1
|
de Vasconcelos A, de Moura LR, Pedra NS, Bona NP, Soares MSP, da Silva Marques M, Horn AP, Spohr L, Spanevello RM, Stefanello FM, Cunico W. Thiazolidine-2,4-dione derivative exhibits antitumoral effect and reverts behavioral and metabolic changes in a model of glioblastoma. Metab Brain Dis 2022; 37:2053-2059. [PMID: 35616801 DOI: 10.1007/s11011-022-01005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to evaluate the anti-glioma activity of 3-(4-fluorobenzyl)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione (AV23) in a preclinical model of glioblastoma, as well as behavioral parameters and toxicological profile. The implantation of C6 cells in the left striatum of male Wistar rats was performed by stereotaxic surgery. After recovery, animals were treated with vehicle (canola oil) or AV23 (10 mg/kg/day) intragastrically for 15 days. It was found that AV23 reduced tumor volume by 90%. Serum biochemical parameters such as triglycerides, cholesterol, HDL-cholesterol, LDL-cholesterol, albumin, aspartate aminotransferase, urea, creatinine and total proteins were not changed; however, there was a slight increase in alanine aminotransferase. The compound AV23 reverted the hypoglycemia and the reduction in body weight caused by glioblastoma. Additionally, AV23 was able to revert the reduction of locomotion caused by the tumor implantation. Therefore, the compound AV23 can be considered a promising candidate in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Alana de Vasconcelos
- Laboratório de Química Aplicada à Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Larissa Ribeiro de Moura
- Laboratório de Química Aplicada à Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Laboratório de Neuroquímica, Inflamação e Câncer (Neurocan), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Laboratório de Neuroquímica, Inflamação e Câncer (Neurocan), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer (Neurocan), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Magno da Silva Marques
- Instituto de Ciências Biológicas - Morfologia, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Ana Paula Horn
- Instituto de Ciências Biológicas - Morfologia, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Luiza Spohr
- Laboratório de Neuroquímica, Inflamação e Câncer (Neurocan), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer (Neurocan), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Neuroquímica, Inflamação e Câncer (Neurocan), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, CEP 96160-000, Capão do Leão, RS, Brazil.
| | - Wilson Cunico
- Laboratório de Química Aplicada à Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
2
|
Hofmann HH, Heusler K, Roth K, Pröll-Cornelissen MJ, Große-Brinkhaus C, Schellander K, Neuhoff C. Oregano essential oil showed limited effects on pigs' carcass quality and haematology whereas a transcriptome analysis revealed significant modulations in the jejunum and the ileum. J Anim Physiol Anim Nutr (Berl) 2021; 106:1017-1035. [PMID: 34617344 DOI: 10.1111/jpn.13639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
Pig production depends on a health and performance balance. An approach to improve intestinal health is the oregano essential oil (OEO) supplementation within a conventional diet. Intestinal integrity regulating effects, for example gene expression, of some feed ingredients are important key factors for that balance. We hypothesized that OEO affects the expression of genes associated with pigs' intestinal integrity. In four trials, a total of 86 pigs have been used. From weaning, the 'treated' group (n = 42) was additionally fed an oregano flavour additive [1500 mg/kg (7.5% pure OEO)] within the basal diet. The 'control' group (n = 44) was kept under identical environmental conditions, except the OEO. At age of 6 months, pigs were slaughtered with an average weight of 111.1 ± 10.9 kg. In addition to automatically generated 'Fat-o-Meter' (AutoFOM) data, carcass quality factors have been measured manually. Valuable cuts of meat, such as ham and belly, were significantly reduced in the OEO group. Effects of OEO on pigs' haematologic parameters were very limited. For transcriptome analysis, the most interesting microarray expression results have been listed in a table (topTable). Selected genes were technically validated by qPCR. As a result, few significant differences in animal development and meat quality have been found between the OEO treated and the control group. Depending on OEO supplementation, we found 93 differently regulated genes in the jejunal tissue (70 up, 23 down) and 60 in the ileal tissue (48 up, 12 down). Just three genes (GRIN3B [glutamate ionotropic receptor NMDA type subunit 3B], TJP1/ZO-1 [tight junction protein ZO-1] and one uncharacterized gene) were affected by OEO both in jejunum and ileum. qPCR validation revealed AKT serine/threonine kinase 3 (AKT3), Interferon (IFN) -ε, -ω, tight junction protein (TJP1)/ZO-1 (ZO-1) to be upregulated in the jejunum and C-C motif chemokine ligand 21 (CCL21) was upregulated in the ileum of pigs that were supplemented with OEO. OEO supplementation had limited effects on pigs' performance traits. However, we were able to demonstrate that OEO alters the expression of genes associated with adaptive immune response in pigs' small intestine. These findings help to explain OEOs' beneficial impact on pigs' intestinal integrity.
