1
|
Araujo-Abad S, Rizzuti B, Soto-Conde L, Vidal M, Abian O, Velazquez-Campoy A, Neira JL, de Juan Romero C. Citrullinating enzyme PADI4 and transcriptional repressor RING1B bind in cancer cells. Int J Biol Macromol 2024; 274:133163. [PMID: 38878927 DOI: 10.1016/j.ijbiomac.2024.133163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Polycomb groups (PcGs) are transcriptional repressors, formed by a complex of several proteins, involved in multicellular development and cancer epigenetics. One of these proteins is the E3 ubiquitin-protein ligase RING1 (or RING1B), associated with the regulation of transcriptional repression and responsible for monoubiquitylation of the histone H2A. On the other hand, PADI4 is one of the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline, and it is also involved in the development of glioblastoma, among other types of cancers. In this work, we showed the association of PADI4 and RING1B in the nucleus and cytosol in several cancer cell lines by using immunofluorescence and proximity ligation assays. Furthermore, we demonstrated that binding was hampered in the presence of GSK484, an enzymatic PADI4 inhibitor, suggesting that RING1B could bind to the active site of PADI4, as confirmed by protein-protein docking simulations. In vitro and in silico findings showed that binding to PADI4 occurred for the isolated fragments corresponding to both the N-terminal (residues 1-221) and C-terminal (residues 228-336) regions of RING1B. Binding to PADI4 was also hampered by GSK484, as shown by isothermal titration calorimetry (ITC) experiments for the sole N-terminal region, and by both NMR and ITC for the C-terminal one. The dissociation constants between PADI4 and any of the two isolated RING1B fragments were in the low micromolar range (~2-10 μM), as measured by fluorescence and ITC. The interaction between RING1B and PADI4 might imply citrullination of the former, leading to several biological consequences, as well as being of potential therapeutic relevance for improving cancer treatment with the generation of new antigens.
Collapse
Affiliation(s)
- Salome Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, 170124 Quito, Ecuador; IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain.
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | | | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche (Alicante), Spain.
| |
Collapse
|
2
|
Guan S, Tang J, Ma X, Miao R, Cheng B. CBX7C⋅PHC2 interaction facilitates PRC1 assembly and modulates its phase separation properties. iScience 2024; 27:109548. [PMID: 38600974 PMCID: PMC11004992 DOI: 10.1016/j.isci.2024.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
CBX7 is a key component of PRC1 complex. Cbx7C is an uncharacterized Cbx7 splicing isoform specifically expressed in mouse embryonic stem cells (mESCs). We demonstrate that CBX7C functions as an epigenetic repressor at the classic PRC1 targets in mESCs, and its preferential interaction to PHC2 facilitates PRC1 assembly. Both Cbx7C and Phc2 are significantly upregulated during cell differentiation, and knockdown of Cbx7C abolishes the differentiation of mESCs to embryoid bodies. Interestingly, CBX7C⋅PHC2 interaction at low levels efficiently undergoes the formation of functional Polycomb bodies with high mobility, whereas the coordination of the two factors at high doses results in the formation of large, low-mobility, chromatin-free aggregates. Overall, these findings uncover the unique roles and molecular basis of the CBX7C⋅PHC2 interaction in PRC1 assembly on chromatin and Pc body formation and open a new avenue of controlling PRC1 activities via modulation of its phase separation properties.
