1
|
Rijns L, Rutten MGTA, Vrehen AF, Aldana AA, Baker MB, Dankers PYW. Mimicking the extracellular world: from natural to fully synthetic matrices utilizing supramolecular biomaterials. NANOSCALE 2024; 16:16290-16312. [PMID: 39161293 DOI: 10.1039/d4nr02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annika F Vrehen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Rijns L, Baker MB, Dankers PYW. Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions. J Am Chem Soc 2024; 146:17539-17558. [PMID: 38888174 PMCID: PMC11229007 DOI: 10.1021/jacs.4c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell-material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress-relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel-cell interactions. Future work may utilize the presented guidelines underlying cell-material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.
Collapse
Affiliation(s)
- Laura Rijns
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Matthew B. Baker
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology
Inspired Regenerative Medicine, Maastricht
University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Janković P, Šantek I, Pina AS, Kalafatovic D. Exploiting Peptide Self-Assembly for the Development of Minimalistic Viral Mimetics. Front Chem 2021; 9:723473. [PMID: 34395387 PMCID: PMC8355586 DOI: 10.3389/fchem.2021.723473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Viruses are natural supramolecular nanostructures that form spontaneously by molecular self-assembly of complex biomolecules. Peptide self-assembly is a versatile tool that allows mimicking viruses by creating their simplified versions through the design of functional, supramolecular materials with modularity, tunability, and responsiveness to chemical and physical stimuli. The main challenge in the design and fabrication of peptide materials is related to the precise control between the peptide sequence and its resulting supramolecular morphology. We provide an overview of existing sequence patterns employed for the development of spherical and fibrillar peptide assemblies that can act as viral mimetics, offering the opportunity to tackle the challenges of viral infections.
Collapse
Affiliation(s)
| | - Iva Šantek
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ana Sofia Pina
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | | |
Collapse
|
4
|
Long K, Liu Y, Li Y, Wang W. Self-assembly of trigonal building blocks into nanostructures: molecular design and biomedical applications. J Mater Chem B 2021; 8:6739-6752. [PMID: 32686806 DOI: 10.1039/d0tb01128b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trigonal molecules have a special triskelion structure similar to clathrin protein, providing great inspiration for constructing artificial nanoassemblies. To date, various synthetic trigonal conjugates have been designed for supramolecular self-assembly, which have demonstrated versatile and controllable self-assembly ability in materials science. Here we will review the design of trigonal (sometimes called three-legged, tripodal, C3-symmetric, or triskelion) building blocks that can self-assemble into various nanostructures and discuss the biomedical applications of the self-assembled nanomaterials.
Collapse
Affiliation(s)
- Kaiqi Long
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | | | | | | |
Collapse
|
5
|
Tsutsumi H, Tanaka K, Chia JY, Mihara H. Short self‐assembling peptides with a urea bond: A new type of supramolecular peptide hydrogel materials. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa Japan
| | - Kunifumi Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa Japan
| | - Jyh Yea Chia
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa Japan
| |
Collapse
|
6
|
Inaba H, Matsuura K. Peptide Nanomaterials Designed from Natural Supramolecular Systems. CHEM REC 2018; 19:843-858. [PMID: 30375148 DOI: 10.1002/tcr.201800149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
Natural supramolecular assemblies exhibit unique structural and functional properties that have been optimized over the course of evolution. Inspired by these natural systems, various bio-nanomaterials have been developed using peptides, proteins, and nucleic acids as components. Peptides are attractive building blocks because they enable the important domains of natural protein assemblies to be isolated and optimized while retaining the original structures and functions. Furthermore, the peptide subunits can be conjugated with exogenous molecules such as peptides, proteins, nucleic acids, and metal nanoparticles to generate advanced functions. In this personal account, we summarize recent progress in the construction of peptide-based nanomaterial designed from natural supramolecular systems, including (1) artificial viral capsids, (2) self-assembled nanofibers, and (3) protein-binding motifs. The peptides inspired by nature should provide new design principles for bio-nanomaterials.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| |
Collapse
|
7
|
Matsuura K, Nakamura T, Watanabe K, Noguchi T, Minamihata K, Kamiya N, Kimizuka N. Self-assembly of Ni-NTA-modified β-annulus peptides into artificial viral capsids and encapsulation of His-tagged proteins. Org Biomol Chem 2018; 14:7869-74. [PMID: 27386944 DOI: 10.1039/c6ob01227b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
