1
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Guo X, Huang X, Chen MJ. Reversible phosphorylation of the 26S proteasome. Protein Cell 2017; 8:255-272. [PMID: 28258412 PMCID: PMC5359188 DOI: 10.1007/s13238-017-0382-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/26/2017] [Indexed: 01/09/2023] Open
Abstract
The 26S proteasome at the center of the ubiquitin-proteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.
Collapse
Affiliation(s)
- Xing Guo
- The Life Sciences Institute of Zhejiang University, Hangzhou, 310058, China.
| | - Xiuliang Huang
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mark J Chen
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| |
Collapse
|
3
|
Cui Z, Scruggs SB, Gilda JE, Ping P, Gomes AV. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 2014; 71:32-42. [PMID: 24140722 PMCID: PMC3990655 DOI: 10.1016/j.yjmcc.2013.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/21/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major intracellular degradation system, and its proper function is critical to the health and function of cardiac cells. Alterations in cardiac proteasomes have been linked to several pathological phenotypes, including cardiomyopathies, ischemia-reperfusion injury, heart failure, and hypertrophy. Defects in proteasome-dependent cellular protein homeostasis can be causal for the initiation and progression of certain cardiovascular diseases. Emerging evidence suggests that the UPS can specifically target proteins that govern pathological signaling pathways for degradation, thus altering downstream effectors and disease outcomes. Alterations in UPS-substrate interactions in disease occur, in part, due to direct modifications of 19S, 11S or 20S proteasome subunits. Post-translational modifications (PTMs) are one facet of this proteasomal regulation, with over 400 known phosphorylation sites, over 500 ubiquitination sites and 83 internal lysine acetylation sites, as well as multiple sites for caspase cleavage, glycosylation (such as O-GlcNAc modification), methylation, nitrosylation, oxidation, and SUMOylation. Changes in cardiac proteasome PTMs, which occur in ischemia and cardiomyopathies, are associated with changes in proteasome activity and proteasome assembly; however several features of this regulation remain to be explored. In this review, we focus on how some of the less common PTMs affect proteasome function and alter cellular protein homeostasis. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Ziyou Cui
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Sarah B Scruggs
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Peipei Ping
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Scruggs SB, Zong NC, Wang D, Stefani E, Ping P. Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics. Am J Physiol Heart Circ Physiol 2012; 303:H9-18. [PMID: 22523251 PMCID: PMC3404648 DOI: 10.1152/ajpheart.00189.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/13/2012] [Indexed: 01/07/2023]
Abstract
Proteasomes are ubiquitously expressed multicatalytic complexes that serve as key regulators of protein homeostasis. There are several lines of evidence indicating that proteasomes exist in heterogeneous subpopulations in cardiac muscle, differentiated, in part, by post-translational modifications (PTMs). PTMs regulate numerous facets of proteasome function, including catalytic activities, complex assembly, interactions with associating partners, subcellular localization, substrate preference, and complex turnover. Classical technologies used to identify PTMs on proteasomes have lacked the ability to determine site specificity, quantify stoichiometry, and perform large-scale, multi-PTM analysis. Recent advancements in proteomic technologies have largely overcome these limitations. We present here a discussion on the importance of PTMs in modulating proteasome function in cardiac physiology and pathophysiology, followed by the presentation of a state-of-the-art proteomic workflow for identifying and quantifying PTMs of cardiac proteasomes.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Division of Cardiology, Department of Physiology, University of California, Los Angeles, USA
| | | | | | | | | |
Collapse
|
5
|
Zong C, Young GW, Wang Y, Lu H, Deng N, Drews O, Ping P. Two-dimensional electrophoresis-based characterization of post-translational modifications of mammalian 20S proteasome complexes. Proteomics 2008; 8:5025-37. [PMID: 19003867 PMCID: PMC2674022 DOI: 10.1002/pmic.200800387] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Indexed: 01/03/2023]
Abstract
PTMs serve as key regulatory mechanisms for 20S proteasome functions. Alterations in 20S PTMs have been previously observed with changes in modified protein degradation patterns and altered cellular phenotypes. Despite decades of investigation, our knowledge pertaining to the various PTMs of 20S complexes and their biological significance remain limited. In this investigation, we show that 2-DE offers an analytical tool with high resolution and reproducibility. Accordingly, it has been applied for the characterization of PTMs including glycosylation, phosphorylation, oxidation, and nitrosylation. The PTMs of murine cardiac 20S proteasomes and their associating proteins were examined. Our 2-DE analyses displayed over 25 spots for the 20S complexes (17 subunits), indicating multiply modified subunits of cardiac proteasomes. The identification of specific PTM sites subsequent to 2-DE was supported by MS. These PTMs included phosphorylation and oxidation. Most of the PTMs occurred in low stoichiometry and required enrichment to enhance the detection sensitivity. In conclusion, our studies support 2-DE as a central tool in the analyses of 20S proteasome PTMs. The approaches utilized in this investigation demonstrate their application in mapping the PTMs of the 20S proteasomes in cardiac tissue, which are applicable to other samples and biological conditions.