Collapse
Affiliation(s)
- Haiko Hendrik Hofmann
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | - Katharina Heusler
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | - Katharina Roth
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | | | - Christine Große-Brinkhaus
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
de Vasconcelos A, Boeira AJZ, Drawanz BB, Pedra NS, Bona NP, Stefanello FM, Cunico W. 2,4-Thiazolidinedione as Precursor to the Synthesis of Compounds with Anti-glioma Activities in C6 and GL261 Cells. Med Chem 2021; 17:601-610. [PMID: 32242786 DOI: 10.2174/1573406416666200403075826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thiazolidinediones (TZDs) represent an important class of heterocyclic compounds that have versatile biological activities, including anticancer activity. Glioma is one of the most common primary brain tumors, and it is responsible for most of the deaths caused by primary brain tumors. In the present work, 2,4-thiazolidinediones were synthesized via a multicomponent microwave one-pot procedure. The cytotoxicity of compounds was analyzed in vitro using rat (C6) and mouse (GL261) glioblastoma cell lines and primary cultures of astrocytes. OBJECTIVE This study aims to synthesize and characterize 2,4-thiazolidinediones and evaluate their antitumor activity. METHODS TZDs were synthesized from three components: 2,4-thiazolidinedione, arene-aldehydes, and aryl chlorides. The reactions were carried out inside a microwave and monitored using thinlayer chromatography (TLC). Compounds were identified and characterized using gas chromatography coupled to mass spectrometry (CG-MS) and hydrogen (1H-NMR) and carbon nuclear magnetic resonance spectroscopy (13C-NMR). The antitumor activity was analyzed using the 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) reduction test, in which cell viability was verified in the primary cultures of astrocytes and in rat and mouse glioblastoma cells exposed to the synthesized compounds. The cytotoxicity of all derivatives was analyzed at the 100 μM concentration, both in astrocytes and in the mouse and rat glioblastoma cell lines. The compounds that showed the best results, 4CI and 4DI, were also tested at concentrations 25, 50, 100, 175, and 250 μM to obtain the IC50. RESULTS Seventeen TZD derivatives were easily obtained through one-pot reactions in 40 minutes with yields ranging from 12% to 49%. All compounds were cytotoxic to both glioblastoma cell lines without being toxic to the astrocyte primary cell line at 100 μM, thus demonstrating a selective activity. Compounds 4CI and 4DI showed the best results in the C6 cells: IC50 of 28.51 μM and 54.26 μM, respectively. CONCLUSION The compounds were not cytotoxic in astrocyte culture, demonstrating selectivity for malignant cells. Changes in both rings are important for anti-glioma activity in the cell lines tested. TZD 4CI had the best anti-glioma activity.
