1
|
Teng X, Chen S, Wang Q, Chen Z, Wang X, Huang N, Zheng S. Structural insights into G protein activation by D1 dopamine receptor. SCIENCE ADVANCES 2022; 8:eabo4158. [PMID: 35687690 PMCID: PMC9187227 DOI: 10.1126/sciadv.abo4158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of membrane receptors and are the most important drug targets. An agonist-bound GPCR engages heterotrimeric G proteins and triggers the exchange of guanosine diphosphate (GDP) with guanosine triphosphate (GTP) to promote G protein activation. A complete understanding of molecular mechanisms of G protein activation has been hindered by a lack of structural information of GPCR-G protein complex in nucleotide-bound states. Here, we report the cryo-EM structures of the D1 dopamine receptor and mini-Gs complex in the nucleotide-free and nucleotide-bound states. These structures reveal major conformational changes in Gα such as structural rearrangements of the carboxyl- and amino-terminal α helices that account for the release of GDP and the GTP-dependent dissociation of Gα from Gβγ subunits. As validated by biochemical and cellular signaling studies, our structures shed light into the molecular basis of the entire signaling events of GPCR-mediated G protein activation.
Collapse
Affiliation(s)
- Xiao Teng
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Sijia Chen
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Qing Wang
- National Institute of Biological Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhao Chen
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoying Wang
- National Institute of Biological Sciences, Beijing, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Sanduo Zheng
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Duc NM, Kim HR, Chung KY. Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol 2015; 763:214-22. [PMID: 25981300 DOI: 10.1016/j.ejphar.2015.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate physiology and pathology of various organs. Consequently, about 40% of drugs in the market targets GPCRs. Heterotrimeric G proteins are composed of α, β, and γ subunits, and act as the key downstream signaling molecules of GPCRs. The structural mechanism of G protein activation by GPCRs has been of a great interest, and a number of biochemical and biophysical studies have been performed since the late 80's. These studies investigated the interface between GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. Recently, arrestins are also reported to be important molecular switches in GPCR-mediated signal transduction, and the physiological output of arrestin-mediated signal transduction is different from that of G protein-mediated signal transduction. Understanding the structural mechanism of the activation of G proteins and arrestins would provide fundamental information for the downstream signaling-selective GPCR-targeting drug development. This review will discuss the structural mechanism of GPCR-induced G protein activation by comparing previous biochemical and biophysical studies.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea.
| |
Collapse
|
3
|
Thaker TM, Sarwar M, Preininger AM, Hamm HE, Iverson TM. A transient interaction between the phosphate binding loop and switch I contributes to the allosteric network between receptor and nucleotide in Gαi1. J Biol Chem 2014; 289:11331-11341. [PMID: 24596087 DOI: 10.1074/jbc.m113.539064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor-mediated activation of the Gα subunit of heterotrimeric G proteins requires allosteric communication between the receptor binding site and the guanine nucleotide binding site, which are separated by >30 Å. Structural changes in the allosteric network connecting these sites are predicted to be transient in the wild-type Gα subunit, making studies of these connections challenging. In the current work, site-directed mutants that alter the energy barriers between the activation states are used as tools to better understand the transient features of allosteric signaling in the Gα subunit. The observed differences in relative receptor affinity for intact Gαi1 subunits versus C-terminal Gαi1 peptides harboring the K345L mutation are consistent with this mutation modulating the allosteric network in the protein subunit. Measurement of nucleotide exchange rates, affinity for metarhodopsin II, and thermostability suggest that the K345L Gαi1 variant has reduced stability in both the GDP-bound and nucleotide-free states as compared with wild type but similar stability in the GTPγS-bound state. High resolution x-ray crystal structures reveal conformational changes accompanying the destabilization of the GDP-bound state. Of these, the conformation for Switch I was stabilized by an ionic interaction with the phosphate binding loop. Further site-directed mutagenesis suggests that this interaction between Switch I and the phosphate binding loop is important for receptor-mediated nucleotide exchange in the wild-type Gαi1 subunit.
Collapse
Affiliation(s)
- Tarjani M Thaker
- Department of Biochemistry and Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Maruf Sarwar
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| | - T M Iverson
- Department of Biochemistry and Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| |
Collapse
|
4
|
Chung KY. Structural Aspects of GPCR-G Protein Coupling. Toxicol Res 2014; 29:149-55. [PMID: 24386514 PMCID: PMC3877993 DOI: 10.5487/tr.2013.29.3.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the Gα subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.
