1
|
Al-Najjar BO, Saqallah FG. Unlocking the Conformational Changes of P2Y 12: Exploring an Acridinone Compound's Effect on Receptor Activity and Conformation. Molecules 2023; 28:molecules28093878. [PMID: 37175288 PMCID: PMC10180088 DOI: 10.3390/molecules28093878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The P2Y12 receptor is an important member of the purinergic receptor family, known for its critical role in platelet activation and thrombosis. In our previously published study, the acridinone analogue NSC618159 was identified as a potent antagonist of P2Y12. In this work, we investigate the conformational changes in P2Y12 when bound to NSC618159 using molecular dynamics simulations on the receptor's active and inactive forms (4PXZ and 4NTJ, respectively). It was observed that it took the systems about 7 ns and 12 ns to stabilise when NSC618159 was in complex with the active and inactive forms of P2Y12, respectively. Additionally, the binding pocket of the crystal structure 4PXZ expanded from 172.34 Å3 to an average of 661.55 Å3 when bound to NSC618159, with a maximum pocket volume of 820.49 Å3. This expansion was attributed to the pulled away transmembrane (TM) helices and the adoption of a more open conformation by extracellular loop 2 (EL2). In contrast, 4NTJ's pocket volume was mostly consistent and had an average of 1203.82 Å3. Moreover, the RMSF profile of the NSC618159-4PXZ complex showed that residues of TM-I and TM-VII had similar fluctuations to the 4NTJ crystal structure, representing the inactive form of P2Y12. Finally, the energy components and binding affinities of NSC618159 towards the active and inactive forms of P2Y12 were predicted using the MM-PBSA approach. According to the results, the binding affinity of NSC618159 towards both active (4PXZ) and inactive (4NTJ) forms of P2Y12 was found to be almost identical, with values of -43.52 and -41.68 kcal/mol, respectively. In conclusion, our findings provide new insights into the conformational changes of P2Y12 upon binding to NSC618159 and may have implications for the development of new P2Y12 antagonists with enhanced potency and specificity.
Collapse
Affiliation(s)
- Belal O Al-Najjar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Fadi G Saqallah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
2
|
Ma BB, Montgomery AP, Chen B, Kassiou M, Danon JJ. Strategies for targeting the P2Y 12 receptor in the central nervous system. Bioorg Med Chem Lett 2022; 71:128837. [PMID: 35640763 DOI: 10.1016/j.bmcl.2022.128837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
The purinergic 2Y type 12 receptor (P2Y12R) is a well-known biological target for anti-thrombotic drugs due to its role in platelet aggregation and blood clotting. While the importance of the P2Y12R in the periphery has been known for decades, much less is known about its expression and roles in the central nervous system (CNS), where it is expressed exclusively on microglia - the first responders to brain insults and neurodegeneration. Several seminal studies have shown that P2Y12 is a robust, translatable biomarker for anti-inflammatory and neuroprotective microglial phenotypes in models of degenerative diseases such as multiple sclerosis and Alzheimer's disease. An enduring problem for studying this receptor in vivo, however, is the lack of selective, high-affinity small molecule ligands that can bypass the blood-brain barrier and accumulate in the CNS. In this Digest, we discuss previous attempts by researchers to target the P2Y12R in the CNS and opine on strategies that may be employed to design and assess the suitability of novel P2Y12 ligands for this purpose going forward.
