1
|
Schmidt A, Ayekoi A, Illarionov B, Fischer M, Bacher A, Weber S. Transient 19F photo-CIDNP: A practical tool to distinguish intermediate radical species and determine isotropic hyperfine coupling constants of 19F nuclei. J Chem Phys 2025; 162:054204. [PMID: 39907138 DOI: 10.1063/5.0246273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Fluorine-containing flavin derivatives can be used as probes in flavin-binding proteins forming radical pairs to exploit the photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect. Knowledge of the hyperfine structure is crucial for studying the mechanism of intramolecular radical-pair formation in proteins. Transient 19F photo-CIDNP NMR has so far not been used to determine the isotropic hyperfine coupling constants of 19F nuclei. Here, we show that this method provides reliable results by studying three monofluorinated flavin mononucleotide (FMN) derivatives in conjunction with 6-fluoro-tryptophan. Combining this method with transient 1H photo-CIDNP spectroscopy leads to a more accurate interpretation of the intermediate radical species forming a radical pair. The gathered information can be used to identify the most promising FMN derivative for usage as a probe for formation of radical pairs in proteins.
Collapse
Affiliation(s)
- Anton Schmidt
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Audrey Ayekoi
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | | | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Kim Y, Alia A, Kurle-Tucholski P, Wiebeler C, Matysik J. Electronic Structures of Radical-Pair-Forming Cofactors in a Heliobacterial Reaction Center. Molecules 2024; 29:1021. [PMID: 38474533 DOI: 10.3390/molecules29051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic reaction centers (RCs) are membrane proteins converting photonic excitations into electric gradients. The heliobacterial RCs (HbRCs) are assumed to be the precursors of all known RCs, making them a compelling subject for investigating structural and functional relationships. A comprehensive picture of the electronic structure of the HbRCs is still missing. In this work, the combination of selective isotope labelling of 13C and 15N nuclei and the utilization of photo-CIDNP MAS NMR (photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance) allows for highly enhanced signals from the radical-pair-forming cofactors. The remarkable magnetic-field dependence of the solid-state photo-CIDNP effect allows for observation of positive signals of the electron donor cofactor at 4.7 T, which is interpreted in terms of a dominant contribution of the differential relaxation (DR) mechanism. Conversely, at 9.4 T, the emissive signals mainly originate from the electron acceptor, due to the strong activation of the three-spin mixing (TSM) mechanism. Consequently, we have utilized two-dimensional homonuclear photo-CIDNP MAS NMR at both 4.7 T and 9.4 T. These findings from experimental investigations are corroborated by calculations based on density functional theory (DFT). This allows us to present a comprehensive investigation of the electronic structure of the cofactors involved in electron transfer (ET).
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
3
|
Ding Y, Kiryutin AS, Zhao Z, Xu QZ, Zhao KH, Kurle P, Bannister S, Kottke T, Sagdeev RZ, Ivanov KL, Yurkovskaya AV, Matysik J. Tailored flavoproteins acting as light-driven spin machines pump nuclear hyperpolarization. Sci Rep 2020; 10:18658. [PMID: 33122681 PMCID: PMC7596710 DOI: 10.1038/s41598-020-75627-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022] Open
Abstract
The solid-state photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect generates non-Boltzmann nuclear spin magnetization, referred to as hyperpolarization, allowing for high gain of sensitivity in nuclear magnetic resonance (NMR). Well known to occur in photosynthetic reaction centers, the effect was also observed in a light-oxygen-voltage (LOV) domain of the blue-light receptor phototropin, in which the functional cysteine was removed to prevent photo-chemical reactions with the cofactor, a flavin mononucleotide (FMN). Upon illumination, the FMN abstracts an electron from a tryptophan to form a transient spin-correlated radical pair (SCRP) generating the photo-CIDNP effect. Here, we report on designed molecular spin-machines producing nuclear hyperpolarization upon illumination: a LOV domain of aureochrome1a from Phaeodactylum tricornutum, and a LOV domain named 4511 from Methylobacterium radiotolerans (Mr4511) which lacks an otherwise conserved tryptophan in its wild-type form. Insertion of the tryptophan at canonical and novel positions in Mr4511 yields photo-CIDNP effects observed by 15N and 1H liquid-state high-resolution NMR with a characteristic magnetic-field dependence indicating an involvement of anisotropic magnetic interactions and a slow-motion regime in the transient paramagnetic state. The heuristic biomimetic design opens new categories of experiments to analyze and apply the photo-CIDNP effect.