β-Annulus peptides bearing Cys at the N-terminal from tomato bushy stunt virus were synthesised using a standard Fmoc-protected solid-phase method, and the peptide was modified with Ni-NTA at the N-terminal. The Ni-NTA-modified β-annulus peptide self-assembled into virus-like nanocapsules of approximately 40 nm in diameter. The critical aggregation concentration of these nanocapsules in 10 mM Tris-HCl buffer (pH 7.3) at 25 °C was 0.053 μM, which is 470 times lower than that of unmodified β-annulus peptides. Moreover, size exclusion chromatography of the peptide assembly indicated encapsulation of His-tagged green fluorescent protein in the Ni-NTA-modified artificial viral capsid.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Tomohiro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenta Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Takanori Noguchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan and Division of Biotechnology, Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan and Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Matsuura K. Synthetic approaches to construct viral capsid-like spherical nanomaterials. Chem Commun (Camb) 2018; 54:8944-8959. [DOI: 10.1039/c8cc03844a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article describes recent progress in synthetic strategies to construct viral capsid-like spherical nanomaterials using the self-assembly of peptides and/or proteins.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- Tottori University
- Tottori 680-8552
- Japan
| |
Collapse
|
9
|
Matsuura K. Construction of Functional Biomaterials by Biomolecular Self-Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170133] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552
| |
Collapse
|
10
|
Matsuura K, Mizuguchi Y, Kimizuka N. Peptide nanospheres self-assembled from a modified β
-annulus peptide of Sesbania mosaic virus. Biopolymers 2016; 106:470-5. [DOI: 10.1002/bip.22774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering; Tottori University; Tottori Japan
| | - Yusaku Mizuguchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering; Kyushu University; Fukuoka Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering; Kyushu University; Fukuoka Japan
| |
Collapse
|
11
|
Lee NR, Bowerman CJ, Nilsson BL. Sequence length determinants for self-assembly of amphipathic β-sheet peptides. Biopolymers 2016; 100:738-50. [PMID: 23553562 DOI: 10.1002/bip.22248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 12/29/2022]
Abstract
Amphipathic peptides composed of alternating hydrophobic and hydrophilic amino acids are a privileged class of peptide, which have a high propensity to self-assemble into β-sheet fibrils. The Ac-(FKFE)2-NH2 peptide has been extensively studied and forms putative β-sheet bilayer fibrils in which the hydrophobic Phe side chains are organized to a single face of each constituent sheet; upon bilayer formation, these hydrophobic benzyl groups are sequestered in the hydrophobic core of the resulting fibril. In order for the Phe side chains to be uniformly displayed on one face of Ac-(FKFE)2-NH2 β-sheets, an antiparallel packing orientation in which one amino acid residue is unpaired must be adopted. Based on molecular models, we hypothesized that truncated seven amino acid derivatives of Ac-(FKFE)2-NH2 in which either the N-terminal Phe residue (Ac-KFEFKFE-NH2) or the C-terminal Glu residue (Ac-FKFEFKF-NH2) is eliminated should readily self-assemble into β-sheet bilayers in which all hydrogen bond and hydrophobic/charge interactions are satisfied. We found, however, that these minute changes in peptide sequence have unanticipated and dramatic effects on the self-assembly of each peptide. Ac-FKFEFKF-NH2 self-assembled into fibrils with unique morphology relative to the parent peptide, whereas the Ac-KFEFKFE-NH2 peptide had a strongly reduced propensity to self-assemble, even failing to self-assemble altogether under some conditions. These findings provide significant insight into the effect of sequence length and strand registry as well as hydrophobicity and charge on the self-assembly of simple amphipathic peptides to illuminate the possibility of tuning self-assembly processes and the resulting structures with minute changes to peptide sequence.
Collapse
Affiliation(s)
- Naomi R Lee
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216
| | | | | |
Collapse
|
12
|
Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular Polymers in Aqueous Media. Chem Rev 2016; 116:2414-77. [DOI: 10.1021/acs.chemrev.5b00369] [Citation(s) in RCA: 527] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Pol Besenius
- Institute
of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Boris Rybtchinski
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
pH-controlled aggregation polymorphism of amyloidogenic Aβ(16-22): insights for obtaining peptide tapes and peptide nanotubes, as function of the N-terminal capping moiety. Eur J Med Chem 2014; 88:55-65. [PMID: 25087966 DOI: 10.1016/j.ejmech.2014.07.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/23/2022]
Abstract
Peptide and protein self-assembly resulting in the formation of amyloidogenic aggregates is generally thought of as a pathological event associated with severe diseases. However, amyloid formation may also provide a basis for advanced bionanomaterials, since amyloid fibrils combine unique material-like properties that make them very useful for design of new types of conducting nanowires, bioactive ligands, and biodegradable coatings as drug-encapsulating materials. The morphology of the supramolecular aggregates determines the properties and application range of these bionanomaterials. An important parameter to control the supramolecular morphology, is the overall charge of the peptide, which is related to the pH of the environment. Herein, we describe the design, synthesis and morphological analysis of a series of N-terminally functionalized Aβ(16-22) peptides (∼Lys-Leu-Val-Phe-Phe-Ala-Glu-OH), that underwent a pH-induced polymorphism, ranging from lamellar sheets, helical tapes, peptide nanotubes, and amyloid fibrils as was observed by transmission electron microscopy. Infrared spectroscopy and wide angle X-ray scattering studies showed that peptide self-assembly was driven by β-sheet formation, and that the supramolecular morphology was directed by subtle variations in electrostatic interactions. Finally, a structural model and hierarchy of self-assembly of a peptide nanotube, assembled at pH 1, is proposed.
