1
|
Stelitano G, Cocorullo M, Mori M, Villa S, Meneghetti F, Chiarelli LR. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand? Int J Mol Sci 2023; 24:ijms24076181. [PMID: 37047161 PMCID: PMC10094389 DOI: 10.3390/ijms24076181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.
Collapse
|
2
|
Wang D, Cui F, Ren L, Li J, Li T. Quorum-quenching enzymes: Promising bioresources and their opportunities and challenges as alternative bacteriostatic agents in food industry. Compr Rev Food Sci Food Saf 2023; 22:1104-1127. [PMID: 36636773 DOI: 10.1111/1541-4337.13104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
The problems of spoilage, disease, and biofilm caused by bacterial quorum-sensing (QS) systems have posed a significant challenge to the development of the food industry. Quorum-quenching (QQ) enzymes can block QS by hydrolyzing or modifying the signal molecule, making these enzymes promising new candidates for use as antimicrobials. With many recent studies of QQ enzymes and their potential to target foodborne bacteria, an updated and systematic review is necessary. Thus, the goals of this review were to summarize what is known about the effects of bacterial QS on the food industry; discuss the current understanding of the catalytic mechanisms of QQ enzymes, including lactonase, acylase, and oxidoreductase; and describe strategies for the engineering and evolution of QQ enzymes for practical use. In particular, this review focuses on the latest progress in the application of QQ enzymes in the field of food. Finally, the current challenges limiting the systematic application of QQ enzymes in the food industry are discussed to help guide the future development of these important enzymes.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Fangchao Cui
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Likun Ren
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, China
| |
Collapse
|
3
|
Wang D, Cui F, Ren L, Tan X, Li Q, Li J, Li T. Enhancing the Inhibition Potential of AHL Acylase PF2571 against Food Spoilage by Remodeling Its Substrate Scope via a Computationally Driven Protein Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14510-14521. [PMID: 36331356 DOI: 10.1021/acs.jafc.2c05753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The N-acyl homoserine lactone (AHL) acylases are widely used as quorum sensing (QS) blockers to inhibit bacterial food spoilage. However, their substrate specificity for long-chain substrates weakens their efficiency. In this study, a computer-assisted design of AHL acylase PF2571 was performed to modify its substrate scope. The results showed that the variant PF2571H194Y, L221R could effectively quench N-hexanoyl-l-homoserine lactone and N-octanoyl-l-homoserine lactone without impairing its activity against long-chain AHLs. Kinetic analysis of the enzymatic activities further corroborated the observed substrate expansion. The inhibitory activities of this variant were significantly enhanced against the QS phenotype of Aeromonas veronii BY-8, with inhibition rates of 45.67, 78.25, 54.21, and 54.65% against proteases, motility, biofilms, and extracellular polysaccharides, respectively. Results for molecular dynamics simulation showed that the steric hindrance, induced by residue substitution, could have been responsible for the change in substrate scope. This study dramatically improves the practicability of AHL acylase in controlling food spoilage.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Fangchao Cui
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Heilongjiang, Harbin150076, China
| | - Xiqian Tan
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Qiuying Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Liaoning, Dalian116029, China
| |
Collapse
|
4
|
Vogel JGT, Wibowo JP, Fan H, Setroikromo R, Wang K, Dömling A, Dekker FJ, Quax WJ. Discovery of chromene compounds as inhibitors of PvdQ acylase of Pseudomonas aeruginosa. Microbes Infect 2022; 24:105017. [PMID: 35709935 DOI: 10.1016/j.micinf.2022.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
The acquisition of iron is a crucial mechanism for the survival of pathogenic bacteria such as Pseudomonas aeruginosa in eukaryotic hosts. The key iron chelator in this organism is the siderophore pyoverdine, which was shown to be crucial for iron homeostasis. Pyoverdine is a non-ribosomal peptide with several maturation steps in the cytoplasm and others in the periplasmatic space. A key enzyme for its maturation is the acylase PvdQ. The inhibition of PvdQ stops the maturation of pyoverdine causing a significant imbalance in the iron homeostasis and hence can negatively influence the survival of P. aeruginosa. In this work, we successfully synthesized chromene-derived inhibitory molecules targeting PvdQ in a low micromolar range. In silico modeling as well as kinetic evaluations of the inhibitors suggest a competitive inhibition of the PvdQ function. Further, we evaluated the inhibitor in vivo on P. aeruginosa cells and report a dose-dependent reduction of pyoverdine formation. The compound also showed a protecting effect in a Galleria mellonella infection model.