Collapse
Affiliation(s)
- Yonghong Ding
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Ziyue Zhao
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Qian-Zhao Xu
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Patrick Kurle
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Saskia Bannister
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Tilman Kottke
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Renad Z Sagdeev
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Studying hydrogen bonding and dynamics of the acetylate groups of the Special Pair of Rhodobacter sphaeroides WT. Sci Rep 2019; 9:10528. [PMID: 31324886 PMCID: PMC6642110 DOI: 10.1038/s41598-019-46903-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022] Open
Abstract
Although the cofactors in the bacterial reaction centre of Rhodobacter sphaeroides wild type (WT) are arranged almost symmetrically in two branches, the light-induced electron transfer occurs selectively in one branch. As origin of this functional symmetry break, a hydrogen bond between the acetyl group of PL in the primary donor and His-L168 has been discussed. In this study, we investigate the existence and rigidity of this hydrogen bond with solid-state photo-CIDNP MAS NMR methods offering information on the local electronic structure due to highly sensitive and selective NMR experiments. On the time scale of the experiment, the hydrogen bond between PL and His-L168 appears to be stable and not to be affected by illumination confirming a structural asymmetry within the Special Pair.
Collapse
|
5
|
Zill JC, Kansy M, Goss R, Alia A, Wilhelm C, Matysik J. 15N photo-CIDNP MAS NMR on both photosystems and magnetic field-dependent 13C photo-CIDNP MAS NMR in photosystem II of the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2019; 140:151-171. [PMID: 30194671 DOI: 10.1007/s11120-018-0578-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/24/2018] [Indexed: 05/14/2023]
Abstract
Diatoms contribute about 20-25% to the global marine productivity and are successful autotrophic players in all aquatic ecosystems, which raises the question whether this performance is caused by differences in their photosynthetic apparatus. Photo-CIDNP MAS NMR presents a unique tool to obtain insights into the reaction centres of photosystems (PS), by selective enhancement of NMR signals from both, the electron donor and the primary electron acceptor molecules. Here, we present the first observation of the solid-state photo-CIDNP effect in the pennate diatoms. In comparison to plant PSs, similar spectral patterns have been observed for PS I at 9.4 T and PS II at 4.7 T in the PSs of Phaeodactylum tricornutum. Studies at different magnetic fields reveal a surprising sign change of the 13C photo-CIDNP MAS NMR signals indicating an alternative arrangement of cofactors which allows to quench the Chl a donor triplet state in contrast to the situation in plant PS II. This unusual quenching mechanism is related to a carotenoid molecule in close vicinity to the Chl a donor. In addition to the photo-CIDNP MAS NMR signals arising from the donor and the primary electron acceptor cofactors, a complete set of signals of the imidazole ring ligating to the magnesium of Chl a can be observed.
Collapse
Affiliation(s)
- Jeremias C Zill
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Marcel Kansy
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, University of Leiden, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Zill JC, He Z, Tank M, Ferlez BH, Canniffe DP, Lahav Y, Bellstedt P, Alia A, Schapiro I, Golbeck JH, Bryant DA, Matysik J. 15N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum. PHOTOSYNTHESIS RESEARCH 2018; 137:295-305. [PMID: 29603082 DOI: 10.1007/s11120-018-0504-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a' (Zn-BChl a') (Tsukatani et al. in J Biol Chem 287:5720-5732, 2012). Based upon experimental and quantum chemical 15N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a'. Chl a and 81-OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.
