme iron enzyme cysteine dioxygenase (CDO) helps regulate Cys levels through converting Cys to Cys sulfinic acid. Its activity is in part modulated by the formation of a Cys93-Tyr157 crosslink that increases its catalytic efficiency over 10-fold. Here, 21 high-resolution mammalian CDO structures are used to gain insight into how the Cys-Tyr crosslink promotes activity and how select competitive inhibitors bind. Crystal structures of crosslink-deficient C93A and Y157F variants reveal similar ~1.0-Å shifts in the side chain of residue 157, and both variant structures have a new chloride ion coordinating the active site iron. Cys binding is also different from wild-type CDO, and no Cys-persulfenate forms in the C93A or Y157F active sites at pH6.2 or 8.0. We conclude that the crosslink enhances activity by positioning the Tyr157 hydroxyl to enable proper Cys binding, proper oxygen binding, and optimal chemistry. In addition, structures are presented for homocysteine (Hcy), D-Cys, thiosulfate, and azide bound as competitive inhibitors. The observed binding modes of Hcy and D-Cys clarify why they are not substrates, and the binding of azide shows that in contrast to what has been proposed, it does not bind in these crystals as a superoxide mimic.
Collapse
Affiliation(s)
- Camden M Driggers
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA
| | - Kelsey M Kean
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA
| | - Lawrence L Hirschberger
- Department of Nutritional Sciences, 227 Savage Hall, Cornell University, Ithaca, NY 14853, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA
| | - Martha H Stipanuk
- Department of Nutritional Sciences, 227 Savage Hall, Cornell University, Ithaca, NY 14853, USA.
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
21
|
Fellner M, Siakkou E, Faponle AS, Tchesnokov EP, de Visser SP, Wilbanks SM, Jameson GNL. Influence of cysteine 164 on active site structure in rat cysteine dioxygenase. J Biol Inorg Chem 2016; 21:501-10. [PMID: 27193596 DOI: 10.1007/s00775-016-1360-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/07/2016] [Indexed: 11/29/2022]
Abstract
Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate L-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine-tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding.
Collapse
Affiliation(s)
- Matthias Fellner
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Eleni Siakkou
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Egor P Tchesnokov
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sigurd M Wilbanks
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Guy N L Jameson
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
22
|
Fellner M, Aloi S, Tchesnokov EP, Wilbanks SM, Jameson GNL. Substrate and pH-Dependent Kinetic Profile of 3-Mercaptopropionate Dioxygenase from Pseudomonas aeruginosa. Biochemistry 2016; 55:1362-71. [DOI: 10.1021/acs.biochem.5b01203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthias Fellner
- Department of Chemistry and ‡Department of
Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sekotilani Aloi
- Department of Chemistry and ‡Department of
Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Egor P. Tchesnokov
- Department of Chemistry and ‡Department of
Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sigurd M. Wilbanks
- Department of Chemistry and ‡Department of
Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Guy N. L. Jameson
- Department of Chemistry and ‡Department of
Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
23
|
Goncharenko KV, Seebeck FP. Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. Chem Commun (Camb) 2016; 52:1945-8. [DOI: 10.1039/c5cc07772a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EgtB from Mycobacterium thermoresistibile catalyzes O2-dependent sulfur–carbon bond formation between the side chains of Nα-trimethyl histidine and γ-glutamyl cysteine as a central step in ergothioneine biosynthesis.
Collapse
|
24
|
Saund SS, Sosa V, Henriquez S, Nguyen QNN, Bianco CL, Soeda S, Millikin R, White C, Le H, Ono K, Tantillo DJ, Kumagai Y, Akaike T, Lin J, Fukuto JM. The chemical biology of hydropersulfides (RSSH): Chemical stability, reactivity and redox roles. Arch Biochem Biophys 2015; 588:15-24. [PMID: 26519887 DOI: 10.1016/j.abb.2015.10.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/01/2015] [Accepted: 10/24/2015] [Indexed: 01/08/2023]
Abstract
Recent reports indicate the ubiquitous prevalence of hydropersulfides (RSSH) in mammalian systems. The biological utility of these and related species is currently a matter of significant speculation. The function, lifetime and fate of hydropersulfides will be assuredly based on their chemical properties and reactivity. Thus, to serve as the basis for further mechanistic studies regarding hydropersulfide biology, some of the basic chemical properties/reactivity of hydropersulfides was studied. The nucleophilicity, electrophilicity and redox properties of hydropersulfides were examined under biological conditions. These studies indicate that hydropersulfides can be nucleophilic or electrophilic, depending on the pH (i.e. the protonation state) and can act as good one- and two-electron reductants. These diverse chemical properties in a single species make hydropersulfides chemically distinct from other, well-known sulfur containing biological species, giving them unique and potentially important biological function.