Collapse
Affiliation(s)
- Ben B Ma
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Biling Chen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Al-Najjar BO, Saqallah FG, Abbas MA, Al-Hijazeen SZ, Sibai OA. P2Y 12 antagonists: Approved drugs, potential naturally isolated and synthesised compounds, and related in-silico studies. Eur J Med Chem 2022; 227:113924. [PMID: 34731765 DOI: 10.1016/j.ejmech.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y12 is a platelet surface protein which is responsible for the amplification of P2Y1 response. It plays a crucial role in platelet aggregation and thrombus formation through an ADP-induced platelet activation mechanism. Despite that P2Y12 platelets' receptor is an excellent target for developing antiplatelet agents, only five approved medications are currently in clinical use which are classified into thienopyridines and nucleoside-nucleotide derivatives. In the past years, many attempts for developing new candidates as P2Y12 inhibitors have been made. This review highlights the importance and the role of P2Y12 receptor as part of the coagulation cascade, its reported congenital defects, and the type of assays which are used to verify and measure its activity. Furthermore, an overview is given of the clinically approved medications, the potential naturally isolated inhibitors, and the synthesised candidates which were tested either in-vitro, in-vivo and/or clinically. Finally, we outline the in-silico attempts which were carried out using virtual screening, molecular docking and dynamics simulations in efforts of designing novel P2Y12 antagonists. Various phytochemical classes might be considered as a corner stone for the discovery of novel P2Y12 inhibitors, whereas a wide range of ring systems can be deliberated as leading scaffolds in that area synthetically and theoretically.
Collapse
Affiliation(s)
- Belal O Al-Najjar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Lab, Al-Ahliyya Amman University, 19328, Amman, Jordan.
| | - Fadi G Saqallah
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Manal A Abbas
- Pharmacological and Diagnostic Research Lab, Al-Ahliyya Amman University, 19328, Amman, Jordan; Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan
| | | | - Obada A Sibai
- Faculty of Pharmacy, Al-Ahliyya Amman University, 19328, Amman, Jordan
| |
Collapse
|
4
|
Begum S, Shareef MZ, Bharathi K. Part-II- in silico drug design: application and success. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In silico tools have indeed reframed the steps involved in traditional drug discovery and development process and the term in silico has become a familiar term in pharmaceutical sector like the terms in vitro and in vivo. The successful design of HIV protease inhibitors, Saquinavir, Indinavir and other important medicinal agents, initiated interest of researchers in structure based drug design approaches (SBDD). The interactions between biomolecules and a ligand, binding energy, free energy and stability of biomolecule-ligand complex can be envisioned and predicted by applying molecular docking studies. Protein-ligand, protein-protein, DNA-ligand interactions etc. aid in elucidating molecular level mechanisms of drug molecules. In the Ligand based drug design (LBDD) approaches, QSAR studies have tremendously contributed to the development of antimicrobial, anticancer, antimalarial agents. In the recent years, multiQSAR (mt-QSAR) approaches have been successfully employed for designing drugs against multifactorial diseases. Output of a research in several instances is rewarding when both SBDD and LBDD approaches are combined. Application of in silico studies for prediction of pharmacokinetics was once a real challenge but one can see unlimited number publications comprising tools, data bases which can accurately predict almost all the pharmacokinetic parameters. Absorption, distribution, metabolism, transporters, blood brain barrier permeability, hERG toxicity, P-gp affinity and several toxicological end points can be accurately predicted for a candidate molecule before its synthesis. In silico approaches are greatly encouraged a result of growing limitations and new legislations related to the animal use for research. The combined use of in vitro data and in silico tools will definitely decrease the use of animal testing in the future.In this chapter, in silico approaches and their applications are reviewed and discussed giving suitable examples.
