1
|
Thomas C, Green S, Kimball L, Schmidtke IR, Griffin M, Rothwell L, Par I, Schobel S, Palacio Y, Towle-Weicksel JB, Weicksel SE. Zebrafish Polymerase Theta and human Polymerase Theta: orthologues with homologous function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615541. [PMID: 39386538 PMCID: PMC11463350 DOI: 10.1101/2024.09.27.615541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
DNA Polymerase Theta (Pol θ) is a conserved an A-family polymerase that plays an essential role in repairing double strand breaks, through micro-homology end joining, and bypassing DNA lesions, through translesion synthesis, to protect genome integrity. Despite its essential role in DNA repair, Pol θ is inherently error-prone. Recently, key loop regions were identified to play an important role in key functions of Pol θ. Here we present a comparative structure-function study of the polymerase domain of zebrafish and human Pol θ. We show that these two proteins share a large amount of sequence and structural homology. However, we identify differences in the amino acid composition within the key loop areas shown to drive characteristic Pol θ functions. Despite these differences zebrafish Pol θ still displays characteristics identify in human Pol θ, including DNA template extension in the presence of different divalent metals, microhomology-mediated end joining, and translesion synthesis. These results will support future studies looking to gain insight into Pol θ function on the basis of evolutionarily conserved features.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Lily Kimball
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Isaiah R Schmidtke
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Makayla Griffin
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Lauren Rothwell
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Ivy Par
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Sophia Schobel
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Yayleene Palacio
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | | | - Steven E Weicksel
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| |
Collapse
|
2
|
Fijen C, Chavira C, Alnajjar K, Sawyer DL, Sweasy JB. Collapsed State Mediates the Low Fidelity of the DNA Polymerase β I260 Mutant. Biochemistry 2024; 63:2414-2424. [PMID: 39299701 PMCID: PMC11448664 DOI: 10.1021/acs.biochem.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
DNA polymerase β (Pol β) fills single nucleotide gaps during base excision repair. Deficiencies in Pol β can lead to increased mutagenesis and genomic instability in the cell, resulting in cancer. Our laboratory has previously shown that the I260 M somatic mutation of Pol β, which was first identified in prostate cancer, has reduced nucleotide discrimination in a sequence context-dependent manner. I260 M incorporates the incorrect G opposite A in this context more readily than WT. To identify the molecular mechanism of the reduced fidelity of I260M, we studied incorporation using single turnover kinetics and the nature and rates of conformational changes using steady-state fluorescence and Förster resonance energy transfer (FRET). Our data indicate that the I260 M mutation affects the fingers region of rat Pol β by creating a "collapsed" state in both the open (in the absence of nucleotide) and closed (prior to chemistry) states. I260 M is a temperature-sensitive mutator and binds nucleotides tighter than the WT protein, resulting in reduced fidelity compared to the WT. Additionally, we have generated a kinetic model of WT and I260 M using FRET and single turnover data, which demonstrates that I260 M precatalytic conformation changes differ compared to the WT as it is missing a precatalytic noncovalent step. Taken together, these results suggest that the collapsed state of I260 M may decrease its ability for nucleotide discrimination, illustrating the importance of the "fingers closing" conformational change for polymerase fidelity and accurate DNA synthesis.