Collapse
Affiliation(s)
- Simran S Saund
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Victor Sosa
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Stephanie Henriquez
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Q Nhu N Nguyen
- Department of Chemistry, University of California, Davis, One Shield Ave., Davis, CA, 95616, USA
| | | | - Shuhei Soeda
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Robert Millikin
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Corey White
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Henry Le
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Katsuhiko Ono
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shield Ave., Davis, CA, 95616, USA
| | - Yoshito Kumagai
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Joseph Lin
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA.
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
25
|
Sallmann M, Limberg C. Utilizing the Trispyrazolyl Borate Ligand for the Mimicking of O2-Activating Mononuclear Nonheme Iron Enzymes. Acc Chem Res 2015; 48:2734-43. [PMID: 26305516 DOI: 10.1021/acs.accounts.5b00148] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear, O2-activating nonheme iron enzymes are a fascinating class of metalloproteines, capable of realizing the most different reactions, ranging from C-H activation, via O atom transfer to C-C bond cleavage, in the course of O2 activation. They can lead us the way to achieve similar reactions with comparable efficiency and selectivity in chemical laboratories, which would be highly desirable aiming at accessing value-added products or to achieve degradation of unwanted compounds. Hence, these enyzmes motivate attempts to construct artificial low-molecular weight analogues, mimicking structural or functional characteristics. Such models can, for instance, provide insights about which of the features inherent to an active site are essential and guarantee the enzyme function, and from this kind of information the minimal requirements for a biomimetic or bioinspired complex that may be applied in catalysis can be derived. On the other hand, they can contribute to an understanding of the enzyme functioning. In order to create such replicates, it is important to faithfully mimic the surroundings of the iron centers in their active sites. Most of them feature two histidine residues and one carboxylate donor, while a few exhibit a deceptively simple (His)3Fe active site. For the simulation of these, the trispyrazolyl borate ligand (Tp) particularly offers itself, as the facial arrangement of three pyrazole donors is reminiscent of the three histidine-derived imidazole donors. The focus of this Account will be on bioinorganic/biomimetic research from our laboratory utilizing Tp ligands to develop molecular models for (i) two representatives of the (His)3Fe-enzyme family, namely, the cysteine dioxygenase (CDO) and acetyl acetone dioxygenase (Dke1), (ii) a related but less well-explored variant of the CDO-the 2-aminoethanethiol dioxygenase-as well as (iii) the 2-His-1-carboxylate representative 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). The CDO catalyzes the dioxygenation of cysteine with O2 to give cysteine sulfinic acid, which could be mimicked at TpFe units in a realistic manner. Furthermore, the successful dioxygenation of 2-aminoethanethiol at the same complex metal fragments lends further support to the hypothesis that the active sites of CDO and the one of 2-aminoethanethiol dioxygenase, whose structure is unknown, are quite similar. Dke1 is capable of cleaving diketones and ketoesters to give the corresponding carboxylic acids and α-keto aldehydes, and Tp-based models have achieved comparable C-C bond cleavage reactions. The ACCO develops ethylene from ACC in the course of oxidation, and recently this has been achieved the first time for a TpFe model, too.
Collapse
Affiliation(s)
- Madleen Sallmann
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
26
|
Tchesnokov EP, Fellner M, Siakkou E, Kleffmann T, Martin LW, Aloi S, Lamont IL, Wilbanks SM, Jameson GNL. The cysteine dioxygenase homologue from Pseudomonas aeruginosa is a 3-mercaptopropionate dioxygenase. J Biol Chem 2015; 290:24424-37. [PMID: 26272617 PMCID: PMC4591825 DOI: 10.1074/jbc.m114.635672] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 08/02/2015] [Indexed: 02/02/2023] Open
Abstract
Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site.