Collapse
Affiliation(s)
- Shanli Guan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Jiajia Tang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Xiaojun Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Ruidong Miao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| |
Collapse
|
3
|
Wei Y, Xiao G, Xu H, Sun X, Shi Y, Wang F, Kang J, Peng J, Zhou F. Radiation resistance of cancer cells caused by mitochondrial dysfunction depends on SIRT3-mediated mitophagy. FEBS J 2023. [PMID: 36871142 DOI: 10.1111/febs.16769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/14/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Radiation resistance is the leading cause of radiotherapy failure in patients with cancer. Enhanced DNA damage repair is the main reason for cancer cells to develop resistance to radiation. Autophagy has been widely reported to be linked to increased genome stability and radiation resistance. Mitochondria are highly involved in the cell response to radiotherapy. However, the autophagy subtype mitophagy has not been studied in terms of genome stability. We have previously demonstrated that mitochondrial dysfunction is the cause of radiation resistance in tumour cells. In the present study, we found that SIRT3 was highly expressed in colorectal cancer cells with mitochondrial dysfunction, leading to PINK1/Parkin-mediated mitophagy. Excessive activation of mitophagy enhanced DNA damage repair, therefore promoting the resistance of tumour cells to radiation. Mechanistically, mitophagy resulted in decreased RING1b expression, which led to a reduction in the ubiquitination of histone H2A at K119, thereby enhancing the repair of DNA damage caused by radiation. Additionally, high expression of SIRT3 was related to a poor tumour regression grade in rectal cancer patients treated with neoadjuvant radiotherapy. These findings suggest that restoring mitochondrial function could be an effective method for increasing the radiosensitivity of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yan Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Guohui Xiao
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xuehua Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yingying Shi
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fen Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jinlin Kang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
5
|
Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction. Nat Commun 2021; 12:5888. [PMID: 34620850 PMCID: PMC8497513 DOI: 10.1038/s41467-021-26147-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Organization of the genome into transcriptionally active euchromatin and silenced heterochromatin is essential for eukaryotic cell function. Phase-separation has been implicated in heterochromatin formation, but it is unclear how phase-separated condensates can contribute to stable repression, particularly for heritable epigenetic changes. Polycomb complex PRC1 is key for heterochromatin formation, but the multitude of Polycomb proteins has hindered our understanding of their collective contribution to chromatin repression. Here, we show that PRC1 forms multicomponent condensates through hetero-oligomerization. They preferentially seed at H3K27me3 marks, and subsequently write H2AK119Ub marks. We show that inducing Polycomb phase-separation can cause chromatin compaction, but polycomb condensates are dispensable for maintenance of the compacted state. Our data and simulations are consistent with a model in which the time integral of Polycomb phase-separation is progressively recorded in repressive histone marks, which subsequently drive compaction. These findings link the equilibrium thermodynamics of phase-separation with the fundamentally non-equilibrium concept of epigenetic memory. Phase separation has been suggested as a mechanism for heterochromatin formation through condensation of heterochromatin-associated factors. Here the authors show Polycomb complex PRC1 forms condensates on chromatin. Using optogenetic tools they nucleate local Polycomb condensates to show that this phase separation leads to subsequent histone modifications and chromatin compaction.
Collapse
|
6
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|
7
|
Bacheva AV, Gotmanova NN, Belogurov AA, Kudriaeva AA. Control of Genome through Variative Nature of Histone-Modifying Ubiquitin Ligases. BIOCHEMISTRY (MOSCOW) 2021; 86:S71-S95. [PMID: 33827401 DOI: 10.1134/s0006297921140066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.
Collapse
Affiliation(s)
- Anna V Bacheva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Alexey A Belogurov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
8
|
Geng Z, Gao Z. Mammalian PRC1 Complexes: Compositional Complexity and Diverse Molecular Mechanisms. Int J Mol Sci 2020; 21:E8594. [PMID: 33202645 PMCID: PMC7697839 DOI: 10.3390/ijms21228594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Polycomb group (PcG) proteins function as vital epigenetic regulators in various biological processes, including pluripotency, development, and carcinogenesis. PcG proteins form multicomponent complexes, and two major types of protein complexes have been identified in mammals to date, Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The PRC1 complexes are composed in a hierarchical manner in which the catalytic core, RING1A/B, exclusively interacts with one of six Polycomb group RING finger (PCGF) proteins. This association with specific PCGF proteins allows for PRC1 to be subdivided into six distinct groups, each with their own unique modes of action arising from the distinct set of associated proteins. Historically, PRC1 was considered to be a transcription repressor that deposited monoubiquitylation of histone H2A at lysine 119 (H2AK119ub1) and compacted local chromatin. More recently, there is increasing evidence that demonstrates the transcription activation role of PRC1. Moreover, studies on the higher-order chromatin structure have revealed a new function for PRC1 in mediating long-range interactions. This provides a different perspective regarding both the transcription activation and repression characteristics of PRC1. This review summarizes new advancements regarding the composition of mammalian PRC1 and accompanying explanations of how diverse PRC1-associated proteins participate in distinct transcription regulation mechanisms.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Proteasomal degradation of polycomb-group protein CBX6 confers MMP-2 expression essential for mesothelioma invasion. Sci Rep 2020; 10:16678. [PMID: 33028834 PMCID: PMC7541533 DOI: 10.1038/s41598-020-72448-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
The aggressive invasiveness of malignant mesothelioma limits cancer therapy, however, the molecular mechanisms underlying the invasiveness remain largely unknown. Here we found that the matrix metalloproteinase-2 (MMP-2) was required for the invasion of mesothelioma cells in the collagen matrix and the gene expression of MMP-2 was correlated with the invasive phenotype. The MMP-2 gene expression was regulated by DNA and histone methylation around the transcription start site, implicating the involvement of the polycomb repressive complex (PRC). Knockdown of PRC component chromobox 6 (CBX6) promoted MMP-2 expression and invasion of mesothelioma cells. Transcriptome analysis suggested that CBX6 regulates sets of genes involved in cancer cell migration and metastasis. In invasive but not non-invasive cells, CBX6 was constantly unstable owing to ubiquitination and protein degradation. In human tissues, CBX6 localized in the nuclei of normal mesothelium and benign mesothelioma, but the nuclear staining of CBX6 was lost in malignant mesothelioma. These results suggest involvement of proteasomal degradation of CBX6 in mesothelioma progression.