Collapse
Affiliation(s)
- Alana de Vasconcelos
- Laboratorio de Quimica Aplicada a Bioativos (LaQuiABio), Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Ana Júlia Zulian Boeira
- Laboratorio de Quimica Aplicada a Bioativos (LaQuiABio), Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Bruna Bento Drawanz
- Laboratorio de Quimica Aplicada a Bioativos (LaQuiABio), Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Nathalia Stark Pedra
- Laboratorio de Neuroquimica, inflamacao e Cancer (Neurocan) Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Natália Pontes Bona
- Laboratorio de Neuroquimica, inflamacao e Cancer (Neurocan) Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Francieli Moro Stefanello
- Laboratorio de Neuroquimica, inflamacao e Cancer (Neurocan) Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Wilson Cunico
- Laboratorio de Quimica Aplicada a Bioativos (LaQuiABio), Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| |
Collapse
|
4
|
Huitema L, Phillips T, Alexeev V, Tomic-Canic M, Pastar I, Igoucheva O. Intracellular escape strategies of Staphylococcus aureus in persistent cutaneous infections. Exp Dermatol 2020; 30:1428-1439. [PMID: 33179358 DOI: 10.1111/exd.14235] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic invasion of Staphylococcus aureus is a major concern in patients with chronic skin diseases like atopic dermatitis (AD), epidermolysis bullosa (EB), or chronic diabetic foot and venous leg ulcers, and can result in persistent and life-threatening chronic non-healing wounds. Staphylococcus aureus is generally recognized as extracellular pathogens. However, S. aureus can also invade, hide and persist in skin cells to contribute to wound chronicity. The intracellular life cycle of S. aureus is currently incompletely understood, although published studies indicate that its intracellular escape strategies play an important role in persistent cutaneous infections. This review provides current scientific knowledge about the intracellular life cycle of S. aureus in skin cells, which can be classified into professional and non-professional antigen-presenting cells, and its strategies to escape adaptive defense mechanisms. First, we discuss phenotypic switch of S. aureus, which affects intracellular routing and degradation. This review also evaluates potential intracellular escape mechanism of S. aureus to avoid intracellular degradation and antigen presentation, preventing an immune response. Furthermore, we discuss potential drug targets that can interfere with the intracellular life cycle of S. aureus. Taken together, this review aimed to increase scientific understanding about the intracellular life cycle of S. aureus into skin cells and its strategies to evade the host immune response, information that is crucial to reduce pathogenic invasion and life-threatening persistence of S. aureus in chronic cutaneous infections.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Dietary supplementation with a microencapsulated blend of organic acids and botanicals alters the kinome in the ileum and jejunum of Gallus gallus. PLoS One 2020; 15:e0236950. [PMID: 32730335 PMCID: PMC7392328 DOI: 10.1371/journal.pone.0236950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
The use of natural products as feed additives in the poultry industry is increasing; however, most studies focus on performance and growth with little regard for determining mechanism. Our laboratory designed a chicken (Gallus gallus)-specific immunometabolic kinome peptide array. Using this tool to examine the active enzymes responsible for phosphorylation events (kinases) provides important information on host and cellular functions. The objective of this project was to determine if feeding a microencapsulated product comprised of a blend of organic acids and botanicals (AviPlus®P) impacts the intestinal kinome of broiler chickens (Gallus gallus). Day-of-hatch chicks were provided 0 or 500g/MT of the additive and jejunal and ileal segments collected for kinome analysis to determine the mode-of-action of the additive. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed by uploading the statistically significant peptides to the Search Tool for the Retrieval of Interacting Genes database. As a whole, GO and KEGG analysis showed similar activities in the ileum and jejunum. However, there were a small number of KEGG pathways that were only activated in either the ileum or jejunum, but not both. Analysis of the adipocytokine and PI3K-AKT signaling pathways showed differences between ileal and jejunal activity that were controlled, in part, by AKT3. Additionally, cytokine/chemokine evaluation showed the ileum had higher IL1β, IL6, IL10, TNFα, IFNγ, CXCL8, and CCL4 mRNA expression levels (P<0.05). As a whole, the data showed the addition of microencapsulated organic acids and botanicals to a broiler diet activated many of the same signaling pathways in the ileum and jejunum; however, distinctions were observed. Taken together, the findings of this study begin to define the mode-of-action that microencapsulated organic acids and botanicals have on two important intestinal segments responsible for nutrient digestion and absorption in chickens.