Collapse
Affiliation(s)
- Jeremias C Zill
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Zhihui He
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Bryan H Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yigal Lahav
- Fritz Haber Center of Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Migal-Galilee Research Institute, S. Industrial Zone, 12100, Kiryat Shmona, Israel
| | - Peter Bellstedt
- Institute of Organic and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - A Alia
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
- Leiden Institute of Chemistry, University of Leiden, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Igor Schapiro
- Fritz Haber Center of Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
7
|
Zill JC, Kansy M, Goss R, Köhler L, Alia A, Wilhelm C, Matysik J. Photo-CIDNP in the Reaction Center of the Diatom Cyclotella meneghiniana Observed by 13C MAS NMR. Z PHYS CHEM 2016. [DOI: 10.1515/zpch-2016-0806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Photo-CIDNP MAS NMR presents a unique tool to obtain insight into the photosynthetic reaction centers (RCs) of bacteria and plants. Using the dramatic enhancement of sensitivity and selectivity of the solid-state photo-CIDNP effect, structural as well as functional information can be obtained from the cofactor molecules forming a light-induced spin-correlated radical pair (SCRP) in a given reaction center. Here we demonstrate that the effect can be observed in a further species, which belongs neither to the plant nor the bacteria kingdom. Cyclotella (C.) meneghiniana is a member of the diatom phylum and, therefore, belongs to the kingdom of chromista. Chromista are some of the most productive organisms in nature, even in comparison to trees and terrestrial grasses. The observation of the effect in chromista indicates that the effect occurs in all photosynthetic organisms and completes the list with the last phototrophic kingdoms. Our data also demonstrate that the photo- and spin-chemical machineries of photosystem I of plants and chromista are very similar with respect to structure as well as function.
Collapse
Affiliation(s)
- Jeremias C. Zill
- University of Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103 Leipzig, Germany
| | - Marcel Kansy
- University of Leipzig, Institute of Biology, Abteilung Pflanzenphysiologie, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Reimund Goss
- University of Leipzig, Institute of Biology, Abteilung Pflanzenphysiologie, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Lisa Köhler
- University of Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103 Leipzig, Germany
| | - A. Alia
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Christian Wilhelm
- University of Leipzig, Institute of Biology, Abteilung Pflanzenphysiologie, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Jörg Matysik
- University of Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
8
|
Eisenreich W, Joshi M, Illarionov B, Kacprzak S, Lukaschek M, Kothe G, Budisa N, Fischer M, Bacher A, Weber S. Strategy for Enhancement of (13)C-Photo-CIDNP NMR Spectra by Exploiting Fractional (13)C-Labeling of Tryptophan. J Phys Chem B 2015; 119:13934-43. [PMID: 26244593 DOI: 10.1021/acs.jpcb.5b06668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photo-CIDNP effect has proven to be useful to strongly enhance NMR signals of photochemically active proteins simply by irradiation with light. The evolving characteristic patterns of enhanced absorptive and emissive NMR lines can be exploited to elucidate the photochemistry and photophysics of light-driven protein reactions. In particular, by the assignment of (13)C NMR resonances, redox-active amino acids may be identified and thereby electron-transfer pathways unraveled, in favorable cases, even with (13)C at natural abundance. If signal enhancement is weak, uniform (13)C isotope labeling is traditionally applied to increase the signal strength of protein (13)C NMR. However, this typically leads to cross relaxation, which transfers light-induced nuclear-spin polarization to adjacent (13)C nuclei, thereby preventing an unambiguous analysis of the photo-CIDNP effect. In this contribution, two isotope labeling strategies are presented; one leads to specific but ubiquitous (13)C labeling in tryptophan, and the other is based on fractional isotope labeling affording sets of isotopologs with low probability of next-neighbor isotope accumulation within individual tryptophan molecules. Consequently, cross relaxation is largely avoided while the signal enhancement by (13)C enrichment is preserved. This results in significantly simplified polarization patterns that are easier to analyze with respect to the generation of light-generated nuclear-spin polarization.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Technische Universität München , Lehrstuhl für Biochemie, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Monika Joshi
