1
|
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. EXPLORATION (BEIJING, CHINA) 2023; 3:20210056. [PMID: 37324034 PMCID: PMC10191066 DOI: 10.1002/exp.20210056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.
Collapse
Affiliation(s)
- Tao Weitao
- UT Southwestern Medical CenterCenter for the Genetics of Host DefenseDallasTXUSA
- College of Science and MathematicsSouthwest Baptist UniversityBolivarMOUSA
| | - Giovanna Grandinetti
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOHUSA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and NanomedicineDivision of Pharmaceutics and Pharmacology, College of PharmacyDorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of MedicineThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
2
|
Morgan A, LeGresley S, Fischer C. Remodeler Catalyzed Nucleosome Repositioning: Influence of Structure and Stability. Int J Mol Sci 2020; 22:ijms22010076. [PMID: 33374740 PMCID: PMC7793527 DOI: 10.3390/ijms22010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The packaging of the eukaryotic genome into chromatin regulates the storage of genetic information, including the access of the cell’s DNA metabolism machinery. Indeed, since the processes of DNA replication, translation, and repair require access to the underlying DNA, several mechanisms, both active and passive, have evolved by which chromatin structure can be regulated and modified. One mechanism relies upon the function of chromatin remodeling enzymes which couple the free energy obtained from the binding and hydrolysis of ATP to the mechanical work of repositioning and rearranging nucleosomes. Here, we review recent work on the nucleosome mobilization activity of this essential family of molecular machines.
Collapse
|
3
|
Chittori S, Hong J, Bai Y, Subramaniam S. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome. Nucleic Acids Res 2019; 47:9400-9409. [PMID: 31402386 PMCID: PMC6755096 DOI: 10.1093/nar/gkz670] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/11/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022] Open
Abstract
ATP-dependent chromatin remodeling factors of SWI/SNF2 family including ISWI, SNF2, CHD1 and INO80 subfamilies share a conserved but functionally non-interchangeable ATPase domain. Here we report cryo-electron microscopy (cryo-EM) structures of the nucleosome bound to an ISWI fragment with deletion of the AutoN and HSS regions in nucleotide-free conditions and the free nucleosome at ∼ 4 Å resolution. In the bound conformation, the ATPase domain interacts with the super helical location 2 (SHL 2) of the nucleosomal DNA, with the N-terminal tail of H4 and with the α1 helix of H3. Density for other regions of ISWI is not observed, presumably due to disorder. Comparison with the structure of the free nucleosome reveals that although the histone core remains largely unchanged, remodeler binding causes perturbations in the nucleosomal DNA resulting in a bulge near the SHL2 site. Overall, the structure of the nucleotide-free ISWI-nucleosome complex is similar to the corresponding regions of the recently reported ADP bound ISWI-nucleosome structures, which are significantly different from that observed for the ADP-BeFx bound structure. Our findings are relevant to the initial step of ISWI binding to the nucleosome and provide additional insights into the nucleosome remodeling process driven by ISWI.
Collapse
Affiliation(s)
- Sagar Chittori
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Jingjun Hong
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- University of British Columbia, Vancouver, British Columbia, Canada.,Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
4
|
Anisotropy-Based Nucleosome Repositioning Assay. Methods Mol Biol 2019; 1805:333-347. [PMID: 29971726 DOI: 10.1007/978-1-4939-8556-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Most eukaryotic DNA is tightly packaged into nucleosomes that render these sequences largely inaccessible for transcription or repair. Molecular motors called chromatin remodelers use an ATP-dependent mechanism to relieve the inhibition of these processes by sliding or disassembling the nucleosomes. This allows them to serve an essential role in the regulation of gene expression and genomic integrity. The sliding of nucleosomes along DNA can be studied directly by monitoring the associated changes in the fluorescence anisotropy of fluorophores attached to the ends of the DNA. Nucleosome repositioning can also be monitored indirectly through the ATP hydrolysis of the chromatin remodeler during the sliding reaction. Here we discuss how the kinetic data collected in these experiments can be analyzed by simultaneous global nonlinear least squares (NLLS) analysis using simple sequential "n-step" mechanisms to obtain estimates of the macroscopic rate of nucleosome repositioning and of the stoichiometry of coupling ATP binding and hydrolysis to this reaction.
Collapse
|
5
|
Morgan AM, LeGresley SE, Briggs K, Al-Ani G, Fischer CJ. Effects of nucleosome stability on remodeler-catalyzed repositioning. Phys Rev E 2018; 97:032422. [PMID: 29776169 DOI: 10.1103/physreve.97.032422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Chromatin remodelers are molecular motors that play essential roles in the regulation of nucleosome positioning and chromatin accessibility. These machines couple the energy obtained from the binding and hydrolysis of ATP to the mechanical work of manipulating chromatin structure through processes that are not completely understood. Here we present a quantitative analysis of nucleosome repositioning by the imitation switch (ISWI) chromatin remodeler and demonstrate that nucleosome stability significantly impacts the observed activity. We show how DNA damage induced changes in the affinity of DNA wrapping within the nucleosome can affect ISWI repositioning activity and demonstrate how assay-dependent limitations can bias studies of nucleosome repositioning. Together, these results also suggest that some of the diversity seen in chromatin remodeler activity can be attributed to the variations in the thermodynamics of interactions between the remodeler, the histones, and the DNA, rather than reflect inherent properties of the remodeler itself.