Collapse
Affiliation(s)
- Shaheen Begum
- Institute of Pharmaceutical Technology , Sri Padmavati Mahila Visvavidyalayam , 517501 Tirupati , Andhra Pradesh , India
| | - Mohammad Zubair Shareef
- Institute of Pharmaceutical Technology , Sri Padmavati Mahila Visvavidyalayam , 517501 Tirupati , Andhra Pradesh , India
| | - Koganti Bharathi
- Institute of Pharmaceutical Technology , Sri Padmavati Mahila Visvavidyalayam , 517501 Tirupati , Andhra Pradesh , India
| |
Collapse
|
5
|
Abdizadeh R, Heidarian E, Hadizadeh F, Abdizadeh T. QSAR Modeling, Molecular Docking and Molecular Dynamics Simulations Studies of Lysine-Specific Demethylase 1 (LSD1) Inhibitors as Anticancer Agents. Anticancer Agents Med Chem 2021; 21:987-1018. [PMID: 32698753 DOI: 10.2174/1871520620666200721134010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/07/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Histone Lysine Demetylases1 (LSD1) is a promising medication to treat cancer, which plays a crucial role in epigenetic modulation of gene expression. Inhibition of LSD1with small molecules has emerged as a vital mechanism to treat cancer. OBJECTIVE In the present research, molecular modeling investigations, such as CoMFA, CoMFA-RF, CoMSIA and HQSAR, molecular docking and Molecular Dynamics (MD) simulations were carried out on some tranylcypromine derivatives as LSD1 inhibitors. METHODS The QSAR models were carried out on a series of Tranylcypromine derivatives as data set via the SYBYL-X2.1.1 program. Molecular docking and MD simulations were carried out by the MOE software and the SYBYL program, respectively. The internal and external predictability performances related to the generated models for these LSD1 inhibitors were justified by evaluating cross-validated correlation coefficient (q2), noncross- validated correlation coefficient (r2ncv) and predicted correlation coefficient (r2pred) of the training and test set molecules, respectively. RESULTS The CoMFA (q2, 0.670; r2ncv, 0.930; r2pred, 0.968), CoMFA-RF (q2, 0.694; r2ncr, 0.926; r2pred, 0.927), CoMSIA (q2, 0.834; r2ncv, 0.956; r2pred, 0.958) and HQSAR models (q2, 0.854; r2ncv, 0.900; r2pred, 0.728) for training as well as the test set of LSD1 inhibition resulted in significant findings. CONCLUSION These QSAR models were found to be perfect and strong with better predictability. Contour maps of all models were generated and it was proven by molecular docking studies and molecular dynamics simulation that the hydrophobic, electrostatic and hydrogen bonding fields are crucial in these models for improving the binding affinity and determining the structure-activity relationship. These theoretical results are possibly beneficial to design new strong LSD1 inhibitors with enhanced activity to treat cancer.
Collapse
Affiliation(s)
- Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Sharekord University of Medical Sciences, Shahrekord, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Sharekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Hao M, Bryant SH, Wang Y. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions. Brief Bioinform 2020; 20:1465-1474. [PMID: 29420684 DOI: 10.1093/bib/bby010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
While novel technologies such as high-throughput screening have advanced together with significant investment by pharmaceutical companies during the past decades, the success rate for drug development has not yet been improved prompting researchers looking for new strategies of drug discovery. Drug repositioning is a potential approach to solve this dilemma. However, experimental identification and validation of potential drug targets encoded by the human genome is both costly and time-consuming. Therefore, effective computational approaches have been proposed to facilitate drug repositioning, which have proved to be successful in drug discovery. Doubtlessly, the availability of open-accessible data from basic chemical biology research and the success of human genome sequencing are crucial to develop effective in silico drug repositioning methods allowing the identification of potential targets for existing drugs. In this work, we review several chemogenomic data-driven computational algorithms with source codes publicly accessible for predicting drug-target interactions (DTIs). We organize these algorithms by model properties and model evolutionary relationships. We re-implemented five representative algorithms in R programming language, and compared these algorithms by means of mean percentile ranking, a new recall-based evaluation metric in the DTI prediction research field. We anticipate that this review will be objective and helpful to researchers who would like to further improve existing algorithms or need to choose appropriate algorithms to infer potential DTIs in the projects. The source codes for DTI predictions are available at: https://github.com/minghao2016/chemogenomicAlg4DTIpred.
