1
|
Wafer LN, Tzul FO, Pandharipande PP, McCallum SA, Makhatadze GI. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin. Protein Sci 2014; 23:1247-61. [PMID: 24947426 DOI: 10.1002/pro.2506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 11/07/2022]
Abstract
Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term = 2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins.
Collapse
Affiliation(s)
- Lucas N Wafer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | | | | | | | | |
Collapse
|
2
|
Nunomura W, Jinbo Y, Isozumi N, Ohki S, Izumi Y, Matsushima N, Takakuwa Y. Novel Mechanism of Regulation of Protein 4.1G Binding Properties Through Ca2+/Calmodulin-Mediated Structural Changes. Cell Biochem Biophys 2013; 66:545-58. [DOI: 10.1007/s12013-012-9502-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Dunlap TB, Kirk JM, Pena EA, Yoder MS, Creamer TP. Thermodynamics of binding by calmodulin correlates with target peptide α-helical propensity. Proteins 2012. [PMID: 23180611 DOI: 10.1002/prot.24215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work, we have examined contributions to the thermodynamics of calmodulin (CaM) binding from the intrinsic propensity for target peptides to adopt an α-helical conformation. CaM target sequences are thought to commonly reside in disordered regions within proteins. Using the ability of TFE to induce α-helical structure as a proxy, the six peptides studied range from having almost no propensity to adopt α-helical structure through to a very high propensity. This despite all six peptides having similar CaM-binding affinities. Our data indicate there is some correlation between the deduced propensities and the thermodynamics of CaM binding. This finding implies that molecular recognition features, such as CaM target sequences, may possess a broad range of propensities to adopt local structure. Given that these peptides bind to CaM with similar affinities, the data suggest that having a higher propensity to adopt α-helical structure does not necessarily result in tighter binding, and that the mechanism of CaM binding is very dependent on the nature of the substrate sequence.
Collapse
Affiliation(s)
- Tori B Dunlap
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | |
Collapse
|
4
|
Gayen A, Goswami SK, Mukhopadhyay C. NMR evidence of GM1-induced conformational change of Substance P using isotropic bicelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:127-39. [DOI: 10.1016/j.bbamem.2010.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/24/2010] [Accepted: 09/22/2010] [Indexed: 01/30/2023]
|
5
|
Kleerekoper QK, Putkey JA. PEP-19, an intrinsically disordered regulator of calmodulin signaling. J Biol Chem 2009; 284:7455-64. [PMID: 19106096 PMCID: PMC2658041 DOI: 10.1074/jbc.m808067200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/18/2008] [Indexed: 11/06/2022] Open
Abstract
PEP-19 is a small calmodulin (CaM)-binding protein that greatly increases the rates of association and dissociation of Ca(2+) from the C-domain of CaM, an effect that is mediated by an acidic/IQ sequence in PEP-19. We show here using NMR that PEP-19 is an intrinsically disordered protein, but with residual structure localized to its acidic/IQ motif. We also show that the k(on) and k(off) rates for binding PEP-19 to apo-CaM are at least 50-fold slower than for binding to Ca(2+)-CaM. These data indicate that intrinsic disorder confers plasticity that allows PEP-19 to bind to either apo- or Ca(2+)-CaM via different structural modes, and that complex formation may be facilitated by conformational selection of residual structure in the acidic/IQ sequence.