Collapse
Affiliation(s)
- Jan G T Vogel
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Joko P Wibowo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands; Faculty of Pharmacy, University of Muhammadiyah Banjarmasin, Jl. Gubernur Syarkawi, Barito Kuala, 70582, Indonesia
| | - Hillina Fan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Kan Wang
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands.
| |
Collapse
|
5
|
Surpeta B, Grulich M, Palyzová A, Marešová H, Brezovsky J. Common Dynamic Determinants Govern Quorum Quenching Activity in N-Terminal Serine Hydrolases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bartlomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| | - Michal Grulich
- Laboratory of Modulation of Gene Expression, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Andrea Palyzová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Helena Marešová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
6
|
Soor HS, Diaz DB, Tsui KY, Calvopiña K, Bielinski M, Tantillo DJ, Schofield CJ, Yudin AK. Synthesis and Application of Constrained Amidoboronic Acids Using Amphoteric Boron-Containing Building Blocks. J Org Chem 2021; 87:94-102. [PMID: 34898194 DOI: 10.1021/acs.joc.1c02015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amidoboronic acid-containing peptidomimetics are an important class of scaffolds in chemistry and drug discovery. Despite increasing interest in boron-based enzyme inhibitors, constrained amidoboronic acids have received little attention due to the limited options available for their synthesis. We describe a new methodology to prepare both α- and β-amidoboronic acids that impose restrictions on backbone angles. Lewis acid-promoted Boyer-Schmidt-Aube lactam ring expansions using an azidoalkylboronate enabled generation of constrained α-amidoboronic acid derivatives, whereas assembly of the homologous β-amidoboronic acids was achieved through a novel boronic acid-mediated lactamization process stemming from an α-boryl aldehyde. The results of quantum chemical calculations suggest carboxylate-boron coordination to be rate-limiting for small ring sizes, whereas the tetrahedral intermediate formation is rate limiting in the case of larger rings. As part of this study, an application of β-amidoboronic acid derivatives as novel VIM-2 metallo-β-lactamase inhibitors has been demonstrated.
Collapse
Affiliation(s)
- Harjeet S Soor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Diego B Diaz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Ka Yi Tsui
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Karina Calvopiña
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marcin Bielinski
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
7
|
|
8
|
Development of phenylthiourea derivatives as allosteric inhibitors of pyoverdine maturation enzyme PvdP tyrosinase. Bioorg Med Chem Lett 2020; 30:127409. [PMID: 32738979 DOI: 10.1016/j.bmcl.2020.127409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/24/2022]
Abstract
Infections caused by Pseudomonas aeruginosa become increasingly difficult to treat because these bacteria have acquired various mechanisms for antibiotic resistance, which creates the need for mechanistically novel antibiotics. Such antibiotics might be developed by targeting enzymes involved in the iron uptake mechanism because iron is essential for bacterial survival. For P. aeruginosa, pyoverdine has been described as an important virulence factor that plays a key role in iron uptake. Therefore, inhibition of enzymes involved in the pyoverdine synthesis, such as PvdP tyrosinase, can open a new window for the treatment of P. aeruginosa infections. Previously, we reported phenylthiourea as the first allosteric inhibitor of PvdP tyrosinase with high micromolar potency. In this report, we explored structure-activity relationships (SAR) for PvdP tyrosinase inhibition by phenylthiourea derivatives. This enables identification of a phenylthiourea derivative (3c) with a potency in the submicromolar range (IC50 = 0.57 + 0.05 µM). Binding could be rationalized by molecular docking simulation and 3c was proved to inhibit the bacterial pyoverdine production and bacterial growth in P. aeruginosa PA01 cultures.