Collapse
|
7
|
Hao M, Bryant SH, Wang Y. A new chemoinformatics approach with improved strategies for effective predictions of potential drugs. J Cheminform 2018; 10:50. [PMID: 30311095 PMCID: PMC6755712 DOI: 10.1186/s13321-018-0303-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Fast and accurate identification of potential drug candidates against therapeutic targets (i.e., drug–target interactions, DTIs) is a fundamental step in the early drug discovery process. However, experimental determination of DTIs is time-consuming and costly, especially for testing the associations between the entire chemical and genomic spaces. Therefore, computationally efficient algorithms with accurate predictions are required to achieve such a challenging task. In this work, we design a new chemoinformatics approach derived from neighbor-based collaborative filtering (NBCF) to infer potential drug candidates for targets of interest. One of the fundamental steps of NBCF in the application of DTI predictions is to accurately measure the similarity between drugs solely based on the DTI profiles of known knowledge. However, commonly used similarity calculation methods such as COSINE may be noise-prone due to the extremely sparse property of the DTI bipartite network, which decreases the model performance of NBCF. We herein propose three strategies to remedy such a dilemma, which include: (1) adopting a positive pointwise mutual information (PPMI)-based similarity metric, which is noise-immune to some extent; (2) performing low-rank approximation of the original prediction scores; (3) incorporating auxiliary (complementary) information to produce the final predictions. Results We test the proposed methods in three benchmark datasets and the results indicate that our strategies are helpful to improve the NBCF performance for DTI predictions. Comparing to the prior algorithm, our methods exhibit better results assessed by a recall-based evaluation metric. Conclusions A new chemoinformatics approach with improved strategies was successfully developed to predict potential DTIs. Among them, the model based on the sparsity resistant PPMI similarity metric exhibits the best performance, which may be helpful to researchers for identifying potential drugs against therapeutic targets of interest, and can also be applied to related research such as identifying candidate disease genes.
Collapse
Affiliation(s)
- Ming Hao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Stephen H Bryant
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yanli Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
8
|
Lin WC, Tan SP, Zhou SF, Zheng XJ, Wu WJ, Zheng KC. Binding Mechanism and Molecular Design of Benzimidazole/Benzothiazole Derivatives as Potent Abl T315I Mutant Inhibitors. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1704066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Tong L, Guo L, Lv X, Li Y. Modification of polychlorinated phenols and evaluation of their toxicity, biodegradation and bioconcentration using three-dimensional quantitative structure–activity relationship models. J Mol Graph Model 2017; 71:1-12. [DOI: 10.1016/j.jmgm.2016.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Accepted: 10/14/2016] [Indexed: 01/04/2023]
|
10
|
Zhou S, Fang D, Tan S, Lin W, Wu W, Zheng K. Investigating the binding mechanism of novel 6-aminonicotinate-based antagonists with P2Y 12 by 3D-QSAR, docking and molecular dynamics simulations. J Biomol Struct Dyn 2016; 35:2938-2965. [PMID: 27634290 DOI: 10.1080/07391102.2016.1237381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
P2Y12 receptor is an attractive target for the anti-platelet therapies, treating various thrombotic diseases. In this work, a total of 107 6-aminonicotinate-based compounds as potent P2Y12 antagonists were studies by a molecular modeling study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations to explore the decisive binding conformations of these antagonists with P2Y12 and the structural features for the activity. The optimum CoMFA and CoMSIA models identified satisfactory robustness and good predictive ability, with R2 = .983, q2 = .805, [Formula: see text] = .881 for CoMFA model, and R2 = .935, q2 = .762, [Formula: see text] = .690 for CoMSIA model, respectively. The probable binding modes of compounds and key amino acid residues were revealed by molecular docking. MD simulations and MM/GBSA free energy calculations were further performed to validate the rationality of docking results and to compare the binding modes of several compound pairs with different activities, and the key residues (Val102, Tyr105, Tyr109, His187, Val190, Asn191, Phe252, His253, Arg256, Tyr259, Thr260, Val279, and Lys280) for the higher activity were pointed out. The binding energy decomposition indicated that the hydrophobic and hydrogen bond interactions play important roles for the binding of compounds to P2Y12. We hope these results could be helpful in design of potent and selective P2Y12 antagonists.