Collapse
Affiliation(s)
- Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
5
|
Preininger AM, Meiler J, Hamm HE. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. J Mol Biol 2013; 425:2288-98. [PMID: 23602809 DOI: 10.1016/j.jmb.2013.04.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Structure and dynamics of G proteins and their cognate receptors, both alone and in complex, are becoming increasingly accessible to experimental techniques. Understanding the conformational changes and timelines that govern these changes can lead to new insights into the processes of ligand binding and associated G protein activation. Experimental systems may involve the use of, or otherwise stabilize, non-native environments. This can complicate our understanding of structural and dynamic features of processes such as the ionic lock, tryptophan toggle, and G protein flexibility. While elements in the receptor's transmembrane helices and the C-terminal α5 helix of Gα undergo well-defined structural changes, regions subject to conformational flexibility may be important in fine-tuning the interactions between activated receptors and G proteins. The pairing of computational and experimental approaches will continue to provide powerful tools to probe the conformation and dynamics of receptor-mediated G protein activation.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| | | | | |
Collapse
|
6
|
Hamm HE, Kaya AI, Gilbert JA, Preininger AM. Linking receptor activation to changes in Sw I and II of Gα proteins. J Struct Biol 2013; 184:63-74. [PMID: 23466875 DOI: 10.1016/j.jsb.2013.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/28/2012] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
G-protein coupled receptors catalyze nucleotide exchange on G proteins, which results in subunit dissociation and effector activation. In the recent β2AR-Gs structure, portions of Switch I and II of Gα are not fully elucidated. We paired fluorescence studies of receptor-Gαi interactions with the β2AR-Gs and other Gi structures to investigate changes in Switch I and II during receptor activation and GTP binding. The β2/β3 loop containing Leu194 of Gαi is located between Switches I and II, in close proximity to IC2 of the receptor and the C-terminus of Gα, thus providing an allosteric connection between these Switches and receptor activation. We compared the environment of residues in myristoylated Gαi proteins in the heterotrimer to that upon receptor activation and subsequent GTP binding. Upon receptor activation, residues in both Switch regions are less solvent-exposed, as compared to the heterotrimer. Upon GTPγS binding, the environment of several residues in Switch I resemble the receptor-bound state, while Switch II residues display effects on their environment which are consistent with their role in GTP binding and Gβγ dissociation. The ability to merge available crystal structures with solution studies is a powerful tool to gain insight into conformational changes associated with receptor-mediated Gi protein activation.
Collapse
Affiliation(s)
- Heidi E Hamm
- Vanderbilt University Medical Center, Department of Pharmacology, Nashville, TN 37232-6600, United States
| | | | | | | |
Collapse
|
7
|
Kimata N, Yamashita T, Matsuyama T, Imamoto Y, Shichida Y. The C-terminus of the G protein α subunit controls the affinity of nucleotides. Biochemistry 2012; 51:2768-74. [PMID: 22404167 DOI: 10.1021/bi201702d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C-terminus of the G protein α subunit has a well-known role in determining the selective coupling with the cognate G protein-coupled receptor (GPCR). In fact, rhodopsin, a prototypical GPCR, exhibits active state [metarhodopsin II (MII)] stabilization by interacting with G protein [extra formation of MII (eMII)], and the extent of stabilization is affected by the C-terminal sequence of Gα. Here we examine the relationship between the amount of eMII and the activation efficiency of Gi mutants whose Giα forms have different lengths of the C-terminal sequence of Goα. The results show that both the activation efficiencies of Gi and the amounts of eMII were affected by mutations; however, there was no correlation between them. This finding suggested that the C-terminal region of Gα not only stabilizes MII (active state) but also affects the nucleotide-binding site of Gα. Therefore, we measured the activation efficiency of these mutants by MII at several concentrations of GDP and GTP and calculated the rate constants of GDP release, GDP uptake, and GTP uptake. These rate constants of the Gi mutants were substantially different from those of the wild type, indicating that the replacement of the amino acid residues in the C-terminus alters the affinity of nucleotides. The rate constants of GDP uptake and GTP uptake showed a strong correlation, suggesting that the C-terminus of Giα controls the accessibility of the nucleotide-binding site. Therefore, our results strongly suggest that there is a long-range interlink between the C-terminus of Giα and its nucleotide-binding site.
Collapse
Affiliation(s)
- Naoki Kimata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
8
|
Preininger AM, Kaya AI, Gilbert JA, Busenlehner LS, Armstrong RN, Hamm HE. Myristoylation exerts direct and allosteric effects on Gα conformation and dynamics in solution. Biochemistry 2012; 51:1911-24. [PMID: 22329346 DOI: 10.1021/bi201472c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coupling of heterotrimeric G proteins to activated G protein-coupled receptors results in nucleotide exchange on the Gα subunit, which in turn decreases its affinity for both Gβγ and activated receptors. N-Terminal myristoylation of Gα subunits aids in membrane localization of inactive G proteins. Despite the presence of the covalently attached myristoyl group, Gα proteins are highly soluble after GTP binding. This study investigated factors facilitating the solubility of the activated, myristoylated protein. In doing so, we also identified myristoylation-dependent differences in regions of Gα known to play important roles in interactions with receptors, effectors, and nucleotide binding. Amide hydrogen-deuterium exchange and site-directed fluorescence of activated proteins revealed a solvent-protected amino terminus that was enhanced by myristoylation. Furthermore, fluorescence quenching confirmed that the myristoylated amino terminus is in proximity to the Switch II region in the activated protein. Myristoylation also stabilized the interaction between the guanine ring and the base of the α5 helix that contacts the bound nucleotide. The allosteric effects of myristoylation on protein structure, function, and localization indicate that the myristoylated amino terminus of Gα(i) functions as a myristoyl switch, with implications for myristoylation in the stabilization of nucleotide binding and in the spatial regulation of G protein signaling.