Collapse
|
10
|
Kang SJ, Chun T. Structural heterogeneity of the mammalian polycomb repressor complex in immune regulation. Exp Mol Med 2020; 52:1004-1015. [PMID: 32636442 PMCID: PMC8080698 DOI: 10.1038/s12276-020-0462-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulation is mainly mediated by enzymes that can modify the structure of chromatin by altering the structure of DNA or histones. Proteins involved in epigenetic processes have been identified to study the detailed molecular mechanisms involved in the regulation of specific mRNA expression. Evolutionarily well-conserved polycomb group (PcG) proteins can function as transcriptional repressors by the trimethylation of histone H3 at the lysine 27 residue (H3K27me3) and the monoubiquitination of histone H2A at the lysine 119 residue (H2AK119ub). PcG proteins form two functionally distinct protein complexes: polycomb repressor complex 1 (PRC1) and PRC2. In mammals, the structural heterogeneity of each PRC complex is dramatically increased by several paralogs of its subunit proteins. Genetic studies with transgenic mice along with RNA-seq and chromatin immunoprecipitation (ChIP)-seq analyses might be helpful for defining the cell-specific functions of paralogs of PcG proteins. Here, we summarize current knowledge about the immune regulatory role of PcG proteins related to the compositional diversity of each PRC complex and introduce therapeutic drugs that target PcG proteins in hematopoietic malignancy. Protein complexes that suppress gene activity by remodeling chromatin, the substance that contains most of a cell’s DNA, play a critical role in regulating the immune system and provide a therapeutic target for treating blood cancers. Seok-Jin Kang and Taehoon Chun from Korea University in Seoul, South Korea, review how polycomb group proteins, best known for their function in embryonic development, also contribute to the formation of immune cells from blood stem cell precursors. Studies with stem cells and cancer cells have begun to reveal many targets of these proteins, and drug companies are evaluating candidate agents directed against some polycomb group proteins in patients with lymphoma and other cancers. More comprehensive profiling of protein function across a broad range of immune cell types could reveal new targets for additional diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Desai D, Pethe P. Polycomb repressive complex 1: Regulators of neurogenesis from embryonic to adult stage. J Cell Physiol 2020; 235:4031-4045. [PMID: 31608994 DOI: 10.1002/jcp.29299] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
Development of vertebrate nervous system is a complex process which involves differential gene expression and disruptions in this process or in the mature brain, may lead to neurological disorders and diseases. Extensive work that spanned several decades using rodent models and recent work on stem cells have helped uncover the intricate process of neuronal differentiation and maturation. There are various morphological changes, genetic and epigenetic modifications which occur during normal mammalian neural development, one of the chromatin modifications that controls vital gene expression are the posttranslational modifications on histone proteins, that controls accessibility of translational machinery. Among the histone modifiers, polycomb group proteins (PcGs), such as Ezh2, Eed and Suz12 form large protein complexes-polycomb repressive complex 2 (PRC2); while Ring1b and Bmi1 proteins form core of PRC1 along with accessory proteins such as Cbx, Hph, Rybp and Pcgfs catalyse histone modifications such as H3K27me3 and H2AK119ub1. PRC1 proteins are known to play critical role in X chromosome inactivation in females but they also repress the expression of key developmental genes and tightly regulate the mammalian neuronal development. In this review we have discussed the signalling pathways, morphogens and nuclear factors that initiate, regulate and maintain cells of the nervous system. Further, we have extensively reviewed the recent literature on the role of Ring1b and Bmi1 in mammalian neuronal development and differentiation; as well as highlighted questions that are still unanswered.
Collapse
Affiliation(s)
- Divya Desai
- Department of Biological Sciences, Sunandan Divatia School of Science (SDSOS), Narsee Monjee Institute of Management Studies (NMIMS) deemed-to-be University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India
| |
Collapse
|
13
|
Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription. Genes (Basel) 2019; 10:genes10110941. [PMID: 31752312 PMCID: PMC6895862 DOI: 10.3390/genes10110941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Separation of germline cells from somatic lineages is one of the earliest decisions of embryogenesis. Genes expressed in germline cells include apoptotic and meiotic factors, which are not transcribed in the soma normally, but a number of testis-specific genes are active in numerous cancer types. During germ cell development, germ-cell-specific genes can be regulated by specific transcription factors, retinoic acid signaling and multimeric protein complexes. Non-canonical polycomb repressive complexes, like ncPRC1.6, play a critical role in the regulation of the activity of germ-cell-specific genes. RING1 and YY1 binding protein (RYBP) is one of the core members of the ncPRC1.6. Surprisingly, the role of Rybp in germ cell differentiation has not been defined yet. This review is focusing on the possible role of Rybp in this process. By analyzing whole-genome transcriptome alterations of the Rybp-/- embryonic stem (ES) cells and correlating this data with experimentally identified binding sites of ncPRC1.6 subunits and retinoic acid receptors in ES cells, we propose a model how germ-cell-specific transcription can be governed by an RYBP centered regulatory network, underlining the possible role of RYBP in germ cell differentiation and tumorigenesis.