Collapse
Affiliation(s)
| | | | - Yueju Wang
- Departments of Physiology and Medicine, University of California at Los Angeles, UCLA School of Medicine, Los Angeles, California 90095
| | - Haojie Lu
- Departments of Physiology and Medicine, University of California at Los Angeles, UCLA School of Medicine, Los Angeles, California 90095
| | - Ning Deng
- Departments of Physiology and Medicine, University of California at Los Angeles, UCLA School of Medicine, Los Angeles, California 90095
| | - Oliver Drews
- Departments of Physiology and Medicine, University of California at Los Angeles, UCLA School of Medicine, Los Angeles, California 90095
| | - Peipei Ping
- Departments of Physiology and Medicine, University of California at Los Angeles, UCLA School of Medicine, Los Angeles, California 90095
| |
Collapse
|
6
|
Lu H, Zong C, Wang Y, Young GW, Deng N, Souda P, Li X, Whitelegge J, Drews O, Yang PY, Ping P. Revealing the dynamics of the 20 S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach. Mol Cell Proteomics 2008; 7:2073-89. [PMID: 18579562 DOI: 10.1074/mcp.m800064-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The 20 S proteasomes play a critical role in intracellular homeostasis and stress response. Their function is tuned by covalent modifications, such as phosphorylation. In this study, we performed a comprehensive characterization of the phosphoproteome for the 20 S proteasome complexes in both the murine heart and liver. A platform combining parallel approaches in differential sample fractionation (SDS-PAGE, IEF, and two-dimensional electrophoresis), enzymatic digestion (trypsin and chymotrypsin), phosphopeptide enrichment (TiO(2)), and peptide fragmentation (CID and electron transfer dissociation (ETD)) has proven to be essential for identifying low abundance phosphopeptides. As a result, a total of 52 phosphorylation identifications were made in mammalian tissues; 44 of them were novel. These identifications include single (serine, threonine, and tyrosine) and dual phosphorylation peptides. 34 phosphopeptides were identified by CID; 10 phosphopeptides, including a key modification on the catalytically essential beta5 subunit, were identified only by ETD; eight phosphopeptides were shared identifications by both CID and ETD. Besides the commonly shared phosphorylation sites, unique sites were detected in the murine heart and liver, documenting variances in phosphorylation between tissues within the proteasome populations. Furthermore the biological significance of these 20 S phosphoproteomes was evaluated. The role of cAMP-dependent protein kinase A (PKA) to modulate these phosphoproteomes was examined. Using a proteomics approach, many of the cardiac and hepatic 20 S subunits were found to be substrate targets of PKA. Incubation of the intact 20 S proteasome complexes with active PKA enhanced phosphorylation in both existing PKA phosphorylation sites as well as novel sites in these 20 S subunits. Furthermore treatment with active PKA significantly elevated all three peptidase activities (beta1 caspase-like, beta2 trypsin-like, and beta5 chymotrypsin-like), demonstrating a functional role of PKA in governing these 20 S phosphoproteomes.