Collapse
|
14
|
Matsuurua K. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv 2014. [DOI: 10.1039/c3ra45944f] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Lu J, Liu C, Hu J, Ju Y. Synthesis and micellar mimic properties of bile acid trimers. Bioorg Med Chem Lett 2013; 23:1302-5. [DOI: 10.1016/j.bmcl.2012.12.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/13/2012] [Accepted: 12/28/2012] [Indexed: 11/16/2022]
|
16
|
Przybyla DE, Rubert Pérez CM, Gleaton J, Nandwana V, Chmielewski J. Hierarchical Assembly of Collagen Peptide Triple Helices into Curved Disks and Metal Ion-Promoted Hollow Spheres. J Am Chem Soc 2013; 135:3418-22. [PMID: 23402552 DOI: 10.1021/ja307651e] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- David E. Przybyla
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| | - Charles M. Rubert Pérez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| | - Jeremy Gleaton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| | - Vikas Nandwana
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant
Street, Amherst Massachusetts 01003, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| |
Collapse
|
17
|
Guest-binding behavior of peptide nanocapsules self-assembled from viral peptide fragments. Polym J 2013. [DOI: 10.1038/pj.2012.235] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Matsuura K. Biomolecular Self-assembling Systems for Multivalent Ligand Display. TRENDS GLYCOSCI GLYC 2013. [DOI: 10.4052/tigg.25.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
|
20
|
Nakanishi T, Naito M, Takeoka Y, Matsuura K. Versatile self-assembled hybrid systems with exotic structures and unique functions. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Koga T, Taguchi T, Higashi N. β-Sheet peptide-assisted polymerization of diacetylene at the air–water interface and thermochromic property. Polym J 2011. [DOI: 10.1038/pj.2011.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Matsuura K, Murasato K, Kimizuka N. Syntheses and self-assembling behaviors of pentagonal conjugates of tryptophane zipper-forming peptide. Int J Mol Sci 2011; 12:5187-99. [PMID: 21954352 PMCID: PMC3179159 DOI: 10.3390/ijms12085187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/30/2011] [Accepted: 08/10/2011] [Indexed: 01/31/2023] Open
Abstract
Pentagonal conjugates of tryptophane zipper-forming peptide (CKTWTWTE) with a pentaazacyclopentadecane core (Pentagonal-Gly-Trpzip and Pentagonal-Ala-Trpzip) were synthesized and their self-assembling behaviors were investigated in water. Pentagonal-Gly-Trpzip self-assembled into nanofibers with the width of about 5 nm in neutral water (pH 7) via formation of tryptophane zipper, which irreversibly converted to nanoribbons by heating. In contrast, Pentagonal-Ala-Trpzip formed irregular aggregates in water.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: (K.M.); (N.K.)
- International Research Center for Molecular Systems, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuya Murasato
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: (K.M.); (N.K.)
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: (K.M.); (N.K.)
- International Research Center for Molecular Systems, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
23
|
Matsuura K, Tochio K, Watanabe K, Kimizuka N. Controlled Release of Guest Molecules from Spherical Assembly of Trigonal Gultathione by Disulfide Recombination. CHEM LETT 2011. [DOI: 10.1246/cl.2011.711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Matsuura K, Watanabe K, Matsuzaki T, Sakurai K, Kimizuka N. Self-assembled synthetic viral capsids from a 24-mer viral peptide fragment. Angew Chem Int Ed Engl 2011; 49:9662-5. [PMID: 21077072 DOI: 10.1002/anie.201004606] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | | | |
Collapse
|
25
|
Matsuura K, Hayashi H, Murasato K, Kimizuka N. Trigonal tryptophane zipper as a novel building block for pH-responsive peptide nano-assemblies. Chem Commun (Camb) 2011; 47:265-7. [DOI: 10.1039/c0cc01324b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Matsuura K, Watanabe K, Matsuzaki T, Sakurai K, Kimizuka N. Self-Assembled Synthetic Viral Capsids from a 24-mer Viral Peptide Fragment. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Matsuura K, Fujino K, Teramoto T, Murasato K, Kimizuka N. Glutathione Nanosphere: Self-Assembly of Conformation-Regulated Trigonal-Glutathiones in Water. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20100048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Miyachi A, Takahashi T, Matsumura S, Mihara H. Peptide Nanofibers Modified with a Protein by Using Designed Anchor Molecules Bearing Hydrophobic and Functional Moieties. Chemistry 2010; 16:6644-50. [DOI: 10.1002/chem.200902758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Ishihara Y, Kimura S. Nanofiber formation of amphiphilic cyclic tri-β-peptide. J Pept Sci 2010; 16:110-4. [DOI: 10.1002/psc.1206] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biochemisry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
31
|
Pires M, Przybyla D, Chmielewski J. A Metal-Collagen Peptide Framework for Three-Dimensional Cell Culture. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Pires M, Przybyla D, Chmielewski J. A Metal-Collagen Peptide Framework for Three-Dimensional Cell Culture. Angew Chem Int Ed Engl 2009; 48:7813-7. [DOI: 10.1002/anie.200902375] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|