Collapse
Affiliation(s)
- Carel Fijen
- Department
of Therapeutic Radiology, Yale University
School of Medicine, New Haven, Connecticut 06520-8034, United States
| | - Cristian Chavira
- University
of Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724-5044, United States
- Fred
and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, Omaha, Nebraska 68198, United States
| | - Khadijeh Alnajjar
- Department
of Therapeutic Radiology, Yale University
School of Medicine, New Haven, Connecticut 06520-8034, United States
- University
of Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724-5044, United States
| | - Danielle L. Sawyer
- University
of Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724-5044, United States
| | - Joann B. Sweasy
- Department
of Therapeutic Radiology, Yale University
School of Medicine, New Haven, Connecticut 06520-8034, United States
- University
of Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724-5044, United States
- Fred
and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, Omaha, Nebraska 68198, United States
| |
Collapse
|
3
|
Kladova OA, Tyugashev TE, Yakimov DV, Mikushina ES, Novopashina DS, Kuznetsov NA, Kuznetsova AA. The Impact of SNP-Induced Amino Acid Substitutions L19P and G66R in the dRP-Lyase Domain of Human DNA Polymerase β on Enzyme Activities. Int J Mol Sci 2024; 25:4182. [PMID: 38673769 PMCID: PMC11050361 DOI: 10.3390/ijms25084182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Base excision repair (BER), which involves the sequential activity of DNA glycosylases, apurinic/apyrimidinic endonucleases, DNA polymerases, and DNA ligases, is one of the enzymatic systems that preserve the integrity of the genome. Normal BER is effective, but due to single-nucleotide polymorphisms (SNPs), the enzymes themselves-whose main function is to identify and eliminate damaged bases-can undergo amino acid changes. One of the enzymes in BER is DNA polymerase β (Polβ), whose function is to fill gaps in DNA. SNPs can significantly affect the catalytic activity of an enzyme by causing an amino acid substitution. In this work, pre-steady-state kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring variants of Polβ that have the substitutions L19P and G66R in the dRP-lyase domain. Despite the substantial distance between the dRP-lyase domain and the nucleotidyltransferase active site, it was found that the capacity to form a complex with DNA and with an incoming dNTP is significantly altered by these substitutions. Therefore, the lower activity of the tested polymorphic variants may be associated with a greater number of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Denis V. Yakimov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena S. Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| |
Collapse
|
4
|
Kladova OA, Tyugashev TE, Mikushina ES, Soloviev NO, Kuznetsov NA, Novopashina DS, Kuznetsova AA. Human Polβ Natural Polymorphic Variants G118V and R149I Affects Substate Binding and Catalysis. Int J Mol Sci 2023; 24:ijms24065892. [PMID: 36982964 PMCID: PMC10051265 DOI: 10.3390/ijms24065892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
DNA polymerase β (Polβ) expression is essential for the cell's response to DNA damage that occurs during natural cellular processes. Polβ is considered the main reparative DNA polymerase, whose role is to fill the DNA gaps arising in the base excision repair pathway. Mutations in Polβ can lead to cancer, neurodegenerative diseases, or premature aging. Many single-nucleotide polymorphisms have been identified in the POLB gene, but the consequences of these polymorphisms are not always clear. It is known that some polymorphic variants in the Polβ sequence reduce the efficiency of DNA repair, thereby raising the frequency of mutations in the genome. In the current work, we studied two polymorphic variants (G118V and R149I separately) of human Polβ that affect its DNA-binding region. It was found that each amino acid substitution alters Polβ's affinity for gapped DNA. Each polymorphic variant also weakens its binding affinity for dATP. The G118V variant was found to greatly affect Polβ's ability to fill gapped DNA and slowed the catalytic rate as compared to the wild-type enzyme. Thus, these polymorphic variants seem to decrease the ability of Polβ to maintain base excision repair efficiency.
Collapse
Affiliation(s)
- Olga A Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Timofey E Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena S Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita O Soloviev
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daria S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int J Mol Sci 2022; 23:ijms23042390. [PMID: 35216513 PMCID: PMC8877055 DOI: 10.3390/ijms23042390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein-protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein-protein interactions is an urgent scientific task.
Collapse
|
6
|
Alnajjar KS, Krylov IS, Negahbani A, Haratipour P, Kashemirov BA, Huang J, Mahmoud M, McKenna CE, Goodman MF, Sweasy JB. A pre-catalytic non-covalent step governs DNA polymerase β fidelity. Nucleic Acids Res 2020; 47:11839-11849. [PMID: 31732732 PMCID: PMC7145665 DOI: 10.1093/nar/gkz1076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