Collapse
Affiliation(s)
- Shengfu Zhou
- a Department of Physical Chemistry , College of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Danqing Fang
- b Department of Cardiothoracic Surgery , Affiliated Second Hospital of Guangzhou Medical University , Guangzhou 510260 , China
| | - Shepei Tan
- a Department of Physical Chemistry , College of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Weicong Lin
- a Department of Physical Chemistry , College of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Wenjuan Wu
- a Department of Physical Chemistry , College of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Kangcheng Zheng
- c School of Chemistry and Chemical Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| |
Collapse
|
11
|
Xu Z, Chen Y, Qiu Y, Gu W, Li Y. Prediction of stability for polychlorinated biphenyls in transformer insulation oil through three-dimensional quantitative structure-activity relationship pharmacophore model and full factor experimental design. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-5461-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Zhang Z, Wu G, Wang C, Jin X, Li D, Lin K. Features of reversible P2Y12 receptor antagonists based on piperazinyl-glutamate-pyridines. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1557-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Liu S, Luo Y, Fu J, Zhou J, Kyzas GZ. Molecular docking and 3D-QSAR studies on the glucocorticoid receptor antagonistic activity of hydroxylated polychlorinated biphenyls. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:87-99. [PMID: 26848875 DOI: 10.1080/1062936x.2015.1134653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The glucocorticoid receptor (GR) antagonistic activities of hydroxylated polychlorinated biphenyls (HO-PCBs) were recently characterised. To further explore the interactions between HO-PCBs and the GR, and to elucidate structural characteristics that influence the GR antagonistic activity of HO-PCBs, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed. Comparative molecular similarity indices analysis (CoMSIA) was performed using both ligand- and receptor-based alignment schemes. Results generated from the receptor-based model were found to be more satisfactory, with q(2) of 0.632 and r(2) of 0.931 compared with those from the ligand-based model. Some internal validation strategies (e.g. cross-validation analysis, bootstrapping analysis and Y-randomisation) and an external validation method were used respectively to further assess the stability and predictive ability of the derived model. Graphical interpretation of the model provided some insights into the structural features that affected the GR antagonistic activity of HO-PCBs. Molecular docking studies revealed that some key residues were critical for ligand-receptor interactions by forming hydrogen bonds (Glu540) and hydrophobic interactions with ligands (Ile539, Val543 and Trp577). Although CoMSIA sometimes depends on the alignment of the molecules, the information provided is beneficial for predicting the GR antagonistic activities of HO-PCB homologues and is helpful for understanding the binding mechanisms of HO-PCBs to GR.
Collapse
Affiliation(s)
- S Liu
- a College of Environmental Science & Engineering , Huazhong University of Science & Technology , Wuhan , China
- b Research & Development Institute of Wuhan Iron & Steel Group , Wuhan , China
| | - Y Luo
- c State Key Laboratory of Pollution Control and Resource Reuse , School of the Environment, Nanjing University , Nanjing , China
| | - J Fu
- d School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , GA , USA
| | - J Zhou
- a College of Environmental Science & Engineering , Huazhong University of Science & Technology , Wuhan , China
| | - G Z Kyzas
- e Division of Chemical Technology, Department of Chemistry , Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
14
|
Patel S, Patel B, Bhatt H. 3D-QSAR studies on 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4- carboxamide derivatives as HIV-1 integrase inhibitors. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Ma S, Zhou S, Lin W, Zhang R, Wu W, Zheng K. Study of novel pyrazolo[3,4-d]pyrimidine derivatives as selective TgCDPK1 inhibitors: molecular docking, structure-based 3D-QSAR and molecular dynamics simulation. RSC Adv 2016. [DOI: 10.1039/c6ra20277b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We explored the structural features that have an impact on TgCDPK1 activity and TgCDPK1/Src selectivity by multi-computational methods with different statistical models.