Collapse
Affiliation(s)
- Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 200032 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jagus R, Beckler GS. Overview of eukaryotic in vitro translation and expression systems. ACTA ACUST UNITED AC 2008; Chapter 11:Unit 11.1. [PMID: 18228417 DOI: 10.1002/0471143030.cb1101s00] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to investigate cellular processes in vitro permits detailed analysis of the process and its molecular components. Eukaryotic translation and expression is one system that has been well studied. This overview describes the development of in vitro systems, including such approaches as continuous-flow systems, coupled transcription/translation, and the incorporation of non-natural amino acids. It also discusses molecular and genetic studies to probe translation, including post-translational fate of the synthesized proteins.
Collapse
Affiliation(s)
- Rosemary Jagus
- Center of Marine and Biotechnology and Greenebaum Cancer Center, Baltimore, Maryland, USA
| | | |
Collapse
|
8
|
Abstract
The ubiquitin proteasome system (UPS) represents a major pathway for intracellular protein degradation. Proteasome dependent protein quality control participates in cell cycle, immune response and apoptosis. Therefore, the UPS is in focus of therapeutic investigations and the development of pharmaceutical agents. Detailed analyses on proteasome structure and function are the foundation for drug development and clinical studies. Proteomic approaches contributed significantly to our current knowledge in proteasome research. In particular, 2-DE has been essential in facilitating the development of current models on molecular composition and assembly of proteasome complexes. Furthermore, developments in MS enabled identification of UPS proteins and their PTMs at high accuracy and high-throughput. First results on global characterization of the UPS are also available. Although the UPS has been intensively investigated within the last two decades, its functional significance and contribution to the regulation of cell and tissue phenotypes remain to be explored. This review recapitulates a variety of applied proteomic approaches in proteasome exploration, and presents an overview of current technologies and their potential in driving further investigations.
Collapse
Affiliation(s)
- Oliver Drews
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
9
|
Humbard MA, Stevens SM, Maupin-Furlow JA. Posttranslational modification of the 20S proteasomal proteins of the archaeon Haloferax volcanii. J Bacteriol 2006; 188:7521-30. [PMID: 16950923 PMCID: PMC1636277 DOI: 10.1128/jb.00943-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
20S proteasomes are large, multicatalytic proteases that play an important role in intracellular protein degradation. The barrel-like architecture of 20S proteasomes, formed by the stacking of four heptameric protein rings, is highly conserved from archaea to eukaryotes. The outer two rings are composed of alpha-type subunits, and the inner two rings are composed of beta-type subunits. The halophilic archaeon Haloferax volcanii synthesizes two different alpha-type proteins, alpha1 and alpha2, and one beta-type protein that assemble into at least two 20S proteasome subtypes. In this study, we demonstrate that all three of these 20S proteasomal proteins (alpha1, alpha2, and beta) are modified either post- or cotranslationally. Using electrospray ionization quadrupole time-of-flight mass spectrometry, a phosphorylation site of the beta subunit was identified at Ser129 of the deduced protein sequence. In addition, alpha1 and alpha2 contained N-terminal acetyl groups. These findings represent the first evidence of acetylation and phosphorylation of archaeal proteasomes and are one of the limited examples of post- and/or cotranslational modification of proteins in this unusual group of organisms.