DNA polymerase β (pol β) selects the correct deoxyribonucleoside triphosphate for incorporation into the DNA polymer. Mistakes made by pol β lead to mutations, some of which occur within specific sequence contexts to generate mutation hotspots. The adenomatous polyposis coli (APC) gene is mutated within specific sequence contexts in colorectal carcinomas but the underlying mechanism is not fully understood. In previous work, we demonstrated that a somatic colon cancer variant of pol β, K289M, misincorporates deoxynucleotides at significantly increased frequencies over wild-type pol β within a mutation hotspot that is present several times within the APC gene. Kinetic studies provide evidence that the rate-determining step of pol β catalysis is phosphodiester bond formation and suggest that substrate selection is governed at this step. Remarkably, we show that, unlike WT, a pre-catalytic step in the K289M pol β kinetic pathway becomes slower than phosphodiester bond formation with the APC DNA sequence but not with a different DNA substrate. Based on our studies, we propose that pre-catalytic conformational changes are of critical importance for DNA polymerase fidelity within specific DNA sequence contexts.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Ivan S Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Ji Huang
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Mariam Mahmoud
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Myron F Goodman
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA.,University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
7
|
Liptak C, Mahmoud MM, Eckenroth BE, Moreno MV, East K, Alnajjar KS, Huang J, Towle-Weicksel JB, Doublié S, Loria J, Sweasy JB. I260Q DNA polymerase β highlights precatalytic conformational rearrangements critical for fidelity. Nucleic Acids Res 2019; 46:10740-10756. [PMID: 30239932 PMCID: PMC6237750 DOI: 10.1093/nar/gky825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/05/2018] [Indexed: 11/14/2022] Open
Abstract
DNA polymerase β (pol β) fills single nucleotide gaps in DNA during base excision repair and non-homologous end-joining. Pol β must select the correct nucleotide from among a pool of four nucleotides with similar structures and properties in order to maintain genomic stability during DNA repair. Here, we use a combination of X-ray crystallography, fluorescence resonance energy transfer and nuclear magnetic resonance to show that pol β‘s ability to access the appropriate conformations both before and upon binding to nucleotide substrates is integral to its fidelity. Importantly, we also demonstrate that the inability of the I260Q mutator variant of pol β to properly navigate this conformational landscape results in error-prone DNA synthesis. Our work reveals that precatalytic conformational rearrangements themselves are an important underlying mechanism of substrate selection by DNA pol β.
Collapse
Affiliation(s)
- Cary Liptak
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mariam M Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Marcus V Moreno
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Kyle East
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Khadijeh S Alnajjar
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ji Huang
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jamie B Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - J Patrick Loria
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- To whom correspondence should be addressed. Tel: +203 436 2518; Fax: +203 436 6144; . Correspondence may also be addressed to Joann B. Sweasy. Tel: +203 737 2626; Fax: +203 785 6309;
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- To whom correspondence should be addressed. Tel: +203 436 2518; Fax: +203 436 6144; . Correspondence may also be addressed to Joann B. Sweasy. Tel: +203 737 2626; Fax: +203 785 6309;
| |
Collapse
|
8
|
Mahmoud MM, Schechter A, Alnajjar KS, Huang J, Towle-Weicksel J, Eckenroth BE, Doublié S, Sweasy JB. Defective Nucleotide Release by DNA Polymerase β Mutator Variant E288K Is the Basis of Its Low Fidelity. Biochemistry 2017; 56:5550-5559. [PMID: 28945359 DOI: 10.1021/acs.biochem.7b00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA polymerases synthesize new DNA during DNA replication and repair, and their ability to do so faithfully is essential to maintaining genomic integrity. DNA polymerase β (Pol β) functions in base excision repair to fill in single-nucleotide gaps, and variants of Pol β have been associated with cancer. Specifically, the E288K Pol β variant has been found in colon tumors and has been shown to display sequence-specific mutator activity. To probe the mechanism that may underlie E288K's loss of fidelity, a fluorescence resonance energy transfer system that utilizes a fluorophore on the fingers domain of Pol β and a quencher on the DNA substrate was employed. Our results show that E288K utilizes an overall mechanism similar to that of wild type (WT) Pol β when incorporating correct dNTP. However, when inserting the correct dNTP, E288K exhibits a faster rate of closing of the fingers domain combined with a slower rate of nucleotide release compared to those of WT Pol β. We also detect enzyme closure upon mixing with the incorrect dNTP for E288K but not WT Pol β. Taken together, our results suggest that E288K Pol β incorporates all dNTPs more readily than WT because of an inherent defect that results in rapid isomerization of dNTPs within its active site. Structural modeling implies that this inherent defect is due to interaction of E288K with DNA, resulting in a stable closed enzyme structure.