Collapse
Affiliation(s)
- Anita M Preininger
- Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
G protein-Coupled Receptors (GPCRs) use a complex series of intramolecular conformational changes to couple agonist binding to the binding and activation of cognate heterotrimeric G protein (Gαβγ). The mechanisms underlying this long-range activation have been identified using a variety of biochemical and structural approaches and have primarily used visual signal transduction via the GPCR rhodopsin and cognate heterotrimeric G protein transducin (G(t)) as a model system. In this chapter, we review the methods that have revealed allosteric signaling through rhodopsin and transducin. These methods can be applied to a variety of GPCR-mediated signaling pathways.
Collapse
|
10
|
Gabay M, Pinter ME, Wright FA, Chan P, Murphy AJ, Valenzuela DM, Yancopoulos GD, Tall GG. Ric-8 proteins are molecular chaperones that direct nascent G protein α subunit membrane association. Sci Signal 2011; 4:ra79. [PMID: 22114146 DOI: 10.1126/scisignal.2002223] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ric-8A (resistance to inhibitors of cholinesterase 8A) and Ric-8B are guanine nucleotide exchange factors that enhance different heterotrimeric guanine nucleotide-binding protein (G protein) signaling pathways by unknown mechanisms. Because transgenic disruption of Ric-8A or Ric-8B in mice caused early embryonic lethality, we derived viable Ric-8A- or Ric-8B-deleted embryonic stem (ES) cell lines from blastocysts of these mice. We observed pleiotropic G protein signaling defects in Ric-8A(-/-) ES cells, which resulted from reduced steady-state amounts of Gα(i), Gα(q), and Gα(13) proteins to <5% of those of wild-type cells. The amounts of Gα(s) and total Gβ protein were partially reduced in Ric-8A(-/-) cells compared to those in wild-type cells, and only the amount of Gα(s) was reduced substantially in Ric-8B(-/-) cells. The abundances of mRNAs encoding the G protein α subunits were largely unchanged by loss of Ric-8A or Ric-8B. The plasma membrane residence of G proteins persisted in the absence of Ric-8 but was markedly reduced compared to that in wild-type cells. Endogenous Gα(i) and Gα(q) were efficiently translated in Ric-8A(-/-) cells but integrated into endomembranes poorly; however, the reduced amounts of G protein α subunits that reached the membrane still bound to nascent Gβγ. Finally, Gα(i), Gα(q), and Gβ(1) proteins exhibited accelerated rates of degradation in Ric-8A(-/-) cells compared to those in wild-type cells. Together, these data suggest that Ric-8 proteins are molecular chaperones required for the initial association of nascent Gα subunits with cellular membranes.
Collapse
Affiliation(s)
- Meital Gabay
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc Natl Acad Sci U S A 2011; 108:9420-4. [PMID: 21606326 DOI: 10.1073/pnas.1105810108] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In G-protein signaling, an activated receptor catalyzes GDP/GTP exchange on the G(α) subunit of a heterotrimeric G protein. In an initial step, receptor interaction with G(α) acts to allosterically trigger GDP release from a binding site located between the nucleotide binding domain and a helical domain, but the molecular mechanism is unknown. In this study, site-directed spin labeling and double electron-electron resonance spectroscopy are employed to reveal a large-scale separation of the domains that provides a direct pathway for nucleotide escape. Cross-linking studies show that the domain separation is required for receptor enhancement of nucleotide exchange rates. The interdomain opening is coupled to receptor binding via the C-terminal helix of G(α), the extension of which is a high-affinity receptor binding element.
