1
|
Evaluation of a conserved tryptophanyl residue in donor substrate binding and catalysis by a phenol sulfotransferase (SULT1A1). Arch Biochem Biophys 2020; 695:108621. [PMID: 33049293 DOI: 10.1016/j.abb.2020.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022]
Abstract
Structural determinations of members of the sulfotransferase (SULT) family suggest a direct interaction between a conserved tryptophanyl side chain and bound 3'-phosphoadenosine-5'-phosphate (PAP). We have prepared and purified mutants of the bovine SULT1A1, a very conserved homolog to the human SULT1A1, in which tryptophanyl-53 was sequentially trimmed to tyrosine, leucine, and alanine. Differential scanning fluorimetry indicated structural stabilities of the mutant proteins comparable to the wild type SULT1A1; however, less thermal stabilizations by PAP plus pentachlorophenol were observed with the mutants, suggesting weakened ligand binding. Protein fluorescence of the wild type enzyme decreased 6.5% upon binding PAP, whereas no changes occurred with the mutant enzymes. This reveals that W53, or its positional counterpart, has been the source of emission intensity changes used in previous investigations of other SULTs. Fluorescence resonance energy transfer from excited tryptophans to bound 7-hydroxycoumarin, as induced by PAP, indicated weakened binding of ligands to the mutant SULTs. This was also encountered and quantified in initial rate kinetic analyses. Ablation of the PAPS adenine-to-W53 ring interaction, shown by the W53A mutant enzyme, resulted in a 6.4-fold increase in KPAPS and a 92% decrease in kcat/KPAPS. Measured KPAPS values reveal the W53 indole ring contribution to PAPS binding to be 1.1 kcal/mol (4.6 kJ/mol). These results verify the structurally-inferred role for the π-π stacking interaction between PAP(S) and the conserved tryptophanyl residue in SULT1A1 and other members of the SULT family.
Collapse
|
2
|
Guidry AL, Tibbs ZE, Runge-Morris M, Falany CN. Expression, purification and characterization of human cytosolic sulfotransferase (SULT) 1C4. Horm Mol Biol Clin Investig 2017; 29:27-36. [PMID: 28222028 DOI: 10.1515/hmbci-2016-0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Human cytosolic sulfotransferase 1C4 (hSULT1C4) is a dimeric Phase II drug-metabolizing enzyme primarily expressed in the developing fetus. SULTs facilitate the transfer of a hydrophilic sulfonate moiety from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) onto an acceptor substrate altering the substrate's biological activity and increasing the compound's water solubility. While several of the hSULTs' endogenous and xenobiotic substrates have been identified, the physiological function of hSULT1C4 remains unknown. The fetal expression of hSULT1C4 leads to the hypothesis that the function of this enzyme may be to regulate metabolic and hormonal signaling molecules, such as estrogenic compounds, that may be generated or consumed by the mother during fetal development. Human SULT1C4 has previously been shown to sulfonate estrogenic compounds, such as catechol estrogens; therefore, this study focused on the expression and purification of hSULT1C4 in order to further characterize this enzyme's sulfonation of estrogenic compounds. Molecular modeling of the enzyme's native properties helped to establish a novel purification protocol for hSULT1C4. The optimal activity assay conditions for hSULT1C4 were determined to be pH 7.4 at 37°C for up to 10 min. Kinetic analysis revealed the enzyme's reduced affinity for PAPS compared to PAP. Human SULT1C4 sulfonated all the estrogenic compounds tested, including dietary flavonoids and environmental estrogens; however, the enzyme has a higher affinity for sulfonation of flavonoids. These results suggest hSULT1C4 could be metabolizing and regulating hormone signaling pathways during human fetal development.
