1
|
Iacopini D, Santi M, Santangelo MC, Sardelli G, Piazza L, Mosca R, Comparini LM, Granchi C, Pineschi M, Di Pietro S, Signore G, Di Bussolo V. Glycoconjugate coumarins exploiting metabolism-enhanced fluorescence and preferential uptake: New optical tools for tumor cell staining. Bioorg Chem 2024; 153:107836. [PMID: 39326338 DOI: 10.1016/j.bioorg.2024.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The possibility to visually discriminate cells based on their metabolism and capability to uptake exogenous molecules is an important topic with exciting fallback on translational and precision medicine. To this end, probes that combine several complementary features are necessary. The ideal probe is selectively uptaken and activated in tumor cells compared with control ones and is not fluorescent in the extracellular medium. Fluorogenic compounds that combine enzyme-activated pH sensitivity and good cell uptake can be an ideal solution, provided that the sensed enzymes are dysregulated in tumor cells. Here, we present synthesis and in vitro evaluation of a new class of glyco-coumarin based probes that merge all these features. These probes show uptake ratio in tumor vs. control cells up to 3:1, with a cell to background ratio upon administration of the probe up to 5:1. These features make this new family of fluorogenic targeted probes a promising tool in life science.
Collapse
Affiliation(s)
- Dalila Iacopini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Melissa Santi
- Istituto Nanoscienze-CNR, NEST Laboratory, Piazza San Silvestro 12, 56127 Pisa, Italy
| | | | - Gemma Sardelli
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy; Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Rossella Mosca
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | | | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Mauro Pineschi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Sebastiano Di Pietro
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy.
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy; Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56123 Pisa, Italy.
| | - Valeria Di Bussolo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| |
Collapse
|
2
|
Lin J, Ma Z, Zuo W, Zhu M. Enhancing Targeted Photodynamic Therapy: Star-Shaped Glycopolymeric Photosensitizers for Improved Selectivity and Efficacy. Biomacromolecules 2024; 25:1950-1958. [PMID: 38334281 DOI: 10.1021/acs.biomac.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Targeted photodynamic therapy (PDT) offers advantages over nontargeted approaches, including improved selectivity, efficacy, and reduced side effects. This study developed star-shaped glycopolymeric photosensitizers using porphyrin-based initiators via ATRP. Incorporating a porphyrin core gave the polymers fluorescence and ROS generation, while adding fructose improved solubility and targeting capabilities. The photosensitizers had high light absorption, singlet oxygen production, specificity, low dark toxicity, and biocompatibility. The glycopolymers with longer sugar arms and higher density showed better uptake on MCF-7 and MDA-MB-468 cells compared to HeLa cells, indicating enhanced targeting capabilities. Inhibition of endocytosis confirmed the importance of the GLUT5 receptor. The resulting polymers exhibited good cytocompatibility under dark conditions and satisfactory PDT under light irradiation. Interestingly, the polymers containing fructose have a GLUT5-dependent elimination effect on the MCF-7 and MDA-MB-468 cells. The intracellular ROS production followed a similar pattern, indicating that the fructose polymer exhibits specific targeting toward cells with GLUT5 receptors.
Collapse
Affiliation(s)
- Jiahui Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|