Collapse
Affiliation(s)
- Quinn K Kleerekoper
- Department of Biochemistry and Molecular Biology and the Structural Biology Center, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
6
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
7
|
Newman RA, Van Scyoc WS, Sorensen BR, Jaren OR, Shea MA. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II. Proteins 2008; 71:1792-812. [DOI: 10.1002/prot.21861] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Galeva NA, Esch SW, Williams TD, Markille LM, Squier TC. Rapid method for quantifying the extent of methionine oxidation in intact calmodulin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1470-1480. [PMID: 16023363 DOI: 10.1016/j.jasms.2005.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 04/12/2005] [Accepted: 04/19/2005] [Indexed: 05/03/2023]
Abstract
We have developed a method for rapidly quantifying the extent to which the functionally important Met144 and Met145 residues near the C-terminus of calmodulin (CaM) are converted to the corresponding sulfoxides, Met(O). The method utilizes a whole protein collision-induced dissociation (CID) approach on an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer. Using standards of CaM oxidized by hydrogen peroxide (H2O2) or peroxynitrite (ONOO-), we demonstrated that CID fragmentation of the protein ions resulted in a series of C-terminal singly charged y1-y15 ions. Fragments larger than y4 exhibited mass shifts of +16 or +32 Da, corresponding to oxidation of one or two methionines, respectively. To assess the extent of oxidative modification for Met144 and Met145 to Met(O), we averaged the ratio of intensities for yn, yn+16, and yn+32 ions, where n=6-9. By alternating MS and CID scans at low and high collision energies, this technique allowed us to rapidly determine both the distribution of intact CaM oxiforms and the extent of oxidative modification in the C-terminal region of the protein in a single run. We have applied the method to studies of the repair of fully oxidized CaM by methionine sulfoxide reductases (MsrA and MsrB), which normally function in concert to reduce the S and R stereoisomers of methionine sulfoxide. We found that repair of Met(O)144 and Met(O)145 did not go to completion, but was more efficient than average Met repair. Absence of complete repair is consistent with previous studies showing that accumulation of methionine sulfoxide in CaM can occur during aging (Gao, J.; Yin, D.; Yao, Y.; Williams, T. D.; Squier, T. C. Biochemistry1998, 37, 9536-9548).
Collapse
Affiliation(s)
- Nadezhda A Galeva
- Mass Spectrometry Laboratory, University of Kansas, 2010 Malott Hall, 1251 Wescoe Hall Drive, 66045-7582, Lawrence, KS, USA
| | - S Wynn Esch
- Mass Spectrometry Laboratory, University of Kansas, 2010 Malott Hall, 1251 Wescoe Hall Drive, 66045-7582, Lawrence, KS, USA
| | - Todd D Williams
- Mass Spectrometry Laboratory, University of Kansas, 2010 Malott Hall, 1251 Wescoe Hall Drive, 66045-7582, Lawrence, KS, USA.
| | | | - Thomas C Squier
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
9
|
Yamniuk AP, Vogel HJ. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol Biotechnol 2004; 27:33-57. [PMID: 15122046 DOI: 10.1385/mb:27:1:33] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The small bilobal calcium regulatory protein calmodulin (CaM) activates numerous target enzymes in response to transient changes in intracellular calcium concentrations. Binding of calcium to the two helix-loop-helix calcium-binding motifs in each of the globular domains induces conformational changes that expose a methionine-rich hydrophobic patch on the surface of each domain of the protein, which it uses to bind to peptide sequences in its target enzymes. Although these CaM-binding domains typically have little sequence identity, the positions of several bulky hydrophobic residues are often conserved, allowing for classification of CaM-binding domains into recognition motifs, such as the 1-14 and 1-10 motifs. For calcium-independent binding of CaM, a third motif known as the IQ motif is also common. Many CaM-peptide complexes have globular conformations, where CaM's central linker connecting the two domains unwinds, allowing the protein to wrap around a single predominantly alpha-helical target peptide sequence. However, novel structures have recently been reported where the conformation of CaM is highly dissimilar to these globular complexes, in some instances with less than a full compliment of bound calcium ions, as well as novel stoichiometries. Furthermore, many divergent CaM isoforms from yeast and plant species have been discovered with unique calcium-binding and enzymatic activation characteristics compared to the single CaM isoform found in mammals.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | | |
Collapse
|
10
|
Shepherd CM, van der Spoel D, Vogel HJ. Molecular dynamics simulations of peptides from the central domain of smooth muscle caldesmon. J Biomol Struct Dyn 2004; 21:555-66. [PMID: 14692799 DOI: 10.1080/07391102.2004.10506948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The central domain of smooth muscle caldesmon contains a highly charged region consisting of ten 13-residue repeats. Experimental evidence obtained from the intact protein and fragments thereof suggests that this entire region forms a single stretch of stable alpha-helix. We have carried out molecular dynamics simulations on peptides consisting of one, two and three repeats to examine the mechanism of alpha-helical stability of the central domain at the atomic level. All three peptides show high helical stability on the timescale of the MD simulations. Deviations from alpha-helical structure in all the simulations arise mainly from the formation of long stretches of pi-helix. Interconversion between alpha-helical and pi-helical conformations occurs through insertion of water molecules into alpha-helical hydrogen bonds and subsequent formation of reverse turns. The alpha-helical structure is stabilized by electrostatic interactions (salt bridges) between oppositely charged sidechains with i,i+4 spacings, while the pi-helix is stabilized by i,i+5 salt bridge interactions. Possible i,i+3 salt bridges are of minor importance. There is a strong preference for salt bridges with a Glu residue N-terminal to a basic sidechain as compared to the opposite orientation. In the double and triple repeat peptides, strong i,i+4 salt bridges exist between the last Glu residue of one repeat and the first Lys residue of the next. This demonstrates a relationship between the repetitive nature of the central domain sequence and its ability to form very long stretches of alpha-helical structure.