Collapse
Affiliation(s)
| | | | | | - Torsten Kleffmann
- Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Lois W Martin
- Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | | - Iain L Lamont
- Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sigurd M Wilbanks
- Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | |
Collapse
|
27
|
A jack-of-all-trades: 2-mercaptosuccinic acid. Appl Microbiol Biotechnol 2015; 99:4545-57. [DOI: 10.1007/s00253-015-6605-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/11/2015] [Indexed: 12/16/2022]
|
28
|
Blaesi EJ, Fox BG, Brunold TC. Spectroscopic and Computational Investigation of the H155A Variant of Cysteine Dioxygenase: Geometric and Electronic Consequences of a Third-Sphere Amino Acid Substitution. Biochemistry 2015; 54:2874-84. [PMID: 25897562 DOI: 10.1021/acs.biochem.5b00171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine dioxygenase (CDO) is a mononuclear, non-heme iron(II)-dependent enzyme that utilizes molecular oxygen to catalyze the oxidation of l-cysteine (Cys) to cysteinesulfinic acid. Although the kinetic consequences of various outer-sphere amino acid substitutions have previously been assessed, the effects of these substitutions on the geometric and electronic structures of the active site remained largely unexplored. In this work, we have performed a spectroscopic and computational characterization of the H155A CDO variant, which was previously shown to display a rate of Cys oxidation ∼100-fold decreased relative to that of wild-type (WT) CDO. Magnetic circular dichroism and electron paramagnetic resonance spectroscopic data indicate that the His155 → Ala substitution has a significant effect on the electronic structure of the Cys-bound Fe(II)CDO active site. An analysis of these data within the framework of density functional theory calculations reveals that Cys-bound H155A Fe(II)CDO possesses a six-coordinate Fe(II) center, differing from the analogous WT CDO species in the presence of an additional water ligand. The enhanced affinity of the Cys-bound Fe(II) center for a sixth ligand in the H155A CDO variant likely stems from the increased level of conformational freedom of the cysteine-tyrosine cross-link in the absence of the H155 imidazole ring. Notably, the nitrosyl adduct of Cys-bound Fe(II)CDO [which mimics the (O2/Cys)-CDO intermediate] is essentially unaffected by the H155A substitution, suggesting that the primary role played by the H155 side chain in CDO catalysis is to discourage the binding of a water molecule to the Cys-bound Fe(II)CDO active site.
Collapse
Affiliation(s)
- Elizabeth J Blaesi
- †Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian G Fox
- ‡Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas C Brunold
- †Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Sallmann M, Kumar S, Chernev P, Nehrkorn J, Schnegg A, Kumar D, Dau H, Limberg C, de Visser SP. Structure and Mechanism Leading to Formation of the Cysteine Sulfinate Product Complex of a Biomimetic Cysteine Dioxygenase Model. Chemistry 2015; 21:7470-9. [DOI: 10.1002/chem.201500644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Indexed: 01/10/2023]
|
30
|
Pettinati I, Brem J, McDonough MA, Schofield CJ. Crystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy. Hum Mol Genet 2015; 24:2458-69. [PMID: 25596185 PMCID: PMC4383860 DOI: 10.1093/hmg/ddv007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 01/08/2023] Open
Abstract
The ethylmalonic encephalopathy protein 1 (ETHE1) catalyses the oxygen-dependent oxidation of glutathione persulfide (GSSH) to give persulfite and glutathione. Mutations to the hETHE1 gene compromise sulfide metabolism leading to the genetic disease ethylmalonic encephalopathy. hETHE1 is a mono-iron binding member of the metallo-β-lactamase (MBL) fold superfamily. We report crystallographic analysis of hETHE1 in complex with iron to 2.6 Å resolution. hETHE1 contains an αββα MBL-fold, which supports metal-binding by the side chains of an aspartate and two histidine residues; three water molecules complete octahedral coordination of the iron. The iron binding hETHE1 enzyme is related to the ‘classical’ di-zinc binding MBL hydrolases involved in antibiotic resistance, but has distinctive features. The histidine and aspartate residues involved in iron-binding in ETHE1, occupy similar positions to those observed across both the zinc 1 and zinc 2 binding sites in classical MBLs. The active site of hETHE1 is very similar to an ETHE1-like enzyme from Arabidopsis thaliana (60% sequence identity). A channel leading to the active site is sufficiently large to accommodate a GSSH substrate. Some of the observed hETHE1 clinical mutations cluster in the active site region. The structure will serve as a basis for detailed functional and mechanistic studies on ETHE1 and will be useful in the development of selective MBL inhibitors.
Collapse
Affiliation(s)
- Ilaria Pettinati
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A McDonough
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
31
|
Faponle AS, Quesne MG, Sastri CV, Banse F, de Visser SP. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere. Chemistry 2015; 21:1221-36. [PMID: 25399782 PMCID: PMC4316188 DOI: 10.1002/chem.201404918] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/06/2022]
Abstract
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found.