Collapse
|
14
|
Chromatin modulation and gene regulation in plants: insight about PRC1 function. Biochem Soc Trans 2018; 46:957-966. [DOI: 10.1042/bst20170576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
In plant and metazoan, Polycomb Group (PcG) proteins play key roles in regulating developmental processes by repression of gene expression. PcG proteins function as multi-protein complexes; among them the best characterized ones are Polycomb Repressive Complex 1 (PRC1) and PRC2. PRC2 catalyzes histone H3 lysine 27 trimethylation (H3K27me3), and PRC1 can bind H3K27me3 and catalyzes H2A monoubiquitination. While the PRC2 components and molecular functions are evolutionarily conserved, varied PRC1 complexes are found and they show high divergences between animals and plants. In addition to the core subunits, an exponentially increasing number of PRC1-associated factors have been identified in Arabidopsis thaliana. Recent studies have also unraveled cross-component interactions and intertwined roles of PRC1 and PRC2 in chromatin modulation. In addition, complexities of interactions and functions between PcG and Trithorax Group proteins have been observed. This short review summarizes up current knowledge to provide insight about repressive functional mechanism of PRC1 and its interplay with other factors.
Collapse
|
15
|
Molecular architecture of polycomb repressive complexes. Biochem Soc Trans 2017; 45:193-205. [PMID: 28202673 PMCID: PMC5310723 DOI: 10.1042/bst20160173] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023]
Abstract
The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin.
Collapse
|
16
|
Intrinsically disordered chromatin protein NUPR1 binds to the C-terminal region of Polycomb RING1B. Proc Natl Acad Sci U S A 2017; 114:E6332-E6341. [PMID: 28720707 DOI: 10.1073/pnas.1619932114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are ubiquitous in eukaryotes, and they are often associated with diseases in humans. The protein NUPR1 is a multifunctional IDP involved in chromatin remodeling and in the development and progression of pancreatic cancer; however, the details of such functions are unknown. Polycomb proteins are involved in specific transcriptional cascades and gene silencing. One of the proteins of the Polycomb complex is the Ring finger protein 1 (RING1). RING1 is related to aggressive tumor features in multiple cancer types. In this work we characterized the interaction between NUPR1 and the paralogue RING1B in vitro, in silico, and in cellulo. The interaction occurred through the C-terminal region of RING1B (C-RING1B), with an affinity in the low micromolar range (∼10 μM). The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch at the 30s region of its sequence, as pinpointed by computational results and site-directed mutagenesis at Ala33. The association between C-RING1B and wild-type NUPR1 also occurred in cellulo as tested by protein ligation assays; this interaction is inhibited by trifluoperazine, a drug known to hamper binding of wild-type NUPR1 with other proteins. Furthermore, the Thr68Gln and Ala33Gln/Thr68Gln mutants had a reduction in the binding toward C-RING1B as shown by in vitro, in silico, and in cellulo studies. This is an example of a well-folded partner of NUPR1, because its other interacting proteins are also unfolded. We hypothesize that NUPR1 plays an active role in chromatin remodeling and carcinogenesis, together with Polycomb proteins.
Collapse
|
17
|
Polycomb complexes PRC1 and their function in hematopoiesis. Exp Hematol 2017; 48:12-31. [PMID: 28087428 DOI: 10.1016/j.exphem.2016.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
Hematopoiesis, the process by which blood cells are continuously produced, is one of the best studied differentiation pathways. Hematological diseases are associated with reiterated mutations in genes encoding important gene expression regulators, including chromatin regulators. Among them, the Polycomb group (PcG) of proteins is an essential system of gene silencing involved in the maintenance of cell identities during differentiation. PcG proteins assemble into two major types of Polycomb repressive complexes (PRCs) endowed with distinct histone-tail-modifying activities. PRC1 complexes are histone H2A E3 ubiquitin ligases and PRC2 trimethylates histone H3. Established conceptions about their activities, mostly derived from work in embryonic stem cells, are being modified by new findings in differentiated cells. Here, we focus on PRC1 complexes, reviewing recent evidence on their intricate architecture, the diverse mechanisms of their recruitment to targets, and the different ways in which they engage in transcriptional control. We also discuss hematopoietic PRC1 gain- and loss-of-function mouse strains, including those that model leukemic and lymphoma diseases, in the belief that these genetic analyses provide the ultimate test for molecular mechanisms driving normal hematopoiesis and hematological malignancies.