Collapse
Affiliation(s)
- Aaron M Morgan
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Sarah E LeGresley
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Koan Briggs
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Gada Al-Ani
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Christopher J Fischer
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| |
Collapse
|
6
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Schram RD, Klinker H, Becker PB, Schiessel H. Computational study of remodeling in a nucleosomal array. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:85. [PMID: 26248702 DOI: 10.1140/epje/i2015-15085-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/18/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Chromatin remodeling complexes utilize the energy of ATP hydrolysis to change the packing state of chromatin, e.g. by catalysing the sliding of nucleosomes along DNA. Here we present simple models to describe experimental data of changes in DNA accessibility along a synthetic, repetitive array of nucleosomes during remodeling by the ACF enzyme or its isolated ATPase subunit, ISWI. We find substantial qualitative differences between the remodeling activities of ISWI and ACF. To understand better the observed behavior for the ACF remodeler, we study more microscopic models of nucleosomal arrays.
Collapse
Affiliation(s)
- Raoul D Schram
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA, Leiden, The Netherlands
| | | | | | | |
Collapse
|
8
|
Low processivity for DNA translocation by the ISWI molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1487-93. [PMID: 26116984 DOI: 10.1016/j.bbapap.2015.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/23/2015] [Accepted: 06/24/2015] [Indexed: 11/21/2022]
Abstract
The motor protein ISWI (Imitation SWItch) is the conserved catalytic ATPase domain of the ISWI family of chromatin remodelers. Members of the ISWI family are involved in regulating the structure of cellular chromatin during times of transcription, translation, and repair. Current models for the nucleosome repositioning activity of ISWI and other chromatin remodelers require the translocation of the remodeling protein along double-stranded DNA through an ATP-dependent mechanism. Here we report results from spectrofluorometric stopped-flow experiments which demonstrate that ISWI displays very low processivity for free DNA translocation. By combining these results with those from experiments monitoring the DNA stimulated ATPase activity of ISWI we further demonstrate that the DNA translocation by ISWI is tightly coupled to ATP hydrolysis. The calculated coupling efficiency of 0.067±0.018 ATP/ISWI/bp is seemingly quite low in comparison to similar DNA translocases and we present potential models to account for this. Nevertheless, the tight coupling of ATP hydrolysis to DNA translocation suggests that DNA translocation is not energetically rate limiting for nucleosome repositioning by ISWI.
Collapse
|
9
|
Brysbaert G, Lensink MF, Blossey R. Regulatory motifs on ISWI chromatin remodelers: molecular mechanisms and kinetic proofreading. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064108. [PMID: 25563573 DOI: 10.1088/0953-8984/27/6/064108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recently, kinetic proofreading scenarios have been proposed for the regulation of chromatin remodeling, first on purely theoretical grounds (Blossey and Schiessel 2008 HFSP J. 2 167-70) and deduced from experiments on the ISWI/ACF system (Narlikar 2010 Curr. Opin. Chem. Biol. 14 660). In the kinetic proofreading scenario of chromatin remodeling, the combination of the recognition of a histone tail state and ATP-hydrolysis in the remodeler motor act together to select (i.e. proofread) a nucleosomal substrate. ISWI remodelers have recently been shown to have an additional level of regulation as they contain auto-inhibitory motifs which need to be inactivated through an interaction with the nucleosome. In this paper we show that the auto-regulatory effect enhances substrate recognition in kinetic proofreading. We further report some suggestive additional insights into the molecular mechanism underlying ISWI-autoregulation.
Collapse
Affiliation(s)
- Guillaume Brysbaert
- Interdisciplinary Research Institute, Université des Sciences et des Technologies de Lille (USTL), CNRS USR3078, 50 Avenue Halley, 59568 Villeneuve d'Ascq, France
| | | | | |
Collapse
|
10
|
Al-Ani G, Malik SS, Eastlund A, Briggs K, Fischer CJ. ISWI remodels nucleosomes through a random walk. Biochemistry 2014; 53:4346-57. [PMID: 24898619 PMCID: PMC4100782 DOI: 10.1021/bi500226b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromatin remodeler ISWI is capable of repositioning clusters of nucleosomes to create well-ordered arrays or moving single nucleosomes from the center of DNA fragments toward the ends without disrupting their integrity. Using standard electrophoresis assays, we have monitored the ISWI-catalyzed repositioning of different nucleosome samples each containing a different length of DNA symmetrically flanking the initially centrally positioned histone octamer. We find that ISWI moves the histone octamer between distinct and thermodynamically stable positions on the DNA according to a random walk mechanism. Through the application of a spectrophotometric assay for nucleosome repositioning, we further characterized the repositioning activity of ISWI using short nucleosome substrates and were able to determine the macroscopic rate of nucleosome repositioning by ISWI. Additionally, quantitative analysis of repositioning experiments performed at various ISWI concentrations revealed that a monomeric ISWI is sufficient to obtain the observed repositioning activity as the presence of a second ISWI bound had no effect on the rate of nucleosome repositioning. We also found that ATP hydrolysis is poorly coupled to nucleosome repositioning, suggesting that DNA translocation by ISWI is not energetically rate-limiting for the repositioning reaction. This is the first calculation of a microscopic ATPase coupling efficiency for nucleosome repositioning and also further supports our conclusion that a second bound ISWI does not contribute to the repositioning reaction.
Collapse
Affiliation(s)
- Gada Al-Ani
- Department of Molecular Biosciences, University of Kansas , 2034 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | | | | | | | | |
Collapse
|