Collapse
Affiliation(s)
- Mariam M Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Allison Schechter
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Khadijeh S Alnajjar
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Ji Huang
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Jamie Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont , Burlington, Vermont 05405, United States
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont , Burlington, Vermont 05405, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States.,Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Alnajjar KS, Garcia-Barboza B, Negahbani A, Nakhjiri M, Kashemirov B, McKenna C, Goodman MF, Sweasy JB. A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase β Cancer-Associated Variant. Biochemistry 2017; 56:2096-2105. [PMID: 28326765 DOI: 10.1021/acs.biochem.6b01230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
K289M is a variant of DNA polymerase β (pol β) that has previously been identified in colorectal cancer. The expression of this variant leads to a 16-fold increase in mutation frequency at a specific site in vivo and a reduction in fidelity in vitro in a sequence context-specific manner. Previous work shows that this reduction in fidelity results from a decreased level of discrimination against incorrect nucleotide incorporation at the level of polymerization. To probe the transition state of the K289M mutator variant of pol β, single-turnover kinetic experiments were performed using β,γ-CXY dGTP analogues with a wide range of leaving group monoacid dissociation constants (pKa4), including a corresponding set of novel β,γ-CXY dCTP analogues. Surprisingly, we found that the values of the log of the catalytic rate constant (kpol) for correct insertion by K289M, in contrast to those of wild-type pol β, do not decrease with increased leaving group pKa4 for analogues with pKa4 values of <11. This suggests that one of the relative rate constants differs for the K289M reaction in comparison to that of the wild type (WT). However, a plot of log(kpol) values for incorrect insertion by K289M versus pKa4 reveals a linear correlation with a negative slope, in this respect resembling kpol values for misincorporation by the WT enzyme. We also show that some of these analogues improve the fidelity of K289M. Taken together, our data show that Lys289 critically influences the catalytic pathway of pol β.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Beatriz Garcia-Barboza
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Boris Kashemirov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Charles McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Myron F Goodman
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
10
|
Nemec AA, Abriola L, Merkel JS, de Stanchina E, DeVeaux M, Zelterman D, Glazer PM, Sweasy JB. DNA Polymerase Beta Germline Variant Confers Cellular Response to Cisplatin Therapy. Mol Cancer Res 2017; 15:269-280. [PMID: 28074003 DOI: 10.1158/1541-7786.mcr-16-0227-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Resistance to cancer chemotherapies leads to deadly consequences, yet current research focuses only on the roles of somatically acquired mutations in this resistance. The mutational status of the germline is also likely to play a role in the way cells respond to chemotherapy. The carrier status for the POLB rs3136797 germline mutation encoding P242R DNA polymerase beta (Pol β) is associated with poor prognosis for lung cancer, specifically in response to treatment with cisplatin. Here, it is revealed that the P242R mutation is sufficient to promote resistance to cisplatin in human cells and in mouse xenografts. Mechanistically, P242R Pol β acts as a translesion polymerase and prefers to insert the correct nucleotide opposite cisplatin intrastrand cross-links, leading to the activation of the nucleotide excision repair (NER) pathway, removal of crosslinks, and resistance to cisplatin. In contrast, wild-type (WT) Pol β preferentially inserts the incorrect nucleotide initiating mismatch repair and cell death. Importantly, in a mouse xenograft model, tumors derived from lung cancer cells expressing WT Pol β displayed a slower rate of growth when treated with cisplatin, whereas tumors expressing P242R Pol β had no response to cisplatin. Pol β is critical for mediating crosstalk in response to cisplatin. The current data strongly suggest that the status of Pol β influences cellular responses to crosslinking agents and that Pol β is a promising biomarker to predict responses to specific chemotherapies. Finally, these results highlight that the genetic status of the germline is a critical factor in the response to cancer treatment.Implications: Pol β has prognostic biomarker potential in the treatment of cancer with cisplatin and perhaps other intrastrand crosslinking agents. Mol Cancer Res; 15(3); 269-80. ©2017 AACR.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut. .,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Laura Abriola
- Center for Molecular Discovery, Yale University, West Haven, Connecticut
| | - Jane S Merkel
- Center for Molecular Discovery, Yale University, West Haven, Connecticut
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle DeVeaux
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Daniel Zelterman
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut. .,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Towle-Weicksel JB, Dalal S, Sohl CD, Doublié S, Anderson KS, Sweasy JB. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection. J Biol Chem 2014; 289:16541-50. [PMID: 24764311 DOI: 10.1074/jbc.m114.561878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Christal D Sohl
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Sylvie Doublié
- the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Karen S Anderson
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | | |
Collapse
|
12
|
Nemec AA, Murphy DL, Donigan KA, Sweasy JB. The S229L colon tumor-associated variant of DNA polymerase β induces cellular transformation as a result of decreased polymerization efficiency. J Biol Chem 2014; 289:13708-16. [PMID: 24668809 DOI: 10.1074/jbc.m114.550400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase β (Pol β) plays a key role in base excision repair (BER) by filling in small gaps that are generated after base adducts are excised from the DNA. Pol β is mutated in a large number of colorectal tumors, and these mutations may drive carcinogenesis. In the present study, we wished to determine whether the S229L somatic Pol β variant identified in a stage 3 colorectal tumor is a driver of carcinogenesis. We show that S229L does not possess any defects in binding to either DNA or nucleotides compared with the WT enzyme, but exhibits a significant loss of polymerization efficiency, largely due to an 8-fold decrease in the polymerization rate. S229L participates in BER, but due to its lower catalytic rate, does so more slowly than WT. Expression of S229L in mammalian cells induces the accumulation of BER intermediate substrates, chromosomal aberrations, and cellular transformation. Our results are consistent with the interpretation that S229L is a driver of carcinogenesis, likely as a consequence of its slow polymerization activity during BER in vivo.