Collapse
Affiliation(s)
- Matthew A Humbard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611-0700, USA
| | | | | |
Collapse
|
10
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
11
|
Park KC, Choi EJ, Min SW, Chung SS, Kim H, Suzuki T, Tanaka K, Chung CH. Tissue-specificity, functional characterization and subcellular localization of a rat ubiquitin-specific processing protease, UBP109, whose mRNA expression is developmentally regulated. Biochem J 2000; 349:443-53. [PMID: 10880343 PMCID: PMC1221167 DOI: 10.1042/0264-6021:3490443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cDNA encoding an ubiquitin-specific processing protease, UBP109, in rat skeletal muscle was cloned and its product was characterized. Northern analysis revealed that UBP109 mRNA is highly expressed in testis and spleen, compared with other tissues. Furthermore, in situ hybridization showed that the level of UBP109 mRNA in liver, spinal cord and brain dramatically changed during embryonic development, indicating that the expression of UBP109 mRNA is developmentally regulated. UBP109 was expressed in Escherichia coli and purified to apparent homogeneity using a (125)I-labelled ubiquitin-peptide fusion as a substrate. The purified enzyme cleaved at the C-terminus of the ubiquitin moiety in natural and engineered fusions irrespective of their sizes. UBP109 also released free ubiquitin from poly-His-tagged penta-ubiquitin. Moreover, it released free ubiquitin from poly-ubiquitinated protein conjugates of rabbit reticulocytes. In addition, UBP109 localized to both the cytoplasm and the nucleus and, among three putative nuclear localization sequences, only the one located near the C-terminus is responsible for nuclear localization. These results suggest that UBP109 may play an important role in generation of free ubiquitin from its precursors and its recycling from poly-ubiquitinated protein conjugates, and hence in regulation of ubiquitin-mediated cellular processes, particularly related to embryonic development.
Collapse
Affiliation(s)
- K C Park
- Division of Biological Sciences and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Covi JA, Belote JM, Mykles DL. Subunit compositions and catalytic properties of proteasomes from developmental temperature- sensitive mutants of Drosophila melanogaster. Arch Biochem Biophys 1999; 368:85-97. [PMID: 10415115 DOI: 10.1006/abbi.1999.1294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two dominant temperature-sensitive (DTS) Drosophila mutants are missense mutations of proteasome genes encoding beta-type subunits beta6/C5 (DTS5) and beta2/Z (DTS7). At nonpermissive temperature (29 degrees C), heterozygotes (DTS5/+ and DTS7/+) develop normally until metamorphosis; pupae fail to mature and die before eclosion. Proteasomes were purified from wild-type (WT) and heterozygous adult flies raised at permissive temperature (25 degrees C). Two-dimensional gel electrophoresis separated at least 28 proteins, 13 of which were identified with monospecific antibodies to alpha6/C2 (five species), alpha2/C3 (three species), alpha7/C8 (three species), alpha5/zeta, and beta1/Y subunits. Both quantitative and qualitative differences were observed between WT and DTS/+ proteasomes, with DTS5/+ deviating more from WT than DTS7/+ proteasomes. In DTS5/+ there was a shift to more acidic species of C2 and C3 and a shift to less acidic species of 32-kDa subunits (#3-#7) recognized by an anti-alpha subunit monoclonal antibody (MCP222) and were losses of two 32-kDa subunits (#2 and #3), decreases in Y (25 kDa; 2-fold) and 31-kDa (#9; 2-fold) subunits, and increases in 52-kDa (#1; 1.9-fold) and 24-kDa (#13; 2.3-fold) subunits. In DTS7/+ there was a less pronounced shift to acidic species of C3 and no pI shift in C2 species and subunits #3-#7 and were decreases in #9 (2.5-fold) and #14 (3-fold) and a loss of #2. The three C8 species were similar between WT, DTS5/+, and DTS7/+ proteasomes. Qualitatively, the most dramatic difference was the appearance of a new 24-kDa subunit (#16) in DTS/+ preparations, with about a 14-fold greater amount of #16 in DTS7/+ than in DTS5/+ proteasomes. Catalytically, WT and DTS/+ proteasomes had similar peptidase activities, although the DTS/+ proteasomes were slightly more sensitive to SDS and elevated temperatures in vitro. The incorporation of DTS subunits apparently altered proteasome assembly and/or processing at permissive temperature with little effect on catalytic activities. These data suggest that at nonpermissive temperature, assembly/processing is more severely affected, producing DTS-containing complexes that lack functions essential for cellular proliferation and differentiation at metamorphosis.