Collapse
|
3
|
Cook I, Wang T, Leyh TS. Sulfotransferase 1A1 Substrate Selectivity: A Molecular Clamp Mechanism. Biochemistry 2016; 54:6114-22. [PMID: 26340710 DOI: 10.1021/acs.biochem.5b00406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The human cytosolic sulfotransferases (SULTs) regulate hundreds, perhaps thousands, of small molecule metabolites and xenobiotics via transfer of a sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and primary amines of the recipients. In liver, where it is abundant, SULT1A1 engages in modifying metabolites and neutralizing toxins. The specificity of 1A1 is the broadest of any SULT, and understanding its selectivity is fundamental to understanding its biology. Here, for the first time, we show that SULT1A1 substrates separate naturally into two classes: those whose affinities are either enhanced ∼20-fold (positive synergy) or unaffected (neutral synergy) by the presence of a saturating nucleotide. kcat for the positive-synergy substrates is shown to be ∼100-fold greater than that of neutral-synergy compounds; consequently, the catalytic efficiency (kcat/Km) is approximately 3 orders of magnitude greater for the positive-synergy species. All-atom dynamics modeling suggests a molecular mechanism for these observations in which the binding of only positive-synergy compounds causes two phenylalanine residues (F81 and 84) to reposition and "sandwich" the phenolic moiety of the substrates, thus enhancing substrate affinity and positioning the nucleophilic oxygen for attack. Molecular dynamics movies reveal that the neutral-synergy compounds "wander" about the active site, infrequently achieving a reactive position. In-depth analysis of select point mutants strongly supports the model and provides an intimate view of the interdependent catalytic functions of subsections of the active site.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| |
Collapse
|
4
|
Chen BH, Wang CC, Hou YH, Mao YC, Yang YS. Mechanism of sulfotransferase pharmacogenetics in altered xenobiotic metabolism. Expert Opin Drug Metab Toxicol 2015; 11:1053-71. [DOI: 10.1517/17425255.2015.1045486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015; 30:3-20. [DOI: 10.1016/j.dmpk.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
6
|
Wang T, Cook I, Leyh TS. 3'-Phosphoadenosine 5'-phosphosulfate allosterically regulates sulfotransferase turnover. Biochemistry 2014; 53:6893-900. [PMID: 25314023 PMCID: PMC4230322 DOI: 10.1021/bi501120p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Human cytosolic sulfotransferases
(SULTs) regulate the activities
of thousands of small molecules—metabolites, drugs, and other
xenobiotics—via the transfer of the sulfuryl moiety (-SO3) from 3′-phosphoadenosine 5′-phosphosulfate
(PAPS) to the hydroxyls and primary amines of acceptors. SULT1A1 is
the most abundant SULT in liver and has the broadest substrate spectrum
of any SULT. Here we present the discovery of a new form of SULT1A1
allosteric regulation that modulates the catalytic efficiency of the
enzyme over a 130-fold dynamic range. The molecular basis of the regulation
is explored in detail and is shown to be rooted in an energetic coupling
between the active-site caps of adjacent subunits in the SULT1A1 dimer.
The first nucleotide to bind causes closure of the cap to which it
is bound and at the same time stabilizes the cap in the adjacent subunit
in the open position. Binding of the second nucleotide causes both
caps to open. Cap closure sterically controls active-site access of
the nucleotide and acceptor; consequently, the structural changes
in the cap that occur as a function of nucleotide occupancy lead to
changes in the substrate affinities and turnover of the enzyme. PAPS
levels in tissues from a variety of organs suggest that the catalytic
efficiency of the enzyme varies across tissues over the full 130-fold
range and that efficiency is greatest in those tissues that experience
the greatest xenobiotic “load”.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | | | | |
Collapse
|
7
|
Wang T, Cook I, Falany CN, Leyh TS. Paradigms of sulfotransferase catalysis: the mechanism of SULT2A1. J Biol Chem 2014; 289:26474-26480. [PMID: 25056952 DOI: 10.1074/jbc.m114.573501] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytosolic sulfotransferases (SULTs) regulate the activities of thousands of signaling small molecules via transfer of the sulfuryl moiety (-SO3) from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the hydroxyls and primary amines of acceptors. Sulfonation controls the affinities of ligands for their targets, and thereby regulates numerous receptors, which, in turn, regulate complex cellular responses. Despite their biological and medical relevance, basic SULT mechanism issues remain unresolved. To settle these issues, and to create an in-depth model of SULT catalysis, the complete kinetic mechanism of a representative member of the human SULT family, SULT2A1, was determined. The mechanism is composed of eight enzyme forms that interconvert via 22 rate constants, each of which was determined independently. The result is a complete quantitative description of the mechanism that accurately predicts complex enzymatic behavior. This is the first description of a SULT mechanism at this resolution, and it reveals numerous principles of SULT catalysis and resolves previously ambiguous issues. The structures and catalytic behaviors SULTs are highly conserved; hence, the mechanism presented here should prove paradigmatic for the family.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Charles N Falany
- Departments of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294-0019 and
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926.