Collapse
Affiliation(s)
- Antonia A Nemec
- From the Departments of Therapeutic Radiology and Genetics, Yale University, New Haven, Connecticut 06520
| | - Drew L Murphy
- From the Departments of Therapeutic Radiology and Genetics, Yale University, New Haven, Connecticut 06520
| | - Katherine A Donigan
- From the Departments of Therapeutic Radiology and Genetics, Yale University, New Haven, Connecticut 06520
| | - Joann B Sweasy
- From the Departments of Therapeutic Radiology and Genetics, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
13
|
Donigan KA, McLenigan MP, Yang W, Goodman MF, Woodgate R. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity. J Biol Chem 2014; 289:9136-45. [PMID: 24532793 PMCID: PMC3979402 DOI: 10.1074/jbc.m113.545442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A “steric gate” pol ι mutant is considerably more active in the presence of Mn2+ compared with Mg2+ and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be “at risk” for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations.
Collapse
|
14
|
Jacewicz A, Trzemecka A, Guja KE, Plochocka D, Yakubovskaya E, Bebenek A, Garcia-Diaz M. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site. PLoS One 2013; 8:e76700. [PMID: 24116139 PMCID: PMC3792054 DOI: 10.1371/journal.pone.0076700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022] Open
Abstract
Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A), that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the PolD714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced kpol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.
Collapse
Affiliation(s)
- Agata Jacewicz
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Trzemecka
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kip E. Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Danuta Plochocka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Anna Bebenek
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AB); (MGD)
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (AB); (MGD)
| |
Collapse
|
15
|
A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation. PLoS Genet 2012; 8:e1003052. [PMID: 23144635 PMCID: PMC3493456 DOI: 10.1371/journal.pgen.1003052] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/06/2012] [Indexed: 11/19/2022] Open
Abstract
Several germline single nucleotide polymorphisms (SNPs) have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β), encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER), a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797) in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility.
Collapse
|
16
|
Klvaňa M, Murphy DL, Jeřábek P, Goodman MF, Warshel A, Sweasy JB, Florián J. Catalytic effects of mutations of distant protein residues in human DNA polymerase β: theory and experiment. Biochemistry 2012; 51:8829-43. [PMID: 23013478 DOI: 10.1021/bi300783t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We carried out free-energy calculations and transient kinetic experiments for the insertion of the right (dC) and wrong (dA) nucleotides by wild-type (WT) and six mutant variants of human DNA polymerase β (Pol β). Since the mutated residues in the point mutants, I174S, I260Q, M282L, H285D, E288K, and K289M, were not located in the Pol β catalytic site, we assumed that the WT and its point mutants share the same dianionic phosphorane transition-state structure of the triphosphate moiety of deoxyribonucleotide 5'-triphosphate (dNTP) substrate. On the basis of this assumption, we have formulated a thermodynamic cycle for calculating relative dNTP insertion efficiencies, Ω = (k(pol)/K(D))(mut)/(k(pol)/K(D))(WT) using free-energy perturbation (FEP) and linear interaction energy (LIE) methods. Kinetic studies on five of the mutants have been published previously using different experimental conditions, e.g., primer-template sequences. We have performed a presteady kinetic analysis for the six mutants for comparison with wild-type Pol β using the same conditions, including the same primer/template DNA sequence proximal to the dNTP insertion site used for X-ray crystallographic studies. This consistent set of kinetic and structural data allowed us to eliminate the DNA sequence from the list of factors that can adversely affect calculated Ω values. The calculations using the FEP free energies scaled by 0.5 yielded 0.9 and 1.1 standard deviations from the experimental log Ω values for the insertion of the right and wrong dNTP, respectively. We examined a hybrid FEP/LIE method in which the FEP van der Waals term for the interaction of the mutated amino acid residue with its surrounding environment was replaced by the corresponding van der Waals term calculated using the LIE method, resulting in improved 0.4 and 1.0 standard deviations from the experimental log Ω values. These scaled FEP and FEP/LIE methods were also used to predict log Ω for R283A and R283L Pol β mutants.
