1
|
Kowalczuk K, Mons PJ, Ulrich HF, Wegner VD, Brendel JC, Mosig AS, Schacher FH. Asymmetric Block Extension of Star-Shaped [PEG-SH] 4 - toward Poly(dehydroalanine)-Functionalized PEG Hydrogels for Catch and Release of Charged Guest Molecules. Macromol Biosci 2024; 24:e2300230. [PMID: 37572335 DOI: 10.1002/mabi.202300230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Indexed: 08/14/2023]
Abstract
With the incorporation of polyampholytic segments into soft matter, hydrogels can serve as a reservoir for a variety of charged molecules which can be caught and released upon changes in pH value. Asymmetric block extension of one arm for star-shaped poly(ethylene glycol) [PEG26 -SH]4 using short segments of polyampholytic poly(dehydroalanine) (PDha) is herein demonstrated while maintaining the functional thiol end groups for network formation. For subsequent hydrogel synthesis with up to 10 wt.% PDha a straightforward and biocompatible photoinitiated thiol-ene click reaction is exploited. The investigation of the swelling properties of the hydrogel revealed responsive behavior toward ionic strength and variations in pH value. Moreover, the reversible adsorption of the model dyes methylene blue (MB) and acid orange 7 (AO7) is investigated by UV-vis measurements and the procedure can be successfully transferred to the adsorption of the adhesion peptide RGDS resulting in an uptake of 1.5 wt% RGDS with regard to the dry weight of the hydrogel.
Collapse
Affiliation(s)
- Kathrin Kowalczuk
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754, Jena, Germany
| | - Peter J Mons
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Hans F Ulrich
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747, Jena, Germany
| | - Johannes C Brendel
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754, Jena, Germany
| |
Collapse
|
2
|
Lobaz V, Liščáková V, Sedlák F, Musil D, Petrova SL, Šeděnková I, Pánek J, Kučka J, Konefał R, Tihlaříková E, Neděla V, Pankrác J, Šefc L, Hrubý M, Šácha P, Štěpánek P. Tuning polymer-blood and polymer-cytoplasm membrane interactions by manipulating the architecture of poly(2-oxazoline) triblock copolymers. Colloids Surf B Biointerfaces 2023; 231:113564. [PMID: 37742364 DOI: 10.1016/j.colsurfb.2023.113564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Bioactive moieties designed to bind to cell membrane receptors benefit from coupling with polymeric carriers that have enhanced affinity to the cell membrane. When bound to the cell surface, such carriers create a "2D solution" of a ligand with a significantly increased concentration near a membrane-bound receptor compared to a freely water-soluble ligand. Bifunctional polymeric carriers based on amphiphilic triblock copolymers were synthesized from 2-pent-4-ynyl oxazoline, 2-nonyl oxazoline and 2-ethyl oxazoline. Their self-assembly and interactions with plasma proteins and HEK 293 cells were studied in detail. The affinity of these triblock copolymers to HEK 293 cell membranes and organ tissues was tunable by the overall hydrophobicity of the polymer molecule, which is determined by the length of the hydrophobic and hydrophilic blocks. The circulation time and biodistribution of three representative triblock copolymers were monitored after intravenous administration to C57BL/6 albino mice. A prolonged circulation time was observed for polymers with longer hydrophobic blocks, despite their molecular weight being below the renal threshold.
Collapse
Affiliation(s)
- Volodymyr Lobaz
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia.
| | - Veronika Liščáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, 160 00 Prague 6, Czechia; Laboratory of Theranostics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, U Nemocnice 5, 128 53 Prague 2, Czechia
| | - František Sedlák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, 160 00 Prague 6, Czechia; Laboratory of Theranostics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, U Nemocnice 5, 128 53 Prague 2, Czechia
| | - Dominik Musil
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, 160 00 Prague 6, Czechia; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czechia
| | - Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Ivana Šeděnková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Jiří Pánek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Jan Kučka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Rafał Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61 200 Brno, Czechia
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61 200 Brno, Czechia
| | - Jan Pankrác
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Czechia
| | - Luděk Šefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Czechia
| | - Martin Hrubý
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, 160 00 Prague 6, Czechia
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| |
Collapse
|
3
|
Hayes G, Remzi Becer C. Hyperbranched poly(2-oxazoline)s via bisfunctional crosslinker. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Trachsel L, Zenobi-Wong M, Benetti EM. The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication. Biomater Sci 2021; 9:2874-2886. [PMID: 33729230 DOI: 10.1039/d0bm02217a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Poly(2-alkyl-2-oxazoline)s (PAOXAs) have been rapidly emerging as starting materials in the design of tissue engineering supports and for the generation of platforms for cell cultures, especially in the form of hydrogels. Thanks to their biocompatibility, chemical versatility and robustness, PAOXAs now represent a valid alternative to poly(ethylene glycol)s (PEGs) and their derivatives in these applications, and in the formulation of bioinks for three-dimensional (3D) bioprinting. In this review, we summarize the recent literature where PAOXAs have been used as main components for hydrogels and biofabrication mixtures, especially highlighting how their easily tunable composition could be exploited to fabricate multifunctional biomaterials with an extremely broad spectrum of properties.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland. and Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
5
|
Dargaville TR, Harkin DG, Park JR, Cavalcanti A, Bolle ECL, Savi FM, Farrugia BL, Monnery BD, Bernhard Y, Van Guyse JFR, Podevyn A, Hoogenboom R. Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules 2021; 22:1590-1599. [PMID: 33764748 DOI: 10.1021/acs.biomac.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rapid photo-curing system based on poly(2-ethyl-2-oxazoline-co-2-allylamidopropyl-2-oxazoline) and its in vivo compatibility are presented. The base polymer was synthesized from the copolymerization of 2-ethyl-2-oxazoline (EtOx) and the methyl ester containing 2-methoxycarboxypropyl-2-oxazoline (C3MestOx) followed by amidation with allylamine to yield a highly water-soluble macromer. We showed that spherical hydrogels can be obtained by a simple water-in-oil gelation method using thiol-ene coupling and investigated the in vivo biocompatibility of these hydrogel spheres in a 28-day murine subdermal model. For comparison, hydrogel spheres prepared from poly(ethylene glycol) were also implanted. Both materials displayed mild, yet typical foreign body responses with little signs of fibrosis. This is the first report on the foreign body response of a poly(2-oxazoline) hydrogel, which paves the way for future investigations into how this highly tailorable class of materials can be used for implantable hydrogel devices.
