1
|
Sipka G, Maróti P. Contribution of Protonation to the Dielectric Relaxation Arising from Bacteriopheophytin Reductions in the Photosynthetic Reaction Centers of Rhodobacter sphaeroides. Biomolecules 2024; 14:1367. [PMID: 39595544 PMCID: PMC11591870 DOI: 10.3390/biom14111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
The pH dependence of the free energy level of the flash-induced primary charge pair P+IA- was determined by a combination of the results from the indirect charge recombination of P+QA- and from the delayed fluorescence of the excited dimer (P*) in the reaction center of the photosynthetic bacterium Rhodobacter sphaeroides, where the native ubiquinone at the primary quinone binding site QA was replaced by low-potential anthraquinone (AQ) derivatives. The following observations were made: (1) The free energy state of P+IA- was pH independent below pH 10 (-370 ± 10 meV relative to that of the excited dimer P*) and showed a remarkable decrease (about 20 meV/pH unit) above pH 10. A part of the dielectric relaxation of the P+IA- charge pair that is not insignificant (about 120 meV) should come from protonation-related changes. (2) The single exponential decay character of the kinetics proves that the protonated/unprotonated P+IA- and P+QA- states are in equilibria and the rate constants of protonation konH +koffH are much larger than those of the charge back reaction kback ~103 s-1. (3) Highly similar pH profiles were measured to determine the free energy states of P+QA- and P+IA-, indicating that the same acidic cluster at around QB should respond to both anionic species. This was supported by model calculations based on anticooperative proton distribution in the cluster with key residues of GluL212, AspL213, AspM17, and GluH173, and the effect of the polarization of the aqueous phase on electrostatic interactions. The larger distance of IA- from the cluster (25.2 Å) compared to that of QA- (14.5 Å) is compensated by a smaller effective dielectric constant (6.5 ± 0.5 and 10.0 ± 0.5, respectively). (4) The P* → P+QA- and IA-QA → IAQA- electron transfers are enthalpy-driven reactions with the exemption of very large (>60%) or negligible entropic contributions in cases of substitution by 2,3-dimethyl-AQ or 1-chloro-AQ, respectively. The possible structural consequences are discussed.
Collapse
Affiliation(s)
| | - Péter Maróti
- Institute of Medical Physics, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
2
|
Wei RJ, Zhang Y, Mao J, Kaur D, Khaniya U, Gunner MR. Comparison of proton transfer paths to the Q A and Q B sites of the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2022; 152:153-165. [PMID: 35344134 DOI: 10.1007/s11120-022-00906-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The photosynthetic bacterial reaction centers from purple non-sulfur bacteria use light energy to drive the transfer of electrons from cytochrome c to ubiquinone. Ubiquinone bound in the QA site cycles between quinone, QA, and anionic semiquinone, QA·-, being reduced once and never binding protons. In the QB site, ubiquinone is reduced twice by QA·-, binds two protons and is released into the membrane as the quinol, QH2. The network of hydrogen bonds formed in a molecular dynamics trajectory was drawn to investigate proton transfer pathways from the cytoplasm to each quinone binding site. QA is isolated with no path for protons to enter from the surface. In contrast, there is a complex and tangled network requiring residues and waters that can bring protons to QB. There are three entries from clusters of surface residues centered around HisH126, GluH224, and HisH68. The network is in good agreement with earlier studies, Mutation of key nodes in the network, such as SerL223, were previously shown to slow proton delivery. Mutational studies had also shown that double mutations of residues such as AspM17 and AspL210 along multiple paths in the network presented here slow the reaction, while single mutations do not. Likewise, mutation of both HisH126 and HisH128, which are at the entry to two paths reduce the rate of proton uptake.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Maróti P. Thermodynamic View of Proton Activated Electron Transfer in the Reaction Center of Photosynthetic Bacteria. J Phys Chem B 2019; 123:5463-5473. [PMID: 31181159 DOI: 10.1021/acs.jpcb.9b03506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The temperature dependence of the sequential coupling of proton transfer to the second interquinone electron transfer is studied in the reaction center proteins of photosynthetic bacteria modified by different mutations and treatment by divalent cations. The Eyring plots of kinetics were evaluated by the Marcus theory of electron and proton transfer. In mutants of electron transfer limitation (including the wild type), the observed thermodynamic parameters had to be corrected for those of the fast proton pre-equilibrium. The electron transfer is nonadiabatic with transmission coefficient 6 × 10-4, and the reorganization energy amounts to 1.2 eV. If the proton transfer is the rate limiting step, the reorganization energy and the works terms fall in the range of 200-500 meV, depending on the site of damage in the proton transfer chain. The product term is 100-150 meV larger than the reactant term. While the electron transfer mutants have a low free energy of activation (∼200 meV), the proton transfer variants show significantly elevated levels of the free energy barrier (∼500 meV). The second electron transfer in the bacterial reaction center can serve as a model system of coupled electron and proton transfer in other proteins or ion channels.