- Technische Universität München , Lehrstuhl für Biochemie, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Boris Illarionov
- Universität Hamburg , Institut für Lebensmittelchemie, Bundesstr. 45, 20146 Hamburg, Germany
| | - Sylwia Kacprzak
- Albert-Ludwigs-Universität Freiburg , Institut für Physikalische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| | - Michail Lukaschek
- Albert-Ludwigs-Universität Freiburg , Institut für Physikalische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| | - Gerd Kothe
- Albert-Ludwigs-Universität Freiburg , Institut für Physikalische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| | - Nediljko Budisa
- Technische Universität Berlin , Institut für Chemie, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Markus Fischer
- Universität Hamburg , Institut für Lebensmittelchemie, Bundesstr. 45, 20146 Hamburg, Germany
| | - Adelbert Bacher
- Technische Universität München , Lehrstuhl für Biochemie, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Stefan Weber
- Albert-Ludwigs-Universität Freiburg , Institut für Physikalische Chemie, Albertstr. 21, 79104 Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS) , Albertstr. 19, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Paul S, Bode BE, Matysik J, Alia A. Photochemically Induced Dynamic Nuclear Polarization Observed by Solid-State NMR in a Uniformly (13)C-Isotope-Labeled Photosynthetic Reaction Center. J Phys Chem B 2015; 119:13897-903. [PMID: 26110356 DOI: 10.1021/acs.jpcb.5b04542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sample of solubilized and quinone-depleted reaction centers from the purple bacterium Rhodobacter (R.) sphaeroides wild type has been prepared entirely (13)C and (15)N isotope labeled at all positions of the protein as well as of the cofactors. In this sample, the occurrence of the solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect has been probed by (13)C solid-state magic-angle spinning NMR under illumination. Under continuous illumination, signal intensities are modified by the three-spin mixing (TSM) mechanism. Time-resolved illumination experiments reveal the occurrence of light-induced nuclear polarization on the time scale of hundreds of microseconds, initially dominated by the transient polarization of the singlet branch of the radical-pair mechanism. A first kinetic analysis shows that the lifetime of the polarization from the singlet branch, indicated by the enhanced absorptive intensities of the signals from aliphatic carbons, is significantly extended. Upon arrival of the polarization from the triplet decay branch, emissive polarization caused by the TSM mechanism is observed. Also, this arrival is significantly delayed. The decay of TSM polarization occurs in two steps, assigned to intra- and intermolecular spin diffusion.
Collapse
Affiliation(s)
- Shubhajit Paul
- Universität Leipzig , Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews , St Andrews KY16 9ST, Scotland
| | - Jörg Matysik
- Universität Leipzig , Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - A Alia
- Universität Leipzig , Institut für Medizinische Physik und Biophysik, Härtelstr. 16, D-04107 Leipzig, Germany.,Gorlaeus Laboratoria, Leiden Institute of Chemistry , Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
Najdanova M, Janssen GJ, de Groot HJM, Matysik J, Alia A. Analysis of electron donors in photosystems in oxygenic photosynthesis by photo-CIDNP MAS NMR. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:261-71. [PMID: 26282679 DOI: 10.1016/j.jphotobiol.2015.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Both photosystem I and photosystem II are considerably similar in molecular architecture but they operate at very different electrochemical potentials. The origin of the different redox properties of these RCs is not yet clear. In recent years, insight was gained into the electronic structure of photosynthetic cofactors through the application of photochemically induced dynamic nuclear polarization (photo-CIDNP) with magic-angle spinning NMR (MAS NMR). Non-Boltzmann populated nuclear spin states of the radical pair lead to strongly enhanced signal intensities that allow one to observe the solid-state photo-CIDNP effect from both photosystem I and II from isolated reaction center of spinach (Spinacia oleracea) and duckweed (Spirodela oligorrhiza) and from the intact cells of the cyanobacterium Synechocystis by (13)C and (15)N MAS NMR. This review provides an overview on the photo-CIDNP MAS NMR studies performed on PSI and PSII that provide important ingredients toward reconstruction of the electronic structures of the donors in PSI and PSII.