Collapse
Affiliation(s)
- Tim R Dargaville
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Damien G Harkin
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Jong-Ryul Park
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Amanda Cavalcanti
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Eleonore C L Bolle
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Flavia Medeiros Savi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bryn D Monnery
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
6
|
Borova S, Tokarev V, Stahlhut P, Luxenhofer R. Crosslinking of hydrophilic polymers using polyperoxides. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04738-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractHydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration, and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications.
Collapse
|
7
|
Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem Int Ed Engl 2020; 59:6412-6419. [DOI: 10.1002/anie.202000505] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuxin Qian
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chengzhi Dai
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuequn Wu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
9
|
Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuxin Qian
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chengzhi Dai
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuequn Wu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
10
|
Zhang X, Chen L, Lim KH, Gonuguntla S, Lim KW, Pranantyo D, Yong WP, Yam WJT, Low Z, Teo WJ, Nien HP, Loh QW, Soh S. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804540. [PMID: 30624820 DOI: 10.1002/adma.201804540] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/09/2018] [Indexed: 05/22/2023]
Abstract
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man-made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli-responsive materials; these "smart" materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli-responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self-regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli-responsive materials as the basic building blocks.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Spandhana Gonuguntla
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Wen Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wai Pong Yong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wei Jian Tyler Yam
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhida Low
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wee Joon Teo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Ping Nien
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiao Wen Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Van Guyse JFR, Mees MA, Vergaelen M, Baert M, Verbraeken B, Martens PJ, Hoogenboom R. Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: a quest for a selective and quantitative approach. Polym Chem 2019. [DOI: 10.1039/c9py00014c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new amidation approaches are evaluated to incorporate tyramine on methyl ester functional poly(2-oxazolines).
Collapse
Affiliation(s)
- Joachim F. R. Van Guyse
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Maarten A. Mees
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Maarten Vergaelen
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Mathijs Baert
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Bart Verbraeken
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Penny J. Martens
- Graduate School of Biomedical Engineering
- UNSW Sydney
- Sydney 2052
- Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| |
Collapse
|
12
|
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018; 178:204-280. [DOI: 10.1016/j.biomaterials.2018.05.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
|
13
|
Vlassi E, Papagiannopoulos A, Pispas S. Hydrolyzed Poly(2-plenyl-2-oxazoline)s in Aqueous Media and Biological Fluids. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eleni Vlassi
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Avenue ,11635 Athens Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Avenue ,11635 Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Avenue ,11635 Athens Greece
| |
Collapse
|
14
|
Dargaville TR, Park J, Hoogenboom R. Poly(2‐oxazoline) Hydrogels: State‐of‐the‐Art and Emerging Applications. Macromol Biosci 2018; 18:e1800070. [DOI: 10.1002/mabi.201800070] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tim R. Dargaville
- Institute of Health and Biomedical Innovation Science and Engineering Faculty Queensland University of Technology Queensland 4001 Australia
| | - Jong‐Ryul Park
- Institute of Health and Biomedical Innovation Science and Engineering Faculty Queensland University of Technology Queensland 4001 Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 B‐9000 Ghent Belgium
| |
Collapse
|
15
|
Hertz D, Leiske MN, Wloka T, Traeger A, Hartlieb M, Kessels MM, Schubert S, Qualmann B, Schubert US. Comparison of random and gradient amino functionalized poly(2-oxazoline)s: Can the transfection efficiency be tuned by the macromolecular structure? ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Hertz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Meike N. Leiske
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Thomas Wloka
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Anja Traeger
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Matthias Hartlieb
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Institute of Pharmacy, Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Straße 41; Jena 07745 Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Ulrich S. Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| |
Collapse
|
16
|
Mees MA, Hoogenboom R. Full and partial hydrolysis of poly(2-oxazoline)s and the subsequent post-polymerization modification of the resulting polyethylenimine (co)polymers. Polym Chem 2018. [DOI: 10.1039/c8py00978c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the full and partial hydrolysis of poly(2-oxazoline)s as well as the synthetic methods that have been reported to modify the resulting secondary amine groups.