Collapse
Affiliation(s)
- Péter Maróti
- Institute of Medical Physics , University of Szeged , Rerrich Béla tér 1 , Szeged , H-6720 , Hungary
| |
Collapse
|
4
|
Maróti P. Chemical rescue of H + delivery in proton transfer mutants of reaction center of photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:317-324. [PMID: 30707884 DOI: 10.1016/j.bbabio.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 01/25/2019] [Indexed: 11/27/2022]
Abstract
In the native and most mutant reaction centers of bacterial photosynthesis, the electron transfer is coupled to proton transfer and is rate limiting for the second reduction of QB- → QBH2. In the presence of divalent metal ions (e.g. Cd2+) or in some ("proton transfer") mutants (L210DN/M17DN or L213DN), the proton delivery to QB- is made rate limiting and the properties of the proton pathway can be directly examined. We found that small weak acids and buffers in large concentrations (up to 1 M) were able to rescue the severely impaired proton transfer capability differently depending on the location of the defects: lesions at the protein surface (proton gate H126H/H128H + Cd2+), beneath the surface (M17DN + Cd2+, L210DN/M17DN) or deep inside the protein (L213DN) could be completely, partially or to very small extent recovered, respectively. Small zwitterionic acids (azide/hydrazoic acid) and buffers (tricine) proved to be highly effective rescuers consistent with their enhanced binding affinity and access to any of the proton acceptors (including QB- itself) in the pathway. As a consequence, back titration of the protons at L212Glu could be observed as a pH-dependence of the rate constant of the charge recombination in the presence of azide or formate. Model calculations support the collective influence of the acid cluster on the change of the protonation states upon extension of the cluster with the bound small acid. In proton transfer mutants, the rescuing agents decreased the free energy of activation together with their enthalpic and entropic components. This is in agreement with the hypothesis that they function as protein-penetrating protonophores delivering protons into the chain and select dominating paths out of many alternate routes. We estimate that the proton delivery will be accelerated in one pathway out of 100-200 alternate pathways. The implications for design of the chemical recovery of impaired intra-protein proton transfer pathways in proton transfer mutants are discussed.
Collapse
Affiliation(s)
- Péter Maróti
- Institute of Medical Physics, University of Szeged, Hungary.
| |
Collapse
|
5
|
Hasegawa R, Saito K, Takaoka T, Ishikita H. pK a of ubiquinone, menaquinone, phylloquinone, plastoquinone, and rhodoquinone in aqueous solution. PHOTOSYNTHESIS RESEARCH 2017; 133:297-304. [PMID: 28405861 PMCID: PMC5500672 DOI: 10.1007/s11120-017-0382-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
Quinones can accept two electrons and two protons, and are involved in electron transfer and proton transfer reactions in photosynthetic reaction centers. To date, the pK a of these quinones in aqueous solution have not been reported. We calculated the pK a of the initial protonation (Q·- to QH·) and the second protonation (QH- to QH2) of 1,4-quinones using a quantum chemical approach. The calculated energy differences of the protonation reactions Q·- to QH· and QH- to QH2 in the aqueous phase for nine 1,4-quinones were highly correlated with the experimentally measured pK a(Q·-/QH·) and pK a(QH-/QH2), respectively. In the present study, we report the pK a(Q·-/QH·) and pK a(QH-/QH2) of ubiquinone, menaquinone, phylloquinone, plastoquinone, and rhodoquinone in aqueous solution.
Collapse
Affiliation(s)
- Ryo Hasegawa
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tomohiro Takaoka
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|