Collapse
Affiliation(s)
- M Najdanova
- University of Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103 Leipzig, Germany
| | - G J Janssen
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - H J M de Groot
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - J Matysik
- University of Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103 Leipzig, Germany
| | - A Alia
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands; University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
11
|
Kothe G, Lukaschek M, Link G, Kacprzak S, Illarionov B, Fischer M, Eisenreich W, Bacher A, Weber S. Detecting a new source for photochemically induced dynamic nuclear polarization in the LOV2 domain of phototropin by magnetic-field dependent (13)C NMR spectroscopy. J Phys Chem B 2014; 118:11622-32. [PMID: 25207844 DOI: 10.1021/jp507134y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phototropin is a flavin mononucleotide (FMN) containing blue-light receptor, which regulates, governed by its two LOV domains, the phototropic response of higher plants. Upon photoexcitation, the FMN cofactor triplet state, (3)F, reacts with a nearby cysteine to form a covalent adduct. Cysteine-to-alanine mutants of LOV domains instead generate a flavin radical upon illumination. Here, we explore the formation of photochemically induced dynamic nuclear polarization (CIDNP) in LOV2-C450A of Avena sativa phototropin and demonstrate that photo-CIDNP observed in solution (13)C NMR spectra can reliably be interpreted in terms of solid-state mechanisms including a novel triplet mechanism. To minimize cross-polarization, which transfers light-induced magnetization to adjacent (13)C nuclei, our experiments were performed on proteins reconstituted with specifically (13)C-labeled flavins. Two potential sources for photo-CIDNP can be identified: The photogenerated triplet state, (3)F, and the triplet radical pair (3)(F(-•)W(+•)), formed by electron abstraction of (3)F from tryptophan W491. To separate the two contributions, photo-CIDNP studies were performed at four different magnetic fields ranging from 4.7 to 11.8 T. Analysis revealed that, at fields <9 T, both (3)(F(-•)W(+•)) and (3)F contribute to photo-CIDNP, whereas at high magnetic fields, the calculated enhancement factors of (3)F agree favorably with their experimental counterparts. Thus, we have for the first time detected that a triplet state is the major source for photo-CIDNP in a photoactive protein. Since triplet states are frequently encountered upon photoexcitation of flavoproteins, the novel triplet mechanism opens up new means of studying electronic structures of the active cofactors in these proteins at atomic resolution.
Collapse
Affiliation(s)
- Gerd Kothe
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg , Albertstr. 21, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sai Sankar Gupta KB, Daviso E, Jeschke G, Alia A, Ernst M, Matysik J. Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 246:9-17. [PMID: 25063951 DOI: 10.1016/j.jmr.2014.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 05/14/2023]
Abstract
In solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR experiments, strong signal enhancement is observed from molecules forming a spin-correlated radical pair in a rigid matrix. Two-dimensional (13)C-(13)C dipolar-assisted rotational resonance (DARR) photo-CIDNP MAS NMR experiments have been applied to obtain exact chemical shift assignments from those cofactors. Under continuous illumination, the signals are enhanced via three-spin mixing (TSM) and differential decay (DD) and their intensity corresponds to the electron spin density in pz orbitals. In multiple-(13)C labelled samples, spin diffusion leads to propagation of signal enhancement to all (13)C spins. Under steady-state conditions, direct signal assignment is possible due to the uniform signal intensity. The original intensities, however, are inaccessible and the information of the local electron spin density is lost. Upon laser-flash illumination, the signal is enhanced via the classical radical pair mechanism (RPM). The obtained intensities are related to isotropic hyperfine interactions aiso and both enhanced absorptive and emissive lines can be observed due to differences in the sign of the local isotropic hyperfine interaction. Exploiting the mechanism of the polarization, selectivity can be increased by the novel time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) MAS NMR experiment which simplifies the signal assignment compared to complex spectra of the same RCs obtained by continuous illumination. Here we present two-dimensional time-resolved photo-CIDNP MAS NMR experiments providing both directly: signal assignment and spectral editing by sign and strength of aiso. Hence, this experiment provides a direct key to the electronic structure of the correlated radical pair.
Collapse
Affiliation(s)
| | - Eugenio Daviso
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Francis Bitter Magnet Laboratory, Albany Street 150, NW14, Cambridge, MA 02139, USA
| | - Gunnar Jeschke
- ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Matthias Ernst
- ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
Surendran Thamarath S, Alia A, Roy E, Sai Sankar Gupta KB, Golbeck JH, Matysik J. The field-dependence of the solid-state photo-CIDNP effect in two states of heliobacterial reaction centers. PHOTOSYNTHESIS RESEARCH 2013; 117:461-9. [PMID: 23722589 DOI: 10.1007/s11120-013-9854-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/14/2013] [Indexed: 05/14/2023]
Abstract
The solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect is studied in photosynthetic reaction centers of Heliobacillus mobilis at different magnetic fields by (13)C MAS (magic-angle spinning) NMR spectroscopy. Two active states of heliobacterial reaction centers are probed: an anaerobic preparation of heliochromatophores ("Braunstoff", German for "brown substance") as well as a preparation of cells after exposure to oxygen ("Grünstoff", "green substance"). Braunstoff shows significant increase of enhanced absorptive (positive) signals toward lower magnetic fields, which is interpreted in terms of an enhanced differential relaxation (DR) mechanism. In Grünstoff, the signals remain emissive (negative) at two fields, confirming that the influence of the DR mechanism is comparably low.