Collapse
Affiliation(s)
- Craig M Shepherd
- Department of Biological Sciences, Structural Biology Research Group, University of Calgary, 2500 University Dr NW, Calgary, Canada, T2N 1N4
| | | | | |
Collapse
|
11
|
Abstract
Dynamic light scattering (DLS) has been used to assess the influence of eleven different synthetic peptides, comprising the calmodulin (CaM)-binding domains of various CaM-binding proteins, on the structure of apo-CaM (calcium-free) and Ca(2+)-CaM. Peptides that bind CaM in a 1:1 and 2:1 peptide-to-protein ratio were studied, as were solutions of CaM bound simultaneously to two different peptides. DLS was also used to investigate the effect of Ca(2+) on the N- and C-terminal CaM fragments TR1C and TR2C, and to determine whether the two lobes of CaM interact in solution. The results obtained in this study were comparable to similar solution studies performed for some of these peptides using small-angle x-ray scattering. The addition of Ca(2+) to apo-CaM increased the hydrodynamic radius from 2.5 to 3.0 nm. The peptides studied induced a collapse of the elongated Ca(2+)-CaM structure to a more globular form, decreasing its hydrodynamic radius by an average of 25%. None of the peptides had an effect on the conformation of apo-CaM, indicating that either most of the peptides did not interact with apo-CaM, or if bound, they did not cause a large conformational change. The hydrodynamic radii of TR1C and TR2C CaM fragments were not significantly affected by the addition of Ca(2+). The addition of a target peptide and Ca(2+) to the two fragments of CaM, suggest that a globular complex is forming, as has been seen in nuclear magnetic resonance solution studies. This work demonstrates that dynamic light scattering is an inexpensive and efficient technique for assessing large-scale conformational changes that take place in calmodulin and related proteins upon binding of Ca(2+) ions and peptides, and provides a qualitative picture of how this occurs. This work also illustrates that DLS provides a rapid screening method for identifying new CaM targets.
Collapse
Affiliation(s)
- Andriyka L Papish
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
12
|
Notarianni G, Gusev N, Lafitte D, Hill TJ, Cooper HS, Derrick PJ, Marston SB. A novel Ca2+ binding protein associated with caldesmon in Ca2+-regulated smooth muscle thin filaments: evidence for a structurally altered form of calmodulin. J Muscle Res Cell Motil 2001; 21:537-49. [PMID: 11206132 DOI: 10.1023/a:1026589704750] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Smooth muscle thin filaments are made up of actin, tropomyosin, the inhibitory protein caldesmon and a Ca2+-binding protein. Thin filament activation of myosin MgATPase is Ca2+-regulated but thin filaments assembled from smooth muscle actin, tropomyosin and caldesmon plus brain or aorta calmodulin are not Ca2+-regulated at 25 degrees C/50 mM KCl. We isolated the Ca2+-binding protein (CaBP) from smooth muscle thin filaments by DEAE fast-flow chromatography in 6 M urea and phenyl sepharose chromatography using sheep aorta as our starting material. CaBP combines with smooth muscle actin, tropomyosin and caldesmon to reconstitute a normally regulated thin filament at 25 degrees C/50 mM KCl. It reverses caldesmon inhibition at pCa5 under conditions where CaM is largely inactive, it binds to caldesmon when complexed with actin and tropomyosin rather than displacing it and it binds to caldesmon independently of [Ca2+]. Amino acid sequencing, and electrospray mass spectrometry show the CaBP is identical to CaM. Structural probes indicate it is different: calmodulin increases caldesmon tryptophan fluorescence but CaBP does not. The distribution of charged species in electrospray mass spectrometry and nozzle skimmer fragmentation patterns are different indicating a less stable N-terminal lobe for CaBP. Brief heating abolishes these special properties of the CaBP. Mass spectrometry in aqueous buffer showed no evidence for the presence of any covalent or non-covalently bound adduct. The only remaining conclusion is that CaBP is calmodulin locked in a metastable altered state.
