1
|
Furr M, Badiee SA, Basha S, Agrawal S, Alraawi Z, Heng S, Stacy C, Ahmed Y, Moradi M, Kumar TKS, Ceballos RM. Structural Stability Comparisons Between Natural and Engineered Group II Chaperonins: Are Crenarchaeal "Heat Shock" Proteins Also "pH Shock" Resistant? Microorganisms 2024; 12:2348. [PMID: 39597738 PMCID: PMC11596651 DOI: 10.3390/microorganisms12112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Archaeal group II chaperonins, also known as heat shock proteins (HSPs), are abundantly expressed in Sulfolobales. HSPα and HSPβ gene expression is upregulated during thermal shock. HSPs form large 18-mer complexes that assist in folding nascent proteins and protecting resident proteins during thermal stress. Engineered HSPs have been designed for industrial applications. Since temperature flux in the geothermal habitats of Sulfolobales impacts intracellular temperature, it follows that HSPs have developed thermotolerance. However, despite the low pH (i.e., pH < 4) typical for these habitats, intracellular pH in Sulfolobales is maintained at ~6.5. Therefore, it is not presumed that HSPs have evolved acid-tolerance. To test tolerance to low pH, HSPs were studied at various pH and temperature values. Both circular dichroism and intrinsic fluorescence indicate that HSPα and HSPβ retain structural integrity at neutral pH over a wide range of temperatures. Structural integrity is compromised for all HSPs at ultra-low pH (e.g., pH 2). Secondary structures in HSPs are resilient under mildly acidic conditions (pH 4) but Anilino naphthalene 8-sulfonate binding shows shifts in tertiary structure at lower pH. Trypsin digestion shows that the HSPβ-coh backbone is the most flexible and HSPβ is the most resilient. Overall, results suggest that HSPα and HSPβ exhibit greater thermostability than HSPβ-coh and that there are limits to HSP acid-tolerance. Molecular dynamics (MD) simulations complement the wet lab data. Specifically, MD suggests that the HSPβ secondary structure is the most stable. Also, despite similarities in pH- and temperature-dependent behavior, there are clear differences in how each HSP subtype is perturbed.
Collapse
Affiliation(s)
- Mercede Furr
- Department of Biology, University of Arkansas, Fayetteville, AR 72701, USA; (M.F.); (S.B.)
| | - Shadi A. Badiee
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
| | - Sreenivasulu Basha
- Department of Biology, University of Arkansas, Fayetteville, AR 72701, USA; (M.F.); (S.B.)
| | - Shilpi Agrawal
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
| | - Zeina Alraawi
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
| | - Sobroney Heng
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA;
| | - Carson Stacy
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (C.S.); (Y.A.)
| | - Yeasin Ahmed
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (C.S.); (Y.A.)
| | - Mahmoud Moradi
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (C.S.); (Y.A.)
| | - Thallapuranam K. S. Kumar
- Department of Chemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (S.A.); (Z.A.); (M.M.); (T.K.S.K.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (C.S.); (Y.A.)
| | - Ruben Michael Ceballos
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA;
- Quantitative Systems Biology Program, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
2
|
Yamamoto YY, Uno Y, Sha E, Ikegami K, Ishii N, Dohmae N, Sekiguchi H, Sasaki YC, Yohda M. Asymmetry in the function and dynamics of the cytosolic group II chaperonin CCT/TRiC. PLoS One 2017; 12:e0176054. [PMID: 28463997 PMCID: PMC5413064 DOI: 10.1371/journal.pone.0176054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
The eukaryotic group II chaperonin, the chaperonin-containing t-complex polypeptide 1 (CCT), plays an important role in cytosolic proteostasis. It has been estimated that as much as 10% of cytosolic proteins interact with CCT during their folding process. CCT is composed of 8 different paralogous subunits. Due to its complicated structure, molecular and biochemical investigations of CCT have been difficult. In this study, we constructed an expression system for CCT from a thermophilic fungus, Chaetomium thermophilum (CtCCT), by using E. coli as a host. As expected, we obtained recombinant CtCCT with a relatively high yield, and it exhibited fairly high thermal stability. We showed the advantages of the overproduction system by characterizing CtCCT variants containing ATPase-deficient subunits. For diffracted X-ray tracking experiment, we removed all surface exposed cysteine residues, and added cysteine residues at the tip of helical protrusions of selected two subunits. Gold nanocrystals were attached onto CtCCTs via gold-thiol bonds and applied for the analysis by diffracted X-ray tracking. Irrespective of the locations of cysteines, it was shown that ATP binding induces tilting motion followed by rotational motion in the CtCCT molecule, like the archaeal group II chaperonins. When gold nanocrystals were attached onto two subunits in the high ATPase activity hemisphere, the CtCCT complex exhibited a fairly rapid response to the motion. In contrast, the response of CtCCT, which had gold nanocrystals attached to the low-activity hemisphere, was slow. These results clearly support the possibility that ATP-dependent conformational change starts with the high-affinity hemisphere and progresses to the low-affinity hemisphere.
Collapse
Affiliation(s)
- Yohei Y. Yamamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yuko Uno
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Eiryo Sha
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Kentaro Ikegami
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Noriyuki Ishii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- The United Graduate School of Agricultural Science, Gifu University, Tsukuba, Ibaraki, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | | | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
3
|
Kawamura T, Anraku R, Hasegawa T, Tomikawa C, Hori H. Transfer RNA methyltransferases from Thermoplasma acidophilum, a thermoacidophilic archaeon. Int J Mol Sci 2014; 16:91-113. [PMID: 25546389 PMCID: PMC4307237 DOI: 10.3390/ijms16010091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 02/03/2023] Open
Abstract
We investigated tRNA methyltransferase activities in crude cell extracts from the thermoacidophilic archaeon Thermoplasma acidophilum. We analyzed the modified nucleosides in native initiator and elongator tRNAMet, predicted the candidate genes for the tRNA methyltransferases on the basis of the tRNAMet and tRNALeu sequences, and characterized Trm5, Trm1 and Trm56 by purifying recombinant proteins. We found that the Ta0997, Ta0931, and Ta0836 genes of T. acidophilum encode Trm1, Trm56 and Trm5, respectively. Initiator tRNAMet from T. acidophilum strain HO-62 contained G+, m1I, and m22G, which were not reported previously in this tRNA, and the m2G26 and m22G26 were formed by Trm1. In the case of elongator tRNAMet, our analysis showed that the previously unidentified G modification at position 26 was a mixture of m2G and m22G, and that they were also generated by Trm1. Furthermore, purified Trm1 and Trm56 could methylate the precursor of elongator tRNAMet, which has an intron at the canonical position. However, the speed of methyl-transfer by Trm56 to the precursor RNA was considerably slower than that to the mature transcript, which suggests that Trm56 acts mainly on the transcript after the intron has been removed. Moreover, cellular arrangements of the tRNA methyltransferases in T. acidophilum are discussed.
Collapse
Affiliation(s)
- Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryou Anraku
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takahiro Hasegawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|