Collapse
Affiliation(s)
- Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati781039, Assam (India)
| | - Frédéric Banse
- Institut de Chimie Moleculaire et des Materiaux d'Orsay, Laboratoire de Chimie Inorganique, Université Paris-Sud11 91405 Orsay Cedex (France) E-mail:
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| |
Collapse
|
32
|
Davies CG, Fellner M, Tchesnokov EP, Wilbanks SM, Jameson GNL. The Cys-Tyr cross-link of cysteine dioxygenase changes the optimal pH of the reaction without a structural change. Biochemistry 2014; 53:7961-8. [PMID: 25390690 DOI: 10.1021/bi501277a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cysteine dioxygenase (CDO) is a non-heme monoiron enzyme with an unusual posttranslational modification in the proximity of the ferrous iron active site. This modification, a cysteine to tyrosine thioether bond, cross-links two β-strands of the β-barrel. We have investigated its role in catalysis through a combined crystallographic and kinetic approach. The C93G variant lacks the cross-link and shows little change in structure from that of the wild type, suggesting that the cross-link does not stabilize an otherwise unfavorable conformation. A pH-dependent kinetic study shows that both cross-linked and un-cross-linked CDO are active but the optimal pH decreases with the presence of the cross-link. This result reflects the effect of the thioether bond on the pKa of Y157 and this residue's role in catalysis. At higher pH values, kcat is also higher for the cross-linked form, extending the pH range of activity. We therefore propose that the cross-link also increases activity by controlling deleterious interactions involving the thiol/ate of C93.
Collapse
Affiliation(s)
- Casey G Davies
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology and ‡Department of Biochemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
33
|
Driggers CM, Hartman SJ, Karplus PA. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs. Protein Sci 2014; 24:154-61. [PMID: 25307852 DOI: 10.1002/pro.2587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/12/2022]
Abstract
In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ∼15-30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue ("Arg-type" enzymes) and some having a Gln substituted for this Arg ("Gln-type" enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis "Arg-type" enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha "Gln-type" CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among "Gln-type" CDO enzymes, we conclude that the "Gln-type" CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.
Collapse
Affiliation(s)
- Camden M Driggers
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg, Oregon State University, Corvallis, Oregon, 97331
| | | | | |
Collapse
|
34
|
Brandt U, Schürmann M, Steinbüchel A. Mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, from Variovorax paradoxus strain B4 is the key enzyme of mercaptosuccinate degradation. J Biol Chem 2014; 289:30800-30809. [PMID: 25228698 DOI: 10.1074/jbc.m114.579730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The versatile thiol mercaptosuccinate has a wide range of applications, e.g. in quantum dot research or in bioimaging. Its metabolism is investigated in Variovorax paradoxus strain B4, which can utilize this compound as the sole source of carbon and sulfur. Proteomic studies of strain B4 resulted in the identification of a putative mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, possibly representing the key enzyme in the degradation of mercaptosuccinate. Therefore, the putative mercaptosuccinate dioxygenase was heterologously expressed, purified, and characterized in this study. The results clearly demonstrated that the enzyme utilizes mercaptosuccinate with concomitant consumption of oxygen. Thus, the enzyme is designated as mercaptosuccinate dioxygenase. Succinate and sulfite were verified as the final reaction products. The enzyme showed an apparent Km of 0.4 mM, and a specific activity (Vmax) of 20.0 μmol min(-1) mg(-1) corresponding to a kcat of 7.7 s(-1). Furthermore, the enzyme was highly specific for mercaptosuccinate, no activity was observed with cysteine, dithiothreitol, 2-mercaptoethanol, and 3-mercaptopropionate. These structurally related thiols did not have an inhibitory effect either. Fe(II) could clearly be identified as metal cofactor of the mercaptosuccinate dioxygenase with a content of 0.6 mol of Fe(II)/mol of enzyme. The recently proposed hypothesis for the degradation pathway of mercaptosuccinate based on proteome analyses could be strengthened in the present study. (i) Mercaptosuccinate is first converted to sulfinosuccinate by this mercaptosuccinate dioxygenase; (ii) sulfinosuccinate is spontaneously desulfinated to succinate and sulfite; and (iii) whereas succinate enters the central metabolism, sulfite is detoxified by the previously identified putative molybdopterin oxidoreductase.
Collapse
Affiliation(s)
- Ulrike Brandt
- Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität, D-48149 Münster, Germany and
| | - Marc Schürmann
- Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität, D-48149 Münster, Germany and
| | - Alexander Steinbüchel
- Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität, D-48149 Münster, Germany and; Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
35
|
Fellner M, Doughty LM, Jameson GN, Wilbanks SM. A chromogenic assay of substrate depletion by thiol dioxygenases. Anal Biochem 2014; 459:56-60. [DOI: 10.1016/j.ab.2014.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022]
|