Collapse
Affiliation(s)
- J A Covi
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | | | | |
Collapse
|
13
|
Crone TM, Schalles SL, Benedict CM, Pan W, Ren L, Loy SE, Isom H, Clawson GA. Growth inhibition by a triple ribozyme targeted to repetitive B2 transcripts. Hepatology 1999; 29:1114-23. [PMID: 10094955 DOI: 10.1002/hep.510290449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The B2 family represents a group of short repetitive sequences that are found throughout the rodent genome and are analogous to the human Alu sequences. Certain B2 subfamilies are transcribed by RNA polymerase III (pol III), and this transcription is in part controlled by the retinoblastoma protein. In addition to their putative role in retrotranspositional events, these actively transcribed B2 RNAs show a predicted highly stable secondary structure. Although B2 transcripts are normally confined to the nucleus, they demonstrate altered compartmentation after carcinogen treatment, in cancers, and in immortalized and/or transformed cell lines, the significance of which is unclear. Because modulation of B2 transcripts did not seem feasible with an antisense approach, we designed a triple ribozyme (TRz) construct to down-regulate B2 transcripts. The B2-targeted TRz undergoes efficient self-cleavage, resulting in liberation of the internal hammerhead Rz, which we targeted to a single-stranded region of the consensus B2 sequence. The liberated internal targeted Rz was 20 times more active than the corresponding double-G mutant construct that could not undergo self-cleavage, and 5 times more active than the same Rz flanked by nonspecific vector sequences. The B2-targeted TRz was used to develop stable transfectant clones from an SV40-immortalized hepatocyte cell line. These transfectant clones all showed variably reduced growth rates, accompanied by significant reductions in both cytoplasmic and nuclear B2 RNA levels: linear regression analyses showed that their growth rates were directly related to residual cytoplasmic B2 levels. Reverse-transcription polymerase chain reaction (RT-PCR) analyses documented efficient self-liberation of the internal targeted Rz in vivo, and showed that the relative cytoplasmic expression levels generally paralleled the magnitude of the decrease in B2 transcripts. The RT-PCR analyses further demonstrated that up to 20% of the Rz was located in the nucleus, which presumably reflects competition between autocatalytic processing and nucleocytoplasmic transport of the initial TRz transcript.
Collapse
Affiliation(s)
- T M Crone
- Departments of Pathology, The Cell and Molecular Biology Program, The Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
15
|
Abstract
Proteasomes are large multicatalytic proteinase complexes which are responsible for the selective degradation of cellular proteins and the production of peptides for antigen presentation. Proteasomes are localized both in the nucleus and in the cytoplasm, where some are associated with the endoplasmic reticulum membrane. Recent studies have shown differences in the localization of proteasome subpopulations, demonstrated the functional importance of endoplasmic reticulum-associated proteasomes and investigated the role of putative nuclear localization signals and tyrosine phosphorylation on proteasome transport into the nucleus.
Collapse
Affiliation(s)
- A J Rivett
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK.
| |
Collapse
|
16
|
Affiliation(s)
- D L Mykles
- Department of Biology, Cell and Molecular Biology Program, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
17
|
Abstract
Proteasomes are cylindrical particles made up of a stack of four heptameric rings. In animal cells the outer rings are made up of 7 different types of alpha subunits and the inner rings are composed of 7 out of 10 possible different beta subunits. Regulatory complexes can bind to the ends of the cylinder. We have investigated aspects of the assembly, activity and subunit composition of core proteasome particles and 26S proteasomes, the localization of proteasome subpopulations, and the possible role of phosphorylation in determining proteasome localization, activities and association with regulatory components.
Collapse
Affiliation(s)
- A J Rivett
- Department of Biochemistry, University of Bristol, School of Medical Sciences, UK
| | | | | | | |
Collapse
|