Collapse
|
14
|
Möbius K, Lubitz W, Savitsky A. High-field EPR on membrane proteins - crossing the gap to NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 75:1-49. [PMID: 24160760 DOI: 10.1016/j.pnmrs.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented.
Collapse
Affiliation(s)
- Klaus Möbius
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany; Department of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
15
|
Chauvet A, Sarrou J, Lin S, Romberger SP, Golbeck JH, Savikhin S, Redding KE. Temporal and spectral characterization of the photosynthetic reaction center from Heliobacterium modesticaldum. PHOTOSYNTHESIS RESEARCH 2013; 116:1-9. [PMID: 23812833 DOI: 10.1007/s11120-013-9871-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
A time-resolved spectroscopic study of the isolated photosynthetic reaction center (RC) from Heliobacterium modesticaldum reveals that thermal equilibration of light excitation among the antenna pigments followed by trapping of excitation and the formation of the charge-separated state P800 (+)A0 (-) occurs within ~25 ps. This time scale is similar to that reported for plant and cyanobacterial photosystem I (PS I) complexes. Subsequent electron transfer from the primary electron acceptor A0 occurs with a lifetime of ~600 ps, suggesting that the RC of H. modesticaldum is functionally similar to that of Heliobacillus mobilis and Heliobacterium chlorum. The (A0 (-) - A0) and (P800 (+) - P800) absorption difference spectra imply that an 8(1)-OH-Chl a F molecule serves as the primary electron acceptor and occupies the position analogous to ec3 (A0) in PS I, while a monomeric BChl g pigment occupies the position analogous to ec2 (accessory Chl). The presence of an intense photobleaching band at 790 nm in the (A0 (-) - A0) spectrum suggests that the excitonic coupling between the monomeric accessory BChl g and the 8(1)-OH-Chl a F in the heliobacterial RC is significantly stronger than the excitonic coupling between the equivalent pigments in PS I.
Collapse
Affiliation(s)
- Adrien Chauvet
- Department of Physics, Purdue University, 525 Northwestern Ave, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sai Sankar Gupta KB, Alia A, de Groot HJ, Matysik J. Symmetry Break of Special Pair: Photochemically Induced Dynamic Nuclear Polarization NMR Confirms Control by Nonaromatic Substituents. J Am Chem Soc 2013; 135:10382-7. [DOI: 10.1021/ja402238w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - A. Alia
- Institute
of Chemistry, Leiden University, P.O. Box
9502, 2300 RA Leiden, The
Netherlands
- Institut für Medizinische
Physik und Biophysik, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Huub J.M. de Groot
- Institute
of Chemistry, Leiden University, P.O. Box
9502, 2300 RA Leiden, The
Netherlands
| | - Jörg Matysik
- Institute
of Chemistry, Leiden University, P.O. Box
9502, 2300 RA Leiden, The
Netherlands
- Institut für
Analytische
Chemie, Universität Leipzig, Linnèstr.