Collapse
Affiliation(s)
- Martin Klvaňa
- Department of Chemistry, Loyola University, Chicago, Illinois 60626, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Donigan KA, Sun KW, Nemec AA, Murphy DL, Cong X, Northrup V, Zelterman D, Sweasy JB. Human POLB gene is mutated in high percentage of colorectal tumors. J Biol Chem 2012; 287:23830-9. [PMID: 22577134 PMCID: PMC3390656 DOI: 10.1074/jbc.m111.324947] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/10/2012] [Indexed: 12/11/2022] Open
Abstract
Previous small scale sequencing studies have indicated that DNA polymerase β (pol β) variants are present on average in 30% of human tumors of varying tissue origin. Many of these variants have been shown to have aberrant enzyme function in vitro and to induce cellular transformation and/or genomic instability in vivo, suggesting that their presence is associated with tumorigenesis or its progression. In this study, the human POLB gene was sequenced in a collection of 134 human colorectal tumors and was found to contain coding region mutations in 40% of the samples. The variants map to many different sites of the pol β protein and are not clustered. Many variants are nonsynonymous amino acid substitutions predicted to affect enzyme function. A subset of these variants was found to have reduced enzyme activity in vitro and failed to fully rescue pol β-deficient cells from methylmethane sulfonate-induced cytotoxicity. Tumors harboring variants with reduced enzyme activity may have compromised base excision repair function, as evidenced by our methylmethane sulfonate sensitivity studies. Such compromised base excision repair may drive tumorigenesis by leading to an increase in mutagenesis or genomic instability.
Collapse
Affiliation(s)
| | - Ka-wai Sun
- From the Departments of Therapeutic Radiology and Genetics and
| | | | - Drew L. Murphy
- From the Departments of Therapeutic Radiology and Genetics and
| | - Xiangyu Cong
- Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Veronika Northrup
- Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Daniel Zelterman
- Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Joann B. Sweasy
- From the Departments of Therapeutic Radiology and Genetics and
| |
Collapse
|
18
|
Li Y, Gridley CL, Jaeger J, Sweasy JB, Schlick T. Unfavorable electrostatic and steric interactions in DNA polymerase β E295K mutant interfere with the enzyme's pathway. J Am Chem Soc 2012; 134:9999-10010. [PMID: 22651551 PMCID: PMC3383778 DOI: 10.1021/ja300361r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mutations in DNA polymerase β (pol β) have been associated with approximately 30% of human tumors. The E295K mutation of pol β has been linked to gastric carcinoma via interference with base excision repair. To interpret the different behavior of E295K as compared to wild-type pol β in atomic and energetic detail, we resolve a binary crystal complex of E295K at 2.5 Å and apply transition path sampling (TPS) to delineate the closing pathway of the E295K pol β mutant. Conformational changes are important components in the enzymatic pathway that lead to and ready the enzyme for the chemical reaction. Our analyses show that the closing pathway of E295K mutant differs from the wild-type pol β in terms of the individual transition states along the pathway, associated energies, and the active site conformation in the final closed form of the mutant. In particular, the closed state of E295K has a more distorted active site than the active site in the wild-type pol β. In addition, the total energy barrier in the conformational closing pathway is 65 ± 11 kJ/mol, much higher than that estimated for both correct (e.g., G:C) and incorrect (e.g., G:A) wild-type pol β systems (42 ± 8 and 45 ± 7 kJ/mol, respectively). In particular, the rotation of Arg258 is the rate-limiting step in the conformational pathway of E295K due to unfavorable electrostatic and steric interactions. The distorted active site in the closed relative to open state and the high energy barrier in the conformational pathway may explain in part why the E295K mutant is observed to be inactive. Interestingly, however, following the closing of the thumb but prior to the rotation of Arg258, the E295K mutant complex has a similar energy level as compared to the wild-type pol β. This suggests that the E295K mutant may associate with DNA with similar affinity, but it may be hampered in continuing the process of chemistry. Supporting experimental data come from the observation that the catalytic activity of wild-type pol β is hampered when E295K is present: this may arise from the competition between E295K and wild-type enzyme for the DNA. These combined results suggest that the low insertion efficiency of E295K mutant as compared to wild-type pol β may be related to a closed form distorted by unfavorable electrostatic and steric interactions between Arg258 and other key residues. The active site is thus less competent for proceeding to the chemical reaction, which may also involve a higher reaction barrier than the wild-type or may not be possible in this mutant. Our analysis also suggests further experiments for other mutants to test the above hypothesis and dissect the roles of steric and electrostatic factors on enzyme behavior.