Collapse
|
18
|
An Unexpected Regulatory Cascade Governs a Core Function of the Drosophila PRC1 Chromatin Protein Su(z)2. Genetics 2016; 205:551-558. [PMID: 27881472 DOI: 10.1534/genetics.116.187849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are major chromatin-bound factors that can read and modify chromatin states to maintain gene silencing throughout development. Here we focus on a close homolog of the PcG protein Posterior sex combs to better understand how these proteins affect regulation. This homolog, called Suppressor 2 of zeste [Su(z)2] is composed of two regions: the N-terminal homology region (HR), which serves as a hub for protein interactions, and the C-terminal region (CTR), which is believed to harbor the core activity of compacting chromatin. Here, we describe our classical genetic studies to dissect the structure of Su(z)2 Surprisingly, we found that the CTR is dispensable for viability. Furthermore, the core activity of Su(z)2 seems to reside in the HR instead of the CTR. Remarkably, our data also suggest a regulatory cascade between CTR and HR of Su(z)2, which, in turn, may help prioritize the myriad of PcG interactions that occur with the HR.
Collapse
|
19
|
Maury JJP, EL Farran CA, Ng D, Loh YH, Bi X, Bardor M, Choo ABH. RING1B O-GlcNAcylation regulates gene targeting of polycomb repressive complex 1 in human embryonic stem cells. Stem Cell Res 2015; 15:182-9. [DOI: 10.1016/j.scr.2015.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/25/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022] Open
|
20
|
Merini W, Calonje M. PRC1 is taking the lead in PcG repression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:110-20. [PMID: 25754661 DOI: 10.1111/tpj.12818] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/17/2015] [Accepted: 03/02/2015] [Indexed: 05/28/2023]
Abstract
Polycomb group (PcG) proteins constitute a major epigenetic mechanism for gene repression throughout the plant life. For a long time, the PcG mechanism has been proposed to follow a hierarchical recruitment of PcG repressive complexes (PRCs) to target genes in which the binding of PRC2 and the incorporation of H3 lysine 27 trimethyl marks led to recruitment of PRC1, which in turn mediated H2A monoubiquitination. However, recent studies have turned this model upside-down by showing that PRC1 activity can be required for PRC2 recruitment and H3K27me3 marking. Here, we review the current knowledge on plant PRC1 composition and mechanisms of repression, as well as its role during plant development.
Collapse
Affiliation(s)
- Wiam Merini
- Institute of Plant Biochemistry and Photosynthesis, IBVF-CSIC-University of Seville, Avenida América Vespucio, 49, Isla de La Cartuja, 41092, Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis, IBVF-CSIC-University of Seville, Avenida América Vespucio, 49, Isla de La Cartuja, 41092, Seville, Spain
| |
Collapse
|
21
|
Ma RG, Zhang Y, Sun TT, Cheng B. Epigenetic regulation by polycomb group complexes: focus on roles of CBX proteins. J Zhejiang Univ Sci B 2015; 15:412-28. [PMID: 24793759 DOI: 10.1631/jzus.b1400077] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polycomb group (PcG) complexes are epigenetic regulatory complexes that conduct transcriptional repression of target genes via modifying the chromatin. The two best characterized forms of PcG complexes, polycomb repressive complexes 1 and 2 (PRC1 and PRC2), are required for maintaining the stemness of embryonic stem cells and many types of adult stem cells. The spectra of target genes for PRCs are dynamically changing with cell differentiation, which is essential for proper decisions on cell fate during developmental processes. Chromobox (CBX) family proteins are canonical components in PRC1, responsible for targeting PRC1 to the chromatin. Recent studies highlight the function specifications among CBX family members in undifferentiated and differentiated stem cells, which reveal the interplay between compositional diversity and functional specificity of PRC1. In this review, we summarize the current knowledge about targeting and functional mechanisms of PRCs, emphasizing the recent breakthroughs related to CBX proteins under a number of physiological and pathological conditions.