Collapse
Affiliation(s)
- G Notarianni
- Imperial College School of Medicine at National Heart and Lung Institute, London, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Gomes AV, Barnes JA, Vogel HJ. Spectroscopic characterization of the interaction between calmodulin-dependent protein kinase I and calmodulin. Arch Biochem Biophys 2000; 379:28-36. [PMID: 10864438 DOI: 10.1006/abbi.2000.1827] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calmodulin-dependent protein kinase I (CaM kinase I) is a member of the expanding class of protein kinases that are regulated by calmodulin (CaM). Its putative CaM-binding region is believed to occur within a 22-residue sequence (amino acids 299-320). This sequence was chemically synthesized and utilized for CaM interaction studies. Gel band shift assays and densitometry experiments with intact CaM kinase I and the CaM-binding domain peptide (CaMKIp) reveal that they bind in an analogous manner, giving rise to 1:1 complexes. Fluorescence analysis using dansyl-CaM showed that conformational changes in CaM on binding CaM kinase I or CaMKIp were nearly identical, suggesting that the peptide mimicked the CaM-binding ability of the intact protein. In the presence of CaM, the peptide displays an enhancement of its unique Trp fluorescence as well as a marked blue shift of the emission maximum, reflecting a transfer to a more rigid, less polar environment. Quenching studies, using acrylamide, confirmed that the Trp in the peptide on binding CaM is no longer freely exposed to solvent as is the case for the free peptide. Studies with a series of Met mutants of CaM showed that the Trp-containing N-terminal end of CaMKIp was bound to the C-terminal lobe of CaM. Near-UV CD spectra also indicate that the Trp of the peptide and Phe residues of the protein are involved in the binding. These results show that the CaM-binding domain of CaM kinase I binds to CaM in a manner analogous to that of myosin light chain kinase.
Collapse
Affiliation(s)
- A V Gomes
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | | | | |
Collapse
|
14
|
Krueger JK, Gallagher SC, Wang CA, Trewhella J. Calmodulin remains extended upon binding to smooth muscle caldesmon: a combined small-angle scattering and fourier transform infrared spectroscopy study. Biochemistry 2000; 39:3979-87. [PMID: 10747786 DOI: 10.1021/bi992638x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We show that calmodulin (CaM) has an extended conformation in its complexes with sequences from the smooth muscle thin filament protein caldesmon (CaD) by using small-angle X-ray and neutron scattering with contrast variation. The CaD sequences used in these experiments were a C-terminal fragment, 22kCaD, and a smaller peptide sequence within this fragment, MG56C. Each of these sequences contains the CaM-binding sites A and B previously shown to interact with the C- and N-terminal lobes of CaM, respectively [Wang et al. (1997) Biochemistry 36, 15026]. By modeling the scattering data, we show that the majority of the MG56C sequence binds to the N-terminal domain of CaM. FTIR data on CaM complexed with 22kCaD or with MG56C peptide show the 22kCaD sequence contains unordered, helix, and extended structures, and that the extended structures reside primarily in the MG56C portion of the sequence. There are small changes in secondary structure, involving approximately 12 residues, induced by CaM binding to CaD. These changes involve a net decrease in extended structures accompanied by an increase in alpha-helix, and they occur within the CaM and/or in the MG56C sequence.
Collapse
Affiliation(s)
- J K Krueger
- Bioscience Division, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | |
Collapse
|
15
|
Nunomura W, Takakuwa Y, Parra M, Conboy JG, Mohandas N. Ca(2+)-dependent and Ca(2+)-independent calmodulin binding sites in erythrocyte protein 4.1. Implications for regulation of protein 4.1 interactions with transmembrane proteins. J Biol Chem 2000; 275:6360-7. [PMID: 10692436 DOI: 10.1074/jbc.275.9.6360] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.