| |
Collapse
|
8
|
Cook I, Wang T, Falany CN, Leyh TS. High accuracy in silico sulfotransferase models. J Biol Chem 2013; 288:34494-501. [PMID: 24129576 PMCID: PMC3843064 DOI: 10.1074/jbc.m113.510974] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/06/2013] [Indexed: 12/29/2022] Open
Abstract
Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico "enzymes" capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds--endogenous metabolites, drugs and other xenobiotics--by transferring the sulfuryl moiety (SO3) from 3'-phosphoadenosine 5'-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μM. In total, 23 "new" drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico.
Collapse
Affiliation(s)
- Ian Cook
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926 and
| | - Ting Wang
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926 and
| | - Charles N. Falany
- the Department of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294-0019
| | - Thomas S. Leyh
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926 and
| |
Collapse
|
9
|
Leyh TS, Cook I, Wang T. Structure, dynamics and selectivity in the sulfotransferase family. Drug Metab Rev 2013; 45:423-30. [PMID: 24025091 DOI: 10.3109/03602532.2013.835625] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Combined structure, function and molecular dynamics studies of human cytosolic sulfotransferases (SULT1A1 and 2A1) have revealed that these enzymes contain a ≈ 30-residue active-site cap whose structure responds to substrates and mediates their interactions. The binding of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) gates access to the active site by a remodeling of the cap that constricts the pore through which acceptors must pass to enter the active site. While the PAPS-bound enzyme spends the majority (≈ 95%) of its time in the constricted state, the pore isomerizes between the open and closed states when the nucleotide (PAPS) is bound. The dimensions of the open and closed pores place widely different steric constraints on substrate selectivity. Nature appears to have crafted these enzymes with two specificity settings - a closed-pore setting that admits a set of closely related structures, and an open setting that allows a far wider spectrum of acceptor geometries. The specificities of these settings seem well matched to the metabolic demands for homeostatic and defensive SULT functions. The departure of nucleotide requires that the cap open. This isomerization dependent release can explain both the product bursts and substrate inhibition seen in many SULTs. Here, the experimental underpinnings of the cap-mechanism are reviewed, and the advantages of such a mechanism are considered in the context of the cellular and metabolic environment in which these enzymes operate.
Collapse
Affiliation(s)
- Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | | | | |
Collapse
|
10
|
Cook I, Wang T, Falany CN, Leyh TS. A nucleotide-gated molecular pore selects sulfotransferase substrates. Biochemistry 2012; 51:5674-83. [PMID: 22703301 DOI: 10.1021/bi300631g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human SULT2A1 is one of two predominant sulfotransferases in liver and catalyzes transfer of the sulfuryl moiety (-SO(3)) from activated sulfate (PAPS, 3'-phosphoadenosine 5-phosphosulfate) to hundreds of acceptors (metabolites and xenobiotics). Sulfation recodes the biologic activity of acceptors by altering their receptor interactions. The molecular basis on which these enzymes select and sulfonate specific acceptors from complex mixtures of competitors in vivo is a long-standing issue in the SULT field. Raloxifene, a synthetic steroid used in the prevention of osteoporosis, and dehydroepiandrosterone (DHEA), a ubiquitous steroid precusor, are reported to be sulfated efficiently by SULT2A1 in vitro, yet unlike DHEA, raloxifene is not sulfated in vivo. This selectivity was explored in initial rate and equilibrium binding studies that demonstrate pronounced binding antisynergy (21-fold) between PAPS and raloxifene, but not DHEA. Analysis of crystal structures suggests that PAP binding restricts access to the acceptor-binding pocket by restructuring a nine-residue segment of the pocket edge that constricts the active site opening, or "pore", that sieves substrates on the basis of their geometries. In silico docking predicts that raloxifene, which is considerably larger than DHEA, can bind only to the unliganded (open) enzyme, whereas DHEA binds both the open and closed forms. The predictions of these structures with regard to substrate binding are tested using equilibrium and pre-steady-state ligand binding studies, and the results confirm that a nucleotide-driven isomerization controls access to the acceptor-binding pocket and plays an important role in substrate selection by SULT2A1 and possibly other sulfotransferases.