Collapse
Affiliation(s)
- Rong-gang Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | |
Collapse
|
22
|
Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 2014; 7:1456-1470. [PMID: 24857660 PMCID: PMC4062935 DOI: 10.1016/j.celrep.2014.04.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/12/2014] [Accepted: 04/11/2014] [Indexed: 11/24/2022] Open
Abstract
The mechanisms by which the major Polycomb group (PcG) complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs), CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications. Absence of DNA methylation recruits Polycomb complexes to pericentric heterochromatin H3K9me3 antagonizes activity of PRC2, but not PRC1, at pericentric heterochromatin CpG density and antagonism by H3 modifications define genome-wide Polycomb occupancy PRC1-mediated H2AK119u1 recruits PRC2 and H3K27me3
Collapse
|
23
|
Abstract
From mammals to plants, the Polycomb Group (PcG) machinery plays a crucial role in maintaining the repression of genes that are not required in a specific differentiation status. However, the mechanism by which PcG machinery mediates gene repression is still largely unknown in plants. Compared to animals, few PcG proteins have been identified in plants, not only because just some of these proteins are clearly conserved to their animal counterparts, but also because some PcG functions are carried out by plant-specific proteins, most of them as yet uncharacterized. For a long time, the apparent lack of Polycomb Repressive Complex (PRC)1 components in plants was interpreted according to the idea that plants, as sessile organisms, do not need a long-term repression, as they must be able to respond rapidly to environmental signals; however, some PRC1 components have been recently identified, indicating that this may not be the case. Furthermore, new data regarding the recruitment of PcG complexes and maintenance of PcG repression in plants have revealed important differences to what has been reported so far. This review highlights recent progress in plant PcG function, focusing on the role of the putative PRC1 components.
Collapse
Affiliation(s)
- Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Avenida América Vespucio, 49, Isla de La Cartuja, 41092 Seville, Spain
| |
Collapse
|
24
|
Martínez-Gómez AI, Villegas S, Aguado-Llera D, Bacarizo J, Cámara-Artigas A, Vidal M, Neira JL. The isolated N terminus of Ring1B is a well-folded, monomeric fragment with native-like structure. Protein Eng Des Sel 2013; 27:1-11. [PMID: 24284202 DOI: 10.1093/protein/gzt056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Polycomb group (PcG) proteins assemble into Polycomb repressive complexes (PRCs), PRC1 and PRC2, which act as general transcriptional repressors. PRC1 comprises a variety of biochemical entities endowed with histone H2A monoubiquitylation activity conferred by really interesting new gene (RING) finger E3 ubiquitin ligases Ring1A and Ring1B. All PRC1 complexes contain Ring1 proteins which are essential for Polycomb epigenetic regulation. We have been able to express the isolated N-terminal region of Ring1B, N-Ring1B, comprising the first 221 residues of the 334-residue-long Ring1B. This fragment contains the 41-residue-long RING finger motif, and flanking sequences that form an interacting platform for PcG and non-PcG proteins. We found that the N-Ring1B is a well-folded, monomeric fragment, with native-like structure which unfolds irreversibly. The protein is capable of binding to an ubiquitin-conjugase protein (with an 85% of sequence similarity to the Ring1B physiological partner) with moderate affinity.
Collapse
Affiliation(s)
- Ana Isabel Martínez-Gómez
- Departamento de Química-Física, Bioquímica y Química Inorgánica, Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, 04120 Almería, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Coradini D, Oriana S. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation. CHINESE JOURNAL OF CANCER 2013; 33:51-67. [PMID: 23845141 PMCID: PMC3935006 DOI: 10.5732/cjc.013.10040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cell identity. This identity is maintained during cell replication in a heritable but DNA-independent manner. The preservation of cell identity is fundamental, especially when cells must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cell identity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cell identity, mammary gland remodeling, and breast cancer initiation.
Collapse
Affiliation(s)
- Danila Coradini
- Department of Clinical and Community Health Sciences, Medical Statistics, Biometry and Bioinformatics, University of Milan 20133, Italy.
| | | |
Collapse
|
26
|
de Bie P, Ciechanover A. RING1B ubiquitination and stability are regulated by ARF. Biochem Biophys Res Commun 2012; 426:49-53. [PMID: 22910419 DOI: 10.1016/j.bbrc.2012.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 11/17/2022]
Abstract
The activity and stability of the E3 ubiquitin ligase RING1B are controlled by the ubiquitin system. Self-ubiquitination of RING1B, generating K6, K27 and K48-based mixed polyubiquitin chains, is a prerequisite for its activity as an E3 ligase for histone H2A. Monoubiquitination of histone H2A is one of the hallmarks of Polycomb-mediated gene silencing. The destruction of RING1B however, is mediated through K48 polyubiquitination catalyzed by the ubiquitin ligase E6-AP. Both forms of ubiquitination of RING1B are mutually exclusive and therefore the balance between them may constitute a point of regulation of Polycomb-mediated gene repression. Here we identify ARF as a regulator of RING1B ubiquitination. ARF appears to selectively prevent RING1B self-ubiquitination, probably allowing more efficient E6-AP-mediated ubiquitination and subsequent degradation of RING1B. By binding to the RING domain of RING1B, ARF disrupts RING1B homodimerization, providing a potential mechanism for its effect on RING1B self-ubiquitination.