Collapse
Affiliation(s)
- W Nunomura
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | | | | | | | | |
Collapse
|
16
|
Foster DB, Shen LH, Kelly J, Thibault P, Van Eyk JE, Mak AS. Phosphorylation of caldesmon by p21-activated kinase. Implications for the Ca(2+) sensitivity of smooth muscle contraction. J Biol Chem 2000; 275:1959-65. [PMID: 10636898 DOI: 10.1074/jbc.275.3.1959] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously shown that p21-activated kinase, PAK, induces Ca(2+)-independent contraction of Triton-skinned smooth muscle with concomitant increase in phosphorylation of caldesmon and desmin but not myosin-regulatory light chain (Van Eyk, J. E., Arrell, D. K., Foster, D. B., Strauss, J. D., Heinonen, T. Y., Furmaniak-Kazmierczak, E., Cote, G. P., and Mak, A. S. (1998) J. Biol. Chem. 273, 23433-23439). In this study, we provide biochemical evidence implicating a role for PAK in Ca(2+)-independent contraction of smooth muscle via phosphorylation of caldesmon. Mass spectroscopy data show that stoichiometric phosphorylation occurs at Ser(657) and Ser(687) abutting the calmodulin-binding sites A and B of chicken gizzard caldesmon, respectively. Phosphorylation of Ser(657) and Ser(687) has an important functional impact on caldesmon. PAK-phosphorylation reduces binding of caldesmon to calmodulin by about 10-fold whereas binding of calmodulin to caldesmon partially inhibits PAK phosphorylation. Phosphorylated caldesmon displays a modest reduction in affinity for actin-tropomyosin but is significantly less effective in inhibiting actin-activated S1 ATPase activity in the presence of tropomyosin. We conclude that PAK-phosphorylation of caldesmon at the calmodulin-binding sites modulates caldesmon inhibition of actin-myosin ATPase activity and may, in concert with the actions of Rho-kinase, contribute to the regulation of Ca(2+) sensitivity of smooth muscle contraction.
Collapse
Affiliation(s)
- D B Foster
- Department of Biochemistry, Queen's University, Kingston Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
17
|
Weljie AM, Vogel HJ. Tryptophan fluorescence of calmodulin binding domain peptides interacting with calmodulin containing unnatural methionine analogues. PROTEIN ENGINEERING 2000; 13:59-66. [PMID: 10679531 DOI: 10.1093/protein/13.1.59] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The interactions between the abundant methionine residues of the calcium regulatory protein calmodulin (CaM) and several of its binding targets were probed using fluorescence spectroscopy. Tryptophan steady-state fluorescence from peptides encompassing the CaM-binding domains of the target proteins myosin light chain kinase (MLCK), cyclic nucleotide phosphodiesterase (PDE) and caldesmon site A and B (CaD A, CaD B), and the model peptide melittin showed Ca(2+)-dependent blue-shifts in their maximum emission wavelength when complexed with wild-type CaM. Blue-shifts were also observed for complexes in which the CaM methionine residues were replaced by selenomethionine, norleucine and ethionine, and when a quadruple methionine to leucine C-terminal mutant of CaM was studied. Quenching of the tryptophan fluorescence intensity was observed with selenomethionine, but not with norleucine or ethionine substituted protein. Fluorescence quenching studies with added potassium iodide (KI) demonstrate that the non-native proteins limit the solvent accessibility of the Trp in the MLCK peptide to levels close to that of the wild-type CaM-MLCK interaction. Our results show that the methionine residues from CaM are highly sensitive to the target peptide in question, confirming the importance of their role in binding interactions. In addition, we provide evidence that the nature of binding in the CaM-CaD B complex is unique compared with the other complexes studied, as the Trp residue of this peptide remains partially solvent exposed upon binding to CaM.