Collapse
|
9
|
Liu Y, Ebalunode JO, Briggs JM. Insights into the substrate binding specificity of quorum-quenching acylase PvdQ. J Mol Graph Model 2019; 88:104-120. [PMID: 30703686 DOI: 10.1016/j.jmgm.2019.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/19/2023]
Abstract
Quorum sensing is a cell to cell signaling mechanism that enables them to coordinate their behaviors in a density-dependent manner mediated by small diffusible signaling molecules, which can control the virulence and biofilm gene expression in many Gram-negative and positive bacteria. N-acyl homoserine lactone acylase PvdQ from human opportunistic pathogen Pseudomonas aeruginosa is a quorum-quenching enzyme that can hydrolyze the amide bond of the quorum signaling N-acyl homoserine lactones (AHLs) thereby degrading the signaling molecules, turning off the biofilm phenotype and resulting in a reduction of bacterial virulence. Previous studies demonstrated that PvdQ has different preferences for N-acyl substrates with different acyl chain lengths and substituents. However, the substrate binding specificity determinants of the quorum-quenching enzyme PvdQ with the different bacterial ligands are unknown and unintuitive. Further, elucidation of these determinants can lead to mutants with efficiency and broader substrate promiscuity. To investigate this question, a computational study was carried out combining multiple molecular docking methods, molecular dynamics simulations, residue interaction network analysis, and binding free energy calculations. The main findings are: firstly, the results from pKa predictions support that the pKa of the N-terminus of Serβ1 was depressed due to the surrounding residues. Multiple molecular docking studies provide useful information about the detailed binding modes and binding affinities. Secondly, 300 ns molecular dynamics simulations were carried out to analyze the overall molecular motions of substrate-bound and substrate-free PvdQ. The specific interactions between the active site of PvdQ and different ligands revealed the determinants for the preference among the ligands. A systematic comparison and analysis of the protein dynamic fingerprint of each complex demonstrated that binding of the most favorable ligand, C12-homoserine lactone (C12-HSL), reduced the global motions of the complex and maintained the correct arrangement of the catalytic site. Further, the residue interaction network analysis of each system illustrated that there are more communication contacts and pathways between the residues in the C12-HSL complex as compared to complexes with the other ligands. The binding of the C12-HSL ligand facilitates structural communication between the two knobs and the active site. While the binding of the other ligands tend to impair specific communication pathways between the two knobs and the active site, and lead to a catalytically inefficient state. Finally, simulation results from free energy landscape and binding free energy analysis revealed that the C12-HSL ligand has the lowest binding free energy and greater stability than the less favored ligands. Each of the following residues: Serβ1, Hisβ23, Pheβ24, Metβ30, Pheβ32, Leuβ50, Asnβ57, Thrβ69, Valβ70, Trpβ162, Trpβ186, Asnβ269, Argβ297 and Leuα146, play different roles in substrate binding specificity. This is the first computational study that provides molecular information for structure-dynamic-function relationships of PvdQ with different ligands and demonstrates determinants of bacterial substrate binding specificity.
Collapse
Affiliation(s)
- Yanyun Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Jerry O Ebalunode
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - James M Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA.
| |
Collapse
|
10
|
The versatility of boron in biological target engagement. Nat Chem 2017; 9:731-742. [DOI: 10.1038/nchem.2814] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
11
|
Clevenger KD, Mascarenhas R, Catlin D, Wu R, Kelleher NL, Drake EJ, Gulick AM, Liu D, Fast W. Substrate Trapping in the Siderophore Tailoring Enzyme PvdQ. ACS Chem Biol 2017; 12:643-647. [PMID: 28186406 DOI: 10.1021/acschembio.7b00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Siderophore biosynthesis by Pseudomonas aeruginosa enhances virulence and represents an attractive drug target. PvdQ functions in the type-1 pyoverdine biosynthetic pathway by removing a myristoyl anchor from a pyoverdine precursor, allowing eventual release from the periplasm. A circularly permuted version of PvdQ bypasses the self-processing step of this Ntn-hydrolase and retains the activity, selectivity, and structure of wild-type PvdQ, as revealed by a 1.8 Å resolution X-ray crystal structure. A 2.55 Å resolution structure of the inactive S1A/N269D-cpPvdQ mutant in complex with the pyoverdine precursor PVDIq reveals a specific binding pocket for the d-Tyr of this modified peptide substrate. To our knowledge, this structure is the first of a pyoverdine precursor peptide bound to a biosynthetic enzyme. Details of the observed binding interactions have implications for control of pyoverdine biosynthesis and inform future drug design efforts.