Collapse
Affiliation(s)
- Prim de Bie
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | | |
Collapse
|
27
|
Aguado-Llera D, Doménech R, Marenchino M, Vidal M, Neira JL. Non-canonical residues of the marginally stable monomeric ubiquitin conjugase from goldfish are involved in binding to the C terminus of Ring 1B. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:991-1001. [PMID: 22609416 DOI: 10.1016/j.bbapap.2012.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
E2 ubiquitin conjugases are ~20kDa enzymes involved in ubiquitination processes in eukaryotes. The E2s are responsible for the transference of ubiquitin (Ub) to E3 enzymes, which finally transfer Ub to diverse target proteins, labelling them for degradation, localization and regulation. Although their functions are relatively well-characterized, their conformational stabilities are poorly known. In this work, we have used, as a model for our biophysical and binding studies, the E2-C from Carassius auratus (goldfish), a homologue of the human ubiquitin conjugase UbcH10. E2-C(ca) was a monomeric protein with an elongated shape; moreover, the protein was only marginally stable within a narrow pH range (from 6.0 to 8.0). We also explored the binding of E2-C(ca) towards non-canonical E3 ligases. Binding of E2-C(ca) to the C terminus of murine Ring 1B (C-Ring1B), which does not contain the RING finger of the whole Ring1B, occurred with an affinity of ~400nM, as shown by fluorescence and ITC. Furthermore, binding of E2-C(ca) to C-Ring1B did not occur at its canonical E2-loops, since residues M43 and F53, far away from those loops, were involved in binding. Thus, the C-Ring1B-interacting region of E2-C(ca) comprises the first β-strand and nearby residues.
Collapse
Affiliation(s)
- David Aguado-Llera
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain
| | | | | | | | | |
Collapse
|
28
|
Yang K, Moldovan GL, Vinciguerra P, Murai J, Takeda S, D'Andrea AD. Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev 2011; 25:1847-58. [PMID: 21896657 DOI: 10.1101/gad.17020911] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The USP1/UAF1 complex deubiquitinates the Fanconi anemia protein FANCD2, thereby promoting homologous recombination and DNA cross-link repair. How USP1/UAF1 is targeted to the FANCD2/FANCI heterodimer has remained unknown. Here we show that UAF1 contains a tandem repeat of SUMO-like domains in its C terminus (SLD1 and SLD2). SLD2 binds directly to a SUMO-like domain-interacting motif (SIM) on FANCI. Deletion of the SLD2 sequence of UAF1 or mutation of the SIM on FANCI disrupts UAF1/FANCI binding and inhibits FANCD2 deubiquitination and DNA repair. The USP1/UAF1 complex also deubiquitinates PCNA-Ub, and deubiquitination requires the PCNA-binding protein hELG1. The SLD2 sequence of UAF1 binds to a SIM on hELG1, thus targeting the USP1/UAF1 complex to its PCNA-Ub substrate. We propose that the regulated targeting of USP1/UAF1 to its DNA repair substrates, FANCD2-Ub and PCNA-Ub, by SLD-SIM interactions coordinates homologous recombination and translesion DNA synthesis.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
INTRODUCTION The revolution of epigenetics has revitalized cancer research, shifting focus away from somatic mutation toward a more holistic perspective involving the dynamic states of chromatin. Disruption of chromatin organization can directly and indirectly precipitate genomic instability and transformation. DISCUSSION One group of epigenetic mediators, the Polycomb group (PcG) proteins, establishes heritable gene repression through methylation of histone tails. Although classically considered regulators of development and cellular differentiation, PcG proteins engage in a variety of neoplastic processes, including cellular proliferation and invasion. Due to their multifaceted potential, PcG proteins rest at the intersection of transcriptional memory and malignancy. Expression levels of PcG proteins hold enormous diagnostic and prognostic value in breast, prostate, and more recently, gastrointestinal cancers. CONCLUSION In this review, we briefly summarize the function of PcG proteins and report the latest developments in understanding their role in pancreatic cancer.
Collapse
|
30
|
Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 2011; 50:5566-82. [PMID: 21619050 PMCID: PMC3127263 DOI: 10.1021/bi200642e] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
P16(INK4A) (also known as P16 and MTS1), a protein consisting exclusively of four ankyrin repeats, is recognized as a tumor suppressor mainly because of the prevalence of genetic inactivation of the p16(INK4A) (or CDKN2A) gene in virtually all types of human cancers. However, it has also been shown that an elevated level of expression (upregulation) of P16 is involved in cellular senescence, aging, and cancer progression, indicating that the regulation of P16 is critical for its function. Here, we discuss the regulatory mechanisms of P16 function at the DNA level, the transcription level, and the posttranscriptional level, as well as their implications for the structure-function relationship of P16 and for human cancers.