Collapse
|
12
|
Temple BRS, Jones CD, Jones AM. Evolution of a signaling nexus constrained by protein interfaces and conformational States. PLoS Comput Biol 2010; 6:e1000962. [PMID: 20976244 PMCID: PMC2954821 DOI: 10.1371/journal.pcbi.1000962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 09/17/2010] [Indexed: 01/03/2023] Open
Abstract
Heterotrimeric G proteins act as the physical nexus between numerous receptors that respond to extracellular signals and proteins that drive the cytoplasmic response. The Gα subunit of the G protein, in particular, is highly constrained due to its many interactions with proteins that control or react to its conformational state. Various organisms contain differing sets of Gα-interacting proteins, clearly indicating that shifts in sequence and associated Gα functionality were acquired over time. These numerous interactions constrained much of Gα evolution; yet Gα has diversified, through poorly understood processes, into several functionally specialized classes, each with a unique set of interacting proteins. Applying a synthetic sequence-based approach to mammalian Gα subunits, we established a set of seventy-five evolutionarily important class-distinctive residues, sites where a single Gα class is differentiated from the three other classes. We tested the hypothesis that shifts at these sites are important for class-specific functionality. Importantly, we mapped known and well-studied class-specific functionalities from all four mammalian classes to sixteen of our class-distinctive sites, validating the hypothesis. Our results show how unique functionality can evolve through the recruitment of residues that were ancestrally functional. We also studied acquisition of functionalities by following these evolutionarily important sites in non-mammalian organisms. Our results suggest that many class-distinctive sites were established early on in eukaryotic diversification and were critical for the establishment of new Gα classes, whereas others arose in punctuated bursts throughout metazoan evolution. These Gα class-distinctive residues are rational targets for future structural and functional studies.
Collapse
Affiliation(s)
- Brenda R S Temple
- R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | |
Collapse
|
13
|
Suzuki T, Moriya K, Nagatoshi K, Ota Y, Ezure T, Ando E, Tsunasawa S, Utsumi T. Strategy for comprehensive identification of human N-myristoylated proteins using an insect cell-free protein synthesis system. Proteomics 2010; 10:1780-93. [PMID: 20213681 DOI: 10.1002/pmic.200900783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To establish a strategy for the comprehensive identification of human N-myristoylated proteins, the susceptibility of human cDNA clones to protein N-myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell-free protein synthesis system. One-hundred-and-forty-one cDNA clones with N-terminal Met-Gly motifs were selected as potential candidates from approximately 2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N-myristoylation was evaluated using fusion proteins, in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N-myristoylated. The metabolic labeling experiments both in an insect cell-free protein synthesis system and in the transfected COS-1 cells using full-length cDNA revealed that 27 out of 29 proteins were in fact N-myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N-myristoylated proteins that have not been reported previously to be N-myristoylated, indicating that this strategy is useful for the comprehensive identification of human N-myristoylated proteins from human cDNA resources.
Collapse
Affiliation(s)
- Takashi Suzuki
- Clinical and Biotechnology Business Unit, Shimadzu Corporation, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Preininger AM, Funk MA, Oldham WM, Meier SM, Johnston CA, Adhikary S, Kimple AJ, Siderovski DP, Hamm HE, Iverson TM. Helix dipole movement and conformational variability contribute to allosteric GDP release in Galphai subunits. Biochemistry 2009; 48:2630-42. [PMID: 19222191 DOI: 10.1021/bi801853a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterotrimeric G proteins (Galphabetagamma) transmit signals from activated G protein-coupled receptors (GPCRs) to downstream effectors through a guanine nucleotide signaling cycle. Numerous studies indicate that the carboxy-terminal alpha5 helix of Galpha subunits participates in Galpha-receptor binding, and previous EPR studies suggest this receptor-mediated interaction induces a rotation and translation of the alpha5 helix of the Galpha subunit [Oldham, W. M., et al. (2006) Nat. Struct. Mol. Biol. 13, 772-777]. On the basis of this result, an engineered disulfide bond was designed to constrain the alpha5 helix of Galpha(i1) into its EPR-measured receptor-associated conformation through the introduction of cysteines at position 56 in the alpha1 helix and position 333 in the alpha5 helix (I56C/Q333C Galpha(i1)). A functional mimetic of the EPR-measured alpha5 helix dipole movement upon receptor association was additionally created by introduction of a positive charge at the amino terminus of this helix, D328R Galpha(i1). Both proteins exhibit a dramatically elevated level of basal nucleotide exchange. The 2.9 A resolution crystal structure of I56C/Q333C Galpha(i1) in complex with GDP-AlF(4)(-) reveals the shift of the alpha5 helix toward the guanine nucleotide binding site that is anticipated by EPR measurements. The structure of the I56C/Q333C Galpha(i1) subunit further revealed altered positions for the switch regions and throughout the Galpha(i1) subunit, accompanied by significantly elevated crystallographic temperature factors. Combined with previous evidence in the literature, the structural analysis supports the critical role of electrostatics of the alpha5 helix dipole and overall conformational variability during nucleotide release.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zheng R, Horiguchi A, Iida K, Lee J, Shen R, Goodman OB, Nanus DM. Neutral endopeptidase is a myristoylated protein. Mol Cell Biochem 2009; 335:173-80. [DOI: 10.1007/s11010-009-0253-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/02/2009] [Indexed: 12/29/2022]
|