Collapse
Affiliation(s)
- Yunlang Li
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
| | - Chelsea L. Gridley
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Joachim Jaeger
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
- Division of Genetics, Wadsworth Center NYS-DOH, New Scotland Avenue, Albany, NY 12208, USA
| | - Joann B. Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208040, New Haven, CT 06520, USA
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
| |
Collapse
|
19
|
Murphy DL, Donigan KA, Jaeger J, Sweasy JB. The E288K colon tumor variant of DNA polymerase β is a sequence specific mutator. Biochemistry 2012; 51:5269-75. [PMID: 22650412 DOI: 10.1021/bi3003583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA polymerase β (pol β) is the main polymerase involved in base excision repair (BER), which is a pathway responsible for the repair of tens of thousands of DNA lesions per cell per day. Our recent efforts in sequencing colon tumors showed that 40% of the tumors sequenced possessed a variant in the coding region of the POLB gene; one of these variants is E288K. Expression of the E288K variant in cells leads to an increase in the frequency of mutations at AT base pairs. In vitro, the E288K variant is as active as and binds one-base-gapped DNA with the same affinity as wild-type pol β. Single-turnover kinetic data for the E288K variant show that its mutator phenotype is specific for misincorporating opposite template A up to 6-fold more than the wild-type enzyme and that this is due to a decrease in the degree of discrimination in nucleotide binding. Molecular modeling suggests that the substitution of Lys at position 288 causes the polymerase to adopt a more open conformation, which may be disrupting the nucleotide binding pocket. This may explain the reduced degree of discrimination at the level of nucleotide binding. The enhanced mutagenesis of the E288K variant could lead to genomic instability and ultimately a malignant tumor phenotype.
Collapse
Affiliation(s)
- Drew L Murphy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
20
|
Nemec AA, Donigan KA, Murphy DL, Jaeger J, Sweasy JB. Colon cancer-associated DNA polymerase β variant induces genomic instability and cellular transformation. J Biol Chem 2012; 287:23840-9. [PMID: 22573322 DOI: 10.1074/jbc.m112.362111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rapidly advancing technology has resulted in the generation of the genomic sequences of several human tumors. We have identified several mutations of the DNA polymerase β (pol β) gene in human colorectal cancer. We have demonstrated that the expression of the pol β G231D variant increased chromosomal aberrations and induced cellular transformation. The transformed phenotype persisted in the cells even once the expression of G231D was extinguished, suggesting that it resulted as a consequence of genomic instability. Biochemical analysis revealed that its catalytic rate was 140-fold slower than WT pol β, and this was a result of the decreased binding affinity of nucleotides by G231D. Residue 231 of pol β lies in close proximity to the template strand of the DNA. Molecular modeling demonstrated that the change from a small and nonpolar glycine to a negatively charged aspartate resulted in a repulsion between the template and residue 231 leading to the distortion of the dNTP binding pocket. In addition, expression of G231D was insufficient to rescue pol β-deficient cells treated with chemotherapeutic agents suggesting that these agents may be effectively used to treat tumors harboring this mutation. More importantly, this suggests that the G231D variant has impaired base excision repair. Together, these data indicate that the G231D variant plays a role in driving cancer.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
21
|
Donigan KA, Hile SE, Eckert KA, Sweasy JB. The human gastric cancer-associated DNA polymerase β variant D160N is a mutator that induces cellular transformation. DNA Repair (Amst) 2012; 11:381-90. [PMID: 22341651 DOI: 10.1016/j.dnarep.2012.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 10/28/2022]
Abstract
Approximately 30% of human tumors sequenced to date harbor mutations in the POLB gene that are not present in matched normal tissue. Many mutations give rise to enzymes that contain non-synonymous single amino acid substitutions, several of which have been found to have aberrant activity or fidelity and transform cells when expressed. The DNA Polymerase β (Pol β) variant Asp160Asn (D160N) was first identified in a gastric tumor. Expression of D160N in cells induces cellular transformation as measured by hyperproliferation, focus formation, anchorage-independent growth and invasion. Here, we show that D160N is an active mutator polymerase that induces complex mutations. Our data support the interpretation that complex mutagenesis is the underlying mechanism of the observed cellular phenotypes, all of which are linked to tumorigenesis or tumor progression.