Collapse
Affiliation(s)
- Junan Li
- Division of Environmental Health Sciences, College of Public Health, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
31
|
Lo SM, Francis NJ. Inhibition of chromatin remodeling by polycomb group protein posterior sex combs is mechanistically distinct from nucleosome binding. Biochemistry 2011; 49:9438-48. [PMID: 20873869 DOI: 10.1021/bi100532a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycomb Group (PcG) proteins are essential regulators of development that maintain gene silencing in Drosophila and mammals through alterations of chromatin structure. One key PcG protein, Posterior Sex Combs (PSC), is part of at least two complexes: Polycomb Repressive Complex 1 (PRC1) and dRING-Associated Factors (dRAF). PRC1-class complexes compact chromatin and inhibit chromatin remodeling, while dRAF has E3 ligase activity for ubiquitylation of histone H2A; activities of both complexes can inhibit transcription. The noncovalent effects of PRC1-class complexes on chromatin can be recapitulated by PSC alone, and the region of PSC required for these activities is essential for PSC function in vivo. To understand how PSC interacts with chromatin to exert its repressive effects, we compared the ability of PSC to bind to and inhibit remodeling of various nucleosomal templates and determined which regions of PSC are required for mononucleosome binding and inhibition of chromatin remodeling. We find that PSC binds mononucleosome templates but inhibits their remodeling poorly. Addition of linker DNA to mononucleosomes allows their remodeling to be inhibited, although higher concentrations of PSC are required than for inhibition of multinucleosome templates. The C-terminal region of PSC (amino acids 456−1603) is important for inhibition of chromatin remodeling, and we identified amino acids 456−909 as being sufficient for stable nucleosome binding but not for inhibition of chromatin remodeling. Our data suggest distinct mechanistic steps between nucleosome binding and inhibition of chromatin remodeling.
Collapse
Affiliation(s)
- Stanley M Lo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
32
|
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 2011; 50:1966-80. [PMID: 21288002 DOI: 10.1021/bi101885m] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as methylated histone lysine binders and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids.
Collapse
Affiliation(s)
- Kyoko L Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1677, New York, New York 10065, United States
| | | |
Collapse
|
33
|
Demeler B, Brookes E, Wang R, Schirf V, Kim CA. Characterization of reversible associations by sedimentation velocity with UltraScan. Macromol Biosci 2010; 10:775-82. [PMID: 20486142 DOI: 10.1002/mabi.200900481] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We compare here the utility of sedimentation velocity (SV) to sedimentation equilibrium (SE) analysis for the characterization of reversible systems. Genetic algorithm optimization in UltraScan is used to optimize the model and to obtain solution properties of all components present in the system. We apply our method to synthetic and experimental data, and suggest limits for the accessible kinetic range. We conclude that equilibrium constants obtained from SV and SE analysis are equivalent, but that SV experiments provide better confidence for the K(d), can better account for the presence of contaminants and provide additional information including rate constants and shape parameters.
Collapse
Affiliation(s)
- Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | | | | | |
Collapse
|
34
|
Wang R, Taylor AB, Leal BZ, Chadwell LV, Ilangovan U, Robinson AK, Schirf V, Hart PJ, Lafer EM, Demeler B, Hinck AP, McEwen DG, Kim CA. Polycomb group targeting through different binding partners of RING1B C-terminal domain. Structure 2010; 18:966-75. [PMID: 20696397 DOI: 10.1016/j.str.2010.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/21/2010] [Accepted: 04/25/2010] [Indexed: 12/31/2022]
Abstract
RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure.
Collapse
Affiliation(s)
- Renjing Wang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, MSC 7760, 7703 Floyd Curl Drive, San Antonio, TX 78229-3990, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Regulation of the Polycomb protein RING1B ubiquitination by USP7. Biochem Biophys Res Commun 2010; 400:389-95. [DOI: 10.1016/j.bbrc.2010.08.082] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 11/21/2022]
|
36
|
Winget JM, Mayor T. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol Cell 2010; 38:627-35. [PMID: 20541996 DOI: 10.1016/j.molcel.2010.05.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/26/2010] [Accepted: 05/04/2010] [Indexed: 01/11/2023]
Abstract
Ubiquitin is attached to a large number of proteins and gives rise to signaling events that modulate many cellular functions. These signals are often based on the recognition of polyubiquitin chains, which are produced in a variety of lengths and linkage patterns. In addition, proteins that are similar to ubiquitin in structure and function are often recognized by an overlapping set of partners. Research over the past several years has expanded our understanding of how ubiquitin and ubiquitin-like proteins are recognized. Most interactions occur at a few distinct surface areas; however, individual binding partners have specific, unique contacts that impart specificity. In this review, we summarize available information to facilitate comparisons across the ubiquitin-like family.
Collapse
Affiliation(s)
- Jason M Winget
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|