Collapse
Affiliation(s)
- Maarten A. Mees
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
17
|
Vlassi E, Papagiannopoulos A, Pispas S. Amphiphilic poly(2-oxazoline) copolymers as self-assembled carriers for drug delivery applications. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.10.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Lühmann T, Schmidt M, Leiske MN, Spieler V, Majdanski TC, Grube M, Hartlieb M, Nischang I, Schubert S, Schubert US, Meinel L. Site-Specific POxylation of Interleukin-4. ACS Biomater Sci Eng 2017; 3:304-312. [DOI: 10.1021/acsbiomaterials.6b00578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Marcel Schmidt
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Meike N. Leiske
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Valerie Spieler
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Tobias C. Majdanski
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Mandy Grube
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Matthias Hartlieb
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Ivo Nischang
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Stephanie Schubert
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
- Department
of Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Strasse 41, DE-07747 Jena, Germany
| | - Ulrich S. Schubert
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Lorenz Meinel
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| |
Collapse
|
19
|
Abstract
Recent advances in thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides, with a specific focus on structure–property relationships, self-assembly, and applications, are reviewed.
Collapse
Affiliation(s)
- Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Helmut Schlaad
- Institute of Chemistry
- University of Potsdam
- 14476 Potsdam
- Germany
| |
Collapse
|
20
|
He Z, Miao L, Jordan R, S-Manickam D, Luxenhofer R, Kabanov AV. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector. Macromol Biosci 2015; 15:1004-20. [PMID: 25846127 PMCID: PMC4893346 DOI: 10.1002/mabi.201500021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/12/2015] [Indexed: 01/01/2023]
Abstract
Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈80 nm) and narrowly dispersed polyplexes (PDI <0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h, but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery.
Collapse
Affiliation(s)
- Zhijian He
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Lei Miao
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Rainer Jordan
- Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Devika S-Manickam
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, Universität Würzburg, 97070 Würzburg, Germany.
| | - Alexander V Kabanov
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119899, Russia.
| |
Collapse
|
21
|
Wilsens CHRM, Wullems NJM, Gubbels E, Yao Y, Rastogi S, Noordover BAJ. Synthesis, kinetics, and characterization of bio-based thermosets obtained through polymerization of a 2,5-furandicarboxylic acid-based bis(2-oxazoline) with sebacic acid. Polym Chem 2015. [DOI: 10.1039/c4py01609b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Renewable 2,5-bis(4,5-dihydrooxazol-2-yl)furan based poly(ester amide)s with enhanced curing kinetics were studied in terms of chemistry and thermal properties.
Collapse
Affiliation(s)
- Carolus H. R. M. Wilsens
- Laboratory of Polymer Materials
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
- Dutch Polymer Institute (DPI)
| | - Nino J. M. Wullems
- Laboratory of Polymer Materials
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Erik Gubbels
- Laboratory of Polymer Materials
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Yefen Yao
- Shanghai Key Laboratory of Magnetic Resonance
- East China Normal University
- 200062 Shanghai
- P.R. China
| | - Sanjay Rastogi
- Department of Biobased Materials
- Maastricht University
- 6200MD Maastricht
- The Netherlands
- Department of Materials
| | - Bart A. J. Noordover
- Laboratory of Polymer Materials
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| |
Collapse
|
22
|
Wu W, Cui S, Li Z, Liu J, Wang H, Wang X, Zhang Q, Wu H, Guo K. Mild Brønsted acid initiated controlled polymerizations of 2-oxazoline towards one-pot synthesis of novel double-hydrophilic poly(2-ethyl-2-oxazoline)-block-poly(sarcosine). Polym Chem 2015. [DOI: 10.1039/c5py00256g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mild Brønsted acid initiator in polymerizations of 2-oxazoline was firstly reported as a workable protocol in the ROPs and BCPs.
Collapse
Affiliation(s)
- Wenzhuo Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Saide Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jingjing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Huiying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qiguo Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
23
|
Hartlieb M, Kempe K, Schubert US. Covalently cross-linked poly(2-oxazoline) materials for biomedical applications – from hydrogels to self-assembled and templated structures. J Mater Chem B 2015; 3:526-538. [DOI: 10.1039/c4tb01660b] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss covalently cross-linked poly(2-oxazoline)s including gels, nanogels and capsules on the basis of their synthetic origin in a biomedical context.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
24
|
Hochleitner G, Hümmer JF, Luxenhofer R, Groll J. High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds through melt electrospinning writing. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.08.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|