Collapse
|
6
|
Kehl A, Göser V, Reuter T, Liss V, Franke M, John C, Richter CP, Deiwick J, Hensel M. A trafficome-wide RNAi screen reveals deployment of early and late secretory host proteins and the entire late endo-/lysosomal vesicle fusion machinery by intracellular Salmonella. PLoS Pathog 2020; 16:e1008220. [PMID: 32658937 PMCID: PMC7377517 DOI: 10.1371/journal.ppat.1008220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/23/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
The intracellular lifestyle of Salmonella enterica is characterized by the formation of a replication-permissive membrane-bound niche, the Salmonella-containing vacuole (SCV). As a further consequence of the massive remodeling of the host cell endosomal system, intracellular Salmonella establish a unique network of various Salmonella-induced tubules (SIT). The bacterial repertoire of effector proteins required for the establishment for one type of these SIT, the Salmonella-induced filaments (SIF), is rather well-defined. However, the corresponding host cell proteins are still poorly understood. To identify host factors required for the formation of SIF, we performed a sub-genomic RNAi screen. The analyses comprised high-resolution live cell imaging to score effects on SIF induction, dynamics and morphology. The hits of our functional RNAi screen comprise: i) The late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, consisting of STX7, STX8, VTI1B, and VAMP7 or VAMP8, which is, in conjunction with RAB7 and the homotypic fusion and protein sorting (HOPS) tethering complex, a complete vesicle fusion machinery. ii) Novel interactions with the early secretory GTPases RAB1A and RAB1B, providing a potential link to coat protein complex I (COPI) vesicles and reinforcing recently identified ties to the endoplasmic reticulum. iii) New connections to the late secretory pathway and/or the recycling endosome via the GTPases RAB3A, RAB8A, and RAB8B and the SNAREs VAMP2, VAMP3, and VAMP4. iv) An unprecedented involvement of clathrin-coated structures. The resulting set of hits allowed us to characterize completely new host factor interactions, and to strengthen observations from several previous studies. The facultative intracellular pathogen Salmonella enterica serovar Typhimurium induces the reorganization of the endosomal system of mammalian host cells. This activity is dependent on translocated effector proteins of the pathogen. The host cell factors required for endosomal remodeling are only partially known. To identify such factors for the formation and dynamics of endosomal compartments in Salmonella-infected cells, we performed a live cell imaging-based RNAi screen to investigate the role of 496 mammalian proteins involved in cellular logistics. We identified that endosomal remodeling by intracellular Salmonella is dependent on host factors in the following functional classes: i) the late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, ii) the early secretory pathway, represented by regulator GTPases RAB1A and RAB1B, iii) the late secretory pathway and/or recycling endosomes represented by GTPases RAB3A, RAB8A, RAB8B, and the SNAREs VAMP2, VAMP3, and VAMP4, and iv) clathrin-coated structures. The identification of these new host factors provides further evidence for the complex manipulation of host cell transport functions by intracellular Salmonella and should enable detailed follow-up studies on the mechanisms involved.
Collapse
Affiliation(s)
- Alexander Kehl
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
- Division of Biophysics, University of Osnabrück, Osnabrück, Germany
- * E-mail: (AK); (MH)
| | - Vera Göser
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Tatjana Reuter
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Viktoria Liss
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Maximilian Franke
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Christopher John
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | | | - Jörg Deiwick
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
- CellNanOs–Center for Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
- * E-mail: (AK); (MH)
| |
Collapse
|
7
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
8
|
Mitigating the Impact of Antibacterial Drug Resistance through Host-Directed Therapies: Current Progress, Outlook, and Challenges. mBio 2018; 9:mBio.01932-17. [PMID: 29382729 PMCID: PMC5790911 DOI: 10.1128/mbio.01932-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing incidences of multidrug resistance in pathogenic bacteria threaten our ability to treat and manage bacterial infection. The development and FDA approval of novel antibiotics have slowed over the past decade; therefore, the adoption and improvement of alternative therapeutic strategies are critical for addressing the threat posed by multidrug-resistant bacteria. Host-directed therapies utilize small-molecule drugs and proteins to alter the host response to pathogen infection. Here, we highlight strategies for modulating the host inflammatory response to enhance bacterial clearance, small-molecule potentiation of innate immunity, and targeting of host factors that are exploited by pathogen virulence factors. Application of state-of-the-art "omic" technologies, including proteomics, transcriptomics, and image-omics (image-based high-throughput phenotypic screening), combined with powerful bioinformatics tools will enable the modeling of key signaling pathways in the host-pathogen interplay and aid in the identification of host proteins for therapeutic targeting and the discovery of host-directed small molecules that will regulate bacterial infection. We conclude with an outlook on research needed to overcome the challenges associated with transitioning host-directed therapies into a clinical setting.
Collapse
|
9
|
How chemistry supports cell biology: the chemical toolbox at your service. Trends Cell Biol 2014; 24:751-60. [PMID: 25108565 DOI: 10.1016/j.tcb.2014.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research.
Collapse
|