Collapse
Affiliation(s)
- A M Weljie
- Department of Biological Sciences, University of Calgary,2500 University Drive NW, Calgary, T2N 1N4, Canada
| | | |
Collapse
|
18
|
Yuan T, Ouyang H, Vogel HJ. Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide spin label and two-dimensional NMR study. J Biol Chem 1999; 274:8411-20. [PMID: 10085072 DOI: 10.1074/jbc.274.13.8411] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of calcium to calmodulin (CaM) causes a conformational change in this ubiquitous calcium regulatory protein that allows the activation of many target proteins. Met residues make up a large portion of its hydrophobic target binding surfaces. In this work, we have studied the surface exposure of the Met residues in the apo- and calcium-bound states of CaM in solution. Complexes of calcium-CaM with synthetic peptides derived from the CaM-binding domains of myosin light chain kinase, constitutive nitric-oxide synthase, and CaM-dependent protein kinase I were also studied. The surface exposure was measured by NMR by studying the effects of the soluble nitroxide spin label, 4-hydroxyl-2,2,6, 6-tetramethylpiperidinyl-1-oxy, on the line widths and relaxation rates of the Met methyl resonances in samples of biosynthetically 13C-methyl-Met-labeled CaM. The Met residues move from an almost completely buried state in apo-CaM to an essentially fully exposed state in Ca2+4-CaM. Binding of two Ca2+ to the C-terminal lobe of CaM causes full exposure of the C-terminal Met residues and a partial exposure of the N-terminal Met side chains. Binding of the three target peptides blocks the access of the nitroxide surface probe to nearly all Met residues, although the mode of binding is distinct for the three peptides studied. These data show that calcium binding to CaM controls the surface exposure of the Met residues, thereby providing the switch for target protein binding.
Collapse
Affiliation(s)
- T Yuan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
19
|
Yuan T, Vogel HJ. Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase. A novel calmodulin-peptide interaction motif. J Biol Chem 1998; 273:30328-35. [PMID: 9804795 DOI: 10.1074/jbc.273.46.30328] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acidic, bilobed protein calmodulin (CaM; molecular mass of 16.7 kDa) can activate some 40 distinct proteins in a calcium-dependent manner. The majority of the CaM-binding domain regions of the target proteins are basic and hydrophobic in nature, are devoid of multiple negatively charged residues, and have a propensity to form an alpha-helix. The CaM-binding domain in the C-terminal region of petunia glutamate decarboxylase (PGD) is atypical because it contains five negatively charged residues. Therefore, we chose to study the binding of calcium-CaM to a 26-residue synthetic peptide encompassing the C-terminal region of PGD. Gel band shift assays, fluorescence spectroscopy, and NMR titration studies showed that a single unique complex of calcium-CaM with two PGD peptides is formed. The formation of a 1:2 protein-peptide complex is unusual; normally, calcium-CaM forms 1:1 complexes with the majority of its target proteins. Circular dichroism spectroscopy showed that the bound PGD peptides have an alpha-helical structure. NMR studies of biosynthetically [methyl-13C]methionine-labeled CaM revealed that all the Met side chains in CaM are involved in the binding of the PGD peptides. Analysis of fluorescence spectra showed that the single Trp residue of the two peptides becomes bound to the N- and C-terminal lobes of CaM. These results predict that binding of calcium-CaM to PGD will give rise to dimerization of the protein, which may be necessary for activation. Possible models for the structure of the protein-peptide complex, such as a dimeric peptide structure, are discussed.
Collapse
Affiliation(s)
- T Yuan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
20
|
Huber PA, Levine BA, Copeland O, Marston SB, El-Mezgueldi M. Characterisation of the effects of mutation of the caldesmon sequence 691glu-trp-leu-thr-lys-thr696 to pro-gly-his-tyr-asn-asn on caldesmon-calmodulin interaction. FEBS Lett 1998; 423:93-7. [PMID: 9506848 DOI: 10.1016/s0014-5793(98)00071-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have investigated the functional properties of a mutant (Cg1) derived from the C-terminal 99 amino acids of chicken caldesmon, 658-756 (658C) where the sequence 691glu-trp-leu-thr-lys-thr696 is changed to pro-gly-his-tyr-asn-asn. Cg1 bound Ca2+-calmodulin with (1/7)th of the affinity as compared to 658C or whole caldesmon. NMR titrations indicate that the contacts of Ca2+-calmodulin with the Trp-722 region of the peptide are retained but that those at the mutated site are lost. Most importantly Ca2+-calmodulin is not able to reverse the Cg1-induced inhibition. We conclude that the interaction of calmodulin with this caldesmon sequence is crucial for the reversal of caldesmon inhibition of actin-tropomyosin activation of myosin ATPase. The results are interpreted in terms of multisite attachment of actin and Ca2+-calmodulin to overlapping sequences in caldesmon domain 4b.
Collapse
Affiliation(s)
- P A Huber
- Imperial College School of Medicine at the National Heart and Lung Institute, Cardiac Medicine, London, UK
| | | | | | | | | |
Collapse
|