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461-1926, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Inhibition of enzyme activity at high substrate concentrations, so-called "substrate inhibition," is commonly observed and has been recognized in drug metabolism reactions since the last decade. Although the importance of such "atypical" kinetics in vivo remains poorly understood, a substrate with substrate inhibition kinetics has been shown to unconventionally alter the metabolism of other substrates. In recent years, it is becoming increasingly evident that the mechanisms for substrate inhibition are highly complex, which are possibly contributed by multiple (at least two) binding sites within the enzyme protein, the formation of a ternary dead-end enzyme complex, and/or the ligand-induced changes in enzyme conformation. This review primarily discusses the mechanisms for substrate inhibition displayed by the important drug-metabolizing enzymes, such as cytochrome p450s, UDP-glucuronyltransferases, and sulfotransferases. Kinetic modeling of substrate inhibition in the absence or presence of a modifier is another central issue in this review because of its importance in the determination of kinetic parameters and in vitro/in vivo predictions.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas, USA.
| |
Collapse
|
12
|
Tyapochkin E, Kumar VP, Cook PF, Chen G. Reaction product affinity regulates activation of human sulfotransferase 1A1 PAP sulfation. Arch Biochem Biophys 2010; 506:137-41. [PMID: 21111704 DOI: 10.1016/j.abb.2010.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/19/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates the activity of bio-signaling molecules and aids in metabolizing hydroxyl-containing xenobiotics. The sulfuryl donor for the SULT reaction is adenosine 3'-phosphate 5'-phosphosulfate (PAPS), while products are adenosine 3',5'-diphosphate (PAP) and a sulfated alcohol. Human phenol sulfotransferase (SULT1A1) is one of the major detoxifying enzymes for phenolic xenobiotics. The mechanism of SULT1A1-catalyzed sulfation of PAP by pNPS was investigated. PAP was sulfated by para-nitrophenyl sulfate (pNPS) in a concentration-dependent manner. 2-Naphthol inhibited sulfation of PAP, competing with pNPS, while phenol activated the sulfation reaction. At saturating PAP, a ping pong kinetic mechanism is observed with pNPS and phenol as substrates, consistent with phenol intercepting the E-PAPS complex prior to dissociation of PAPS. At high concentrations, phenol competes with pNPS, consistent with formation of the E-PAP-phenol dead-end complex. Data are consistent with the previously reported mechanism for sulfation of 2-naphthol by PAPS, and its activation by pNPS. Overall, data are consistent with release of PAP from E-PAP and PAPS from E-PAPS contributing to rate-limitation in both reaction directions.
Collapse
Affiliation(s)
- Eduard Tyapochkin
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|
13
|
Cook IT, Leyh TS, Kadlubar SA, Falany CN. Structural rearrangement of SULT2A1: effects on dehydroepiandrosterone and raloxifene sulfation. Horm Mol Biol Clin Investig 2010; 1:81-87. [PMID: 21822452 DOI: 10.1515/hmbci.2010.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Human cytosoloic sulfotransferase (SULT) 2A1 is a major hepatic isoform and sulfates hydroxyl groups in structurally diverse sterols and xenobiotics. SULT2A1 crystal structures resolved in the presence and absence of 3',5'-diphosphoadenosine (PAP) or dehydropeiandrosterone (DHEA) suggest a significant rearrangement of the peptide that forms the surface of the active site in the presence of PAP. MATERIALS AND METHODS: Molecular modeling was used to examine the effects of the rearrangement in SULT2A1 associated with 3'-phosphoadenosine 5'-phosphosulfate (PAPS) binding on the binding of DHEA and raloxifene. The kinetics of DHEA and raloxifene sulfation was analyzed to investigate the effects of the rearrangement on SULT2A1 activity. RESULTS: Molecular models indicate that DHEA is able to bind to SULT2A1 in both conformations (open, without PAP; closed, with PAP) in a catalytic configuration, whereas raloxifene bound in a catalytic conformation only in the open structure. Raloxifene did not bind in the smaller, closed substrate binding pocket. Kinetic analysis of DHEA sulfation was consistent with a random Bi-Bi reaction mechanism, whereas raloxifene sulfation was more indicative of an ordered reaction mechanism with raloxifene binding first. Initial burst kinetics with DHEA yielded similar results after preincubation of SULT2A1 with DHEA or PAPS. Preincubation of SULT2A1 with raloxifene showed a burst of raloxifene sulfate formation with the addition of PAPS. In contrast, little raloxifene sulfate was formed if SULT2A1 was preincubated with PAPS and the reaction initiated with raloxifene. CONCLUSIONS: The structural rearrangements in SULT2A1 caused by PAPS binding can alter the sulfation mechanism and kinetics of different substrates.