3, 04104 Leipzig, Germany
| |
Collapse
|
17
|
Alia A, Buda F, de Groot HJ, Matysik J. Solid-State NMR of Nanomachines Involved in Photosynthetic Energy Conversion. Annu Rev Biophys 2013; 42:675-99. [DOI: 10.1146/annurev-biophys-083012-130415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magic-angle spinning NMR, often in combination with photo-CIDNP, is applied to determine how photosynthetic antennae and reaction centers are activated in the ground state to perform their biological function upon excitation by light. Molecular modeling resolves molecular mechanisms by way of computational integration of NMR data with other structure-function analyses. By taking evolutionary historical contingency into account, a better biophysical understanding is achieved. Chlorophyll cofactors and proteins go through self-assembly trajectories that are engineered during evolution and lead to highly homogeneous protein complexes optimized for exciton or charge transfer. Histidine-cofactor interactions allow biological nanomachines to lower energy barriers for light harvesting and charge separation in photosynthetic energy conversion. In contrast, in primordial chlorophyll antenna aggregates, excessive heterogeneity is paired with much less specific characteristics, and both exciton and charge-transfer character are encoded in the ground state.
Collapse
Affiliation(s)
- A. Alia
- Solid State NMR, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RB, The Netherlands;, , ,
| | - Francesco Buda
- Solid State NMR, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RB, The Netherlands;, , ,
| | - Huub J.M. de Groot
- Solid State NMR, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RB, The Netherlands;, , ,
| | - Jörg Matysik
- Solid State NMR, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RB, The Netherlands;, , ,
| |
Collapse
|
18
|
Sai Sankar Gupta KB, Alia A, Buda F, de Groot HJM, Matysik J. Bacteriopheophytin a in the active branch of the reaction center of rhodobacter sphaeroides is not disturbed by the protein matrix as shown by 13C photo-CIDNP MAS NMR. J Phys Chem B 2013; 117:3287-97. [PMID: 23452037 DOI: 10.1021/jp3121319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structure of bacteriopheophytin a (BPhe a), the primary electron acceptor (ΦA) in photosynthetic reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides, is investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) NMR spectroscopy at atomic resolution. By using various isotope labeling systems, introduced by adding different (13)C selectively labeled δ-aminolevulinic acid precursors in the growing medium of R. sphaeroides wild type (WT), we were able to extract light-induced (13)C NMR signals originating from the primary electron acceptor. The assignments are backed by theoretical calculations. By comparison of these chemical shifts to those obtained from monomeric BPhe a in solution, it is demonstrated that ΦA in the active branch appears to be electronically close to free bacteriopheophytin. Hence, there is little effect of the protein surrounding on the cofactor functionally which contributes with its standard redox potential to the electron transfer process that is asymmetric.
Collapse
|
19
|
Thamarath SS, Alia A, Daviso E, Mance D, Golbeck JH, Matysik J. Whole Cell Nuclear Magnetic Resonance Characterization of Two Photochemically Active States of the Photosynthetic Reaction Center in Heliobacteria. Biochemistry 2012; 51:5763-73. [DOI: 10.1021/bi300468y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - A. Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - Eugenio Daviso
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - Deni Mance
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - John H. Golbeck
- Department
of Biochemistry and
Molecular Biology and Department of Chemistry, Pennsylvania State University, 328 South Frear Laboratory, University
Park, Pennsylvania 16802, United States
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| |
Collapse
|
20
|
Thamarath SS, Bode BE, Prakash S, Sai Sankar Gupta KB, Alia A, Jeschke G, Matysik J. Electron Spin Density Distribution in the Special Pair Triplet of Rhodobacter sphaeroides R26 Revealed by Magnetic Field Dependence of the Solid-State Photo-CIDNP Effect. J Am Chem Soc 2012; 134:5921-30. [DOI: 10.1021/ja2117377] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Bela E. Bode
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
- EaStCHEM and Biomedical Sciences
Research Complex, University of St Andrews, St Andrews, KY16 9ST, Scotland
| | - Shipra Prakash
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | - A. Alia
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Gunnar Jeschke
- Institut für Physikalische
Chemie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
The Solid-State Photo-CIDNP Effect and Its Analytical Application. HYPERPOLARIZATION METHODS IN NMR SPECTROSCOPY 2012; 338:105-21. [DOI: 10.1007/128_2012_357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Jeschke G, Anger BC, Bode BE, Matysik J. Theory of Solid-State Photo-CIDNP in the Earth's Magnetic Field. J Phys Chem A 2011; 115:9919-28. [DOI: 10.1021/jp204921q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Ben C. Anger
- Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Bela E. Bode
- Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
23
|
Paasch S, Brunner E. Trends in solid-state NMR spectroscopy and their relevance for bioanalytics. Anal Bioanal Chem 2010; 398:2351-62. [DOI: 10.1007/s00216-010-4037-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 01/25/2023]
|
24
|
Collins AM, Redding KE, Blankenship RE. Modulation of fluorescence in Heliobacterium modesticaldum cells. PHOTOSYNTHESIS RESEARCH 2010; 104:283-292. [PMID: 20461555 DOI: 10.1007/s11120-010-9554-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
In what appears to be a common theme for all phototrophs, heliobacteria exhibit complex modulations of fluorescence yield when illuminated with actinic light and probed on a time scale of micros to minutes. The fluorescence yield from cells of Heliobacterium modesticaldum remained nearly constant for the first 10-100 ms of illumination and then rose to a maximum level with one or two inflections over the course of many seconds. Fluorescence then declined to a steady-state value within about one minute. In this analysis, the origins of the fluorescence induction in whole cells of heliobacteria are investigated by treating cells with a combination of electron accepters, donors, and inhibitors of the photosynthetic electron transport, as well as varying the temperature. We conclude that fluorescence modulation in H. modesticaldum results from acceptor-side limitation in the reaction center (RC), possibly due to charge recombination between P(800) (+) and A(0) (-).