Collapse
Affiliation(s)
- Kenneth D. Clevenger
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Romila Mascarenhas
- Department
of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Daniel Catlin
- Department
of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Rui Wu
- Department
of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric J. Drake
- Hauptman-Woodward
Medical Research Institute and Department of Structural Biology, SUNY University at Buffalo, Buffalo, New York 14203, United States
| | - Andrew M. Gulick
- Hauptman-Woodward
Medical Research Institute and Department of Structural Biology, SUNY University at Buffalo, Buffalo, New York 14203, United States
| | - Dali Liu
- Department
of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | | |
Collapse
|
12
|
Diaz DB, Scully CCG, Liew SK, Adachi S, Trinchera P, St Denis JD, Yudin AK. Synthesis of Aminoboronic Acid Derivatives from Amines and Amphoteric Boryl Carbonyl Compounds. Angew Chem Int Ed Engl 2016; 55:12659-63. [PMID: 27584917 DOI: 10.1002/anie.201605754] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 12/17/2022]
Abstract
Herein, we demonstrate the use of α-boryl aldehydes and acyl boronates in the synthesis of aminoboronic acid derivatives. This work highlights the untapped potential of boron-substituted iminium ions and offers insights into the behavior of N-methyliminodiacetyl (MIDA) boronates during condensation and tautomerization processes. The preparative value of this contribution lies in the demonstration that various amines, including linear and cyclic peptides, can be readily conjugated with boron-containing fragments. A mild deprotection of amino MIDA-boronates enables access to α- and β-aminoboronic acids in high chemical yields. This simple process should be applicable to the synthesis of a wide range of bioactive molecules as well as precursors for cross-coupling reactions.
Collapse
Affiliation(s)
- Diego B Diaz
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Conor C G Scully
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Sean K Liew
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Shinya Adachi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Piera Trinchera
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Jeffrey D St Denis
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
13
|
Diaz DB, Scully CCG, Liew SK, Adachi S, Trinchera P, St. Denis JD, Yudin AK. Synthesis of Aminoboronic Acid Derivatives from Amines and Amphoteric Boryl Carbonyl Compounds. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Diego B. Diaz
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Conor C. G. Scully
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sean K. Liew
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shinya Adachi
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Piera Trinchera
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Jeffrey D. St. Denis
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
14
|
Mascarenhas R, Thomas PW, Wu CX, Nocek BP, Hoang QQ, Liu D, Fast W. Structural and Biochemical Characterization of AidC, a Quorum-Quenching Lactonase with Atypical Selectivity. Biochemistry 2015; 54:4342-53. [PMID: 26115006 DOI: 10.1021/acs.biochem.5b00499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum-quenching catalysts are of interest for potential application as biochemical tools for interrogating interbacterial communication pathways, as antibiofouling agents, and as anti-infective agents in plants and animals. Herein, the structure and function of AidC, an N-acyl-l-homoserine lactone (AHL) lactonase from Chryseobacterium, is characterized. Steady-state kinetics show that zinc-supplemented AidC is the most efficient wild-type quorum-quenching enzymes characterized to date, with a kcat/KM value of approximately 2 × 10(6) M(-1) s(-1) for N-heptanoyl-l-homoserine lactone. The enzyme has stricter substrate selectivity and significantly lower KM values (ca. 50 μM for preferred substrates) compared to those of typical AHL lactonases (ca. >1 mM). X-ray crystal structures of AidC alone and with the product N-hexanoyl-l-homoserine were determined at resolutions of 1.09 and 1.67 Å, respectively. Each structure displays as a dimer, and dimeric oligiomerization was also observed in solution by size-exclusion chromatography coupled with multiangle light scattering. The structures reveal two atypical features as compared to previously characterized AHL lactonases: a "kinked" α-helix that forms part of a closed binding pocket that provides affinity and enforces selectivity for AHL substrates and an active-site His substitution that is usually found in a homologous family of phosphodiesterases. Implications for the catalytic mechanism of AHL lactonases are discussed.
Collapse
Affiliation(s)
- Romila Mascarenhas
- §Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | | | - Chun-Xiang Wu
- ∥Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Boguslaw P Nocek
- ⊥Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Quyen Q Hoang
- ∥Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Dali Liu
- §Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | | |
Collapse
|
15
|
Lamb AL. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1054-70. [PMID: 25970810 DOI: 10.1016/j.bbapap.2015.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/29/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistance is a growing public health crisis. Novel antimicrobials are sought, preferably developing nontraditional chemical scaffolds that do not inhibit standard targets such as cell wall synthesis or the ribosome. Iron scavenging has been proposed as a viable target, because bacterial and fungal pathogens must overcome the nutritional immunity of the host to be virulent. This review highlights the recent work toward exploiting the biosynthetic enzymes of siderophore production for the design of next generation antimicrobials.
Collapse
Affiliation(s)
- Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
16
|
Kem MP, Naka H, Iinishi A, Haygood MG, Butler A. Fatty Acid Hydrolysis of Acyl Marinobactin Siderophores by Marinobacter Acylases. Biochemistry 2015; 54:744-52. [DOI: 10.1021/bi5013673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Michelle P. Kem
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Hiroaki Naka
- Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Akira Iinishi
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Margo G. Haygood
- Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Alison Butler
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|