Collapse
Affiliation(s)
- Ian T Cook
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
14
|
Tyapochkin E, Cook PF, Chen G. para-Nitrophenyl sulfate activation of human sulfotransferase 1A1 is consistent with intercepting the E[middle dot]PAP complex and reformation of E[middle dot]PAPS. J Biol Chem 2009; 284:29357-64. [PMID: 19706609 DOI: 10.1074/jbc.m109.049312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates biological activities of various biosignaling molecules and metabolizes hydroxyl-containing drugs and xenobiotics. The universal sulfuryl group donor for SULT-catalyzed sulfation is adenosine 3'-phosphate 5'-phosphosulfate (PAPS), whereas the reaction products are a sulfated product and adenosine 3',5'-diphosphate (PAP). Although SULT-catalyzed kinetic mechanisms have been studied since the 1980s, they remain unclear. Human SULT1A1 is an important phase II drug-metabolizing enzyme. Previously, isotope exchange at equilibrium indicated steady-state ordered mechanism with PAPS and PAP binding to the free SULT1A1 (Tyapochkin, E., Cook, P. F., and Chen, G. (2008) Biochemistry 47, 11894-11899). On the basis of activation of SULT1A1 by para-nitrophenyl sulfate (pNPS), an ordered bypass mechanism has been proposed where pNPS sulfates PAP prior to its release from the E.PAP complex regenerating E.PAPS. Data are consistent with uncompetitive substrate inhibition by naphthol as a result of formation of the E.PAP.naphthol dead-end complex; formation of the complex is corroborated by naphthol/PAP double inhibition experiments. pNPS activation data demonstrate an apparent ping-pong behavior with pNPS adding to E.PAP, and competitive inhibition by naphthol consistent with formation of the E.PAP.naphthol complex. Exchange against forward reaction flux (PAPS plus naphthol) beginning with [35S]PAPS and generating [35S]naphthyl sulfate is also consistent with pNPS intercepting the E.PAP complex. Overall, data are consistent with the proposed ordered bypass mechanism.
Collapse
Affiliation(s)
- Eduard Tyapochkin
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | |
Collapse
|
15
|
Teramoto T, Sakakibara Y, Liu MC, Suiko M, Kimura M, Kakuta Y. Snapshot of a Michaelis complex in a sulfuryl transfer reaction: Crystal structure of a mouse sulfotransferase, mSULT1D1, complexed with donor substrate and accepter substrate. Biochem Biophys Res Commun 2009; 383:83-7. [PMID: 19344693 DOI: 10.1016/j.bbrc.2009.03.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
Abstract
We report the crystal structure of mouse sulfotransferase, mSULT1D1, complexed with donor substrate 3'-phosphoadenosine 5'-phosphosulfate and accepter substrate p-nitrophenol. The structure is the first report of the native Michaelis complex of sulfotransferase. In the structure, three proposed catalytic residues (Lys48, Lys106, and His108) were in proper positions for engaging in the sulfuryl transfer reaction. The data strongly support that the sulfuryl transfer reaction proceeds through an S(N)2-like in-line displacement mechanism.
Collapse
Affiliation(s)
- Takamasa Teramoto
- Department of Systems Life Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|