Collapse
Affiliation(s)
- Aaron M Collins
- Departments of Biology and Chemistry, Washington University in St. Louis, MO 63130, USA
| | | | | |
Collapse
|
25
|
Janssen GJ, Daviso E, van Son M, de Groot HJM, Alia A, Matysik J. Observation of the solid-state photo-CIDNP effect in entire cells of cyanobacteria Synechocystis. PHOTOSYNTHESIS RESEARCH 2010; 104:275-82. [PMID: 20094793 PMCID: PMC2882559 DOI: 10.1007/s11120-009-9508-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/25/2009] [Indexed: 05/18/2023]
Abstract
Cyanobacteria are widely used as model organism of oxygenic photosynthesis due to being the simplest photosynthetic organisms containing both photosystem I and II (PSI and PSII). Photochemically induced dynamic nuclear polarization (photo-CIDNP) (13)C magic-angle spinning (MAS) NMR is a powerful tool in understanding the photosynthesis machinery down to atomic level. Combined with selective isotope enrichment this technique has now opened the door to study primary charge separation in whole living cells. Here, we present the first photo-CIDNP observed in whole cells of the cyanobacterium Synechocystis.
Collapse
Affiliation(s)
- Geertje J. Janssen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Eugenio Daviso
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Martin van Son
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - A. Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
26
|
Matysik J, Diller A, Roy E, Alia A. The solid-state photo-CIDNP effect. PHOTOSYNTHESIS RESEARCH 2009; 102:427-35. [PMID: 19238579 PMCID: PMC2777203 DOI: 10.1007/s11120-009-9403-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 01/12/2009] [Indexed: 05/05/2023]
Abstract
The solid-state photo-CIDNP effect is the occurrence of a non-Boltzmann nuclear spin polarization in rigid samples upon illumination. For solid-state NMR, which can detect this enhanced nuclear polarization as a strong modification of signal intensity, the effect allows for new classes of experiments. Currently, the photo- and spin-chemical machinery of various RCs is studied by photo-CIDNP MAS NMR in detail. Until now, the effect has only been observed at high magnetic fields with (13)C and (15)N MAS NMR and in natural photosynthetic RC preparations in which blocking of the acceptor leads to cyclic electron transfer. In terms of irreversible thermodynamics, the high-order spin structure of the initial radical pair can be considered as a transient order phenomenon emerging under non-equilibrium conditions and as a first manifestation of order in the photosynthetic process. The solid-state photo- CIDNP effect appears to be an intrinsic property of natural RCs. The conditions of its occurrence seem to be conserved in evolution. The effect may be based on the same fundamental principles as the highly optimized electron transfer. Hence, the effect may allow for guiding artificial photosynthesis.
Collapse
Affiliation(s)
- Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Dawadi PBS, Schulten EAM, Lugtenburg J. Synthesis of [3-13C]-, [4-13C]- and [11-13C]-porphobilinogen. J Labelled Comp Radiopharm 2009. [DOI: 10.1002/jlcr.1602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|