Collapse
Affiliation(s)
- Katherine A Donigan
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, United States
| | | | | | | |
Collapse
|
22
|
Murphy DL, Jaeger J, Sweasy JB. A triad interaction in the fingers subdomain of DNA polymerase beta controls polymerase activity. J Am Chem Soc 2011; 133:6279-87. [PMID: 21452873 DOI: 10.1021/ja111099b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA polymerase beta (pol beta) is the main polymerase involved in the base excision repair pathway responsible for repairing damaged bases in the DNA. Previous studies on the H285D mutant of pol beta suggested that the C-terminal region of the polymerase is important for polymerase function. In this study, the C-terminal region of pol beta was mutated to assess its role in polymerization. Kinetic experiments showed that the C-terminal region is required for wild-type polymerase activity. Additionally, an interaction between the fingers and palm subdomain revealed itself to be required for polymerase activity. The E316R mutant of pol beta was shown to have a 29,000-fold reduction in polymerization rate with no reduction in nucleotide binding, suggesting that there exists a noncovalent mechanistic step between nucleotide binding and nucleophilic attack of the primer 3'-hydroxyl group on the α-PO(4) of the nucleotide. Molecular modeling studies of the E316R mutant demonstrate that disrupting the interaction between Arg182 and Glu316 disrupts the packing of side chains in the hydrophobic hinge region and may be hampering the conformational change during polymerization. Taken together, these data demonstrate that the triad interaction of Arg182, Glu316, and Arg333 is crucial for polymerase function.
Collapse
Affiliation(s)
- Drew L Murphy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
23
|
Yamtich J, Starcevic D, Lauper J, Smith E, Shi I, Rangarajan S, Jaeger J, Sweasy JB. Hinge residue I174 is critical for proper dNTP selection by DNA polymerase beta. Biochemistry 2010; 49:2326-34. [PMID: 20108981 DOI: 10.1021/bi901735a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerase beta (pol beta) is the key gap-filling polymerase in base excision repair, the DNA repair pathway responsible for repairing up to 20000 endogenous lesions per cell per day. Pol beta is also widely used as a model polymerase for structure and function studies, and several structural regions have been identified as being critical for the fidelity of the enzyme. One of these regions is the hydrophobic hinge, a network of hydrophobic residues located between the palm and fingers subdomains. Previous work by our lab has shown that hinge residues Y265, I260, and F272 are critical for polymerase fidelity by functioning in discrimination of the correct from incorrect dNTP during ground state binding. Our work aimed to elucidate the role of hinge residue I174 in polymerase fidelity. To study this residue, we conducted a genetic screen to identify mutants with a substitution at residue I174 that resulted in a mutator polymerase. We then chose the mutator mutant I174S for further study and found that it follows the same general kinetic pathway as and has an overall protein folding similar to that of wild-type (WT) pol beta. Using single-turnover kinetic analysis, we found that I174S exhibits decreased fidelity when inserting a nucleotide opposite a template base G, and this loss of fidelity is due primarily to a loss of discrimination during ground state dNTP binding. Molecular dynamics simulations show that mutation of residue I174 to serine results in an overall tightening of the hinge region, resulting in aberrant protein dynamics and fidelity. These results point to the hinge region as being critical in the maintenance of the proper geometry of the dNTP binding pocket.
Collapse
Affiliation(s)
- Jen Yamtich
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamtich J, Sweasy JB. DNA polymerase family X: function, structure, and cellular roles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1136-50. [PMID: 19631767 DOI: 10.1016/j.bbapap.2009.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
The X family of DNA polymerases in eukaryotic cells consists of terminal transferase and DNA polymerases beta, lambda, and mu. These enzymes have similar structural portraits, yet different biochemical properties, especially in their interactions with DNA. None of these enzymes possesses a proofreading subdomain, and their intrinsic fidelity of DNA synthesis is much lower than that of a polymerase that functions in cellular DNA replication. In this review, we discuss the similarities and differences of three members of Family X: polymerases beta, lambda, and mu. We focus on biochemical mechanisms, structural variation, fidelity and lesion bypass mechanisms, and cellular roles. Remarkably, although these enzymes have similar three-dimensional structures, their biochemical properties and cellular functions differ in important ways that impact cellular function.
Collapse
Affiliation(s)
- Jennifer Yamtich
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|