Collapse
Affiliation(s)
- Shaojie Ma
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Shengfu Zhou
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Weicong Lin
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Rong Zhang
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Wenjuan Wu
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Kangcheng Zheng
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- PR China
| |
Collapse
|
16
|
Wang FF, Yang W, Shi YH, Cheng XR, Le GW. Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity. J Biomol Struct Dyn 2015; 34:2251-67. [DOI: 10.1080/07391102.2015.1113384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fang-Fang Wang
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Yang
- Faculty of Medicine, Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Yong-Hui Shi
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiang-Rong Cheng
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guo-Wei Le
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Wang F, Yang W, Shi Y, Le G. Structural analysis of selective agonists of thyroid hormone receptor β using 3D-QSAR and molecular docking. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Wang F, Yang W, Shi Y, Le G. 3D-QSAR, molecular docking and molecular dynamics studies of a series of RORγt inhibitors. J Biomol Struct Dyn 2014; 33:1929-40. [PMID: 25341687 DOI: 10.1080/07391102.2014.980321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R(2)cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R(2)pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.
Collapse
Affiliation(s)
- Fangfang Wang
- a The State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214000 , China
| | | | | | | |
Collapse
|
19
|
Ma S, Zeng G, Fang D, Wang J, Wu W, Xie W, Tan S, Zheng K. Studies of N(9)-arenthenyl purines as novel DFG-in and DFG-out dual Src/Abl inhibitors using 3D-QSAR, docking and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2014; 11:394-406. [PMID: 25406390 DOI: 10.1039/c4mb00350k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the development of Src/Abl (c-Src/Bcr-Abl tyrosine kinases) dual inhibitors has attracted considerable attention from the research community for treatment of malignancies. In order to explore the different structural features impacting the Src and Abl inhibitory activities of N(9)-arenethenyl purines and to investigate the molecular mechanisms of ligand-receptor interactions, a molecular modeling study combining the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations was performed. The obtained CoMFA (comparative molecular field analysis) models exhibited satisfactory internal and external predictability. The plots of the CoMFA fields could be used to investigate the structural differences between DFG-in (targeting the active enzyme conformation) and DFG-out (targeting the inactive enzyme conformation) inhibitors. The key amino acid residues were identified by docking studies, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies gave a good correlation with the experimental determined activities. In an energetic analysis, the MM-PBSA (molecular mechanics Poisson-Boltzmann surface) energy decomposition revealed that the van der Waals interactions were the major driving force for the binding of the DFG-in and DFG-out compounds to Src and Abl, especially the hydrophobic interactions between ligands and residues Ala403/380, Asp404/381, and Phe405/382 in DFG-out Src and Abl complexes. They also help to stabilize the DFG-out conformations. These results can offer useful references for designing novel potential DFG-in and DFG-out dual Src/Abl inhibitors.
Collapse
Affiliation(s)
- Shaojie Ma
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Xu Z, Ba M, Zhou H, Cao Y, Tang C, Yang Y, He R, Liang Y, Zhang X, Li Z, Zhu L, Guo Y, Guo C. 2,4,5-Trisubstituted thiazole derivatives: a novel and potent class of non-nucleoside inhibitors of wild type and mutant HIV-1 reverse transcriptase. Eur J Med Chem 2014; 85:27-42. [PMID: 25072874 DOI: 10.1016/j.ejmech.2014.07.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
Novel 2,4,5-trisubstituted thiazole derivatives (TSTs) were designed and synthesized as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Among the thirty-eight synthesized target compounds, thirty TSTs showed potent inhibition against HIV-1 replication in wild type HIV-1 at submicromolar concentrations (from 0.046 to 9.59 μM). Compounds 21, 23 and 24 were also tested on seven NNRTI-resistant HIV-1 strains, and all exhibited inhibitory effects with fold changes in IC50 ranging from 2.6 to 111, which were better than those of nevirapine (15.6-fold-371-fold). Docking simulations of compound 24 revealed a reasonable mechanism for the binding mode, and three-dimensional quantitative structure activity relationship (3-DQSAR) studies on this novel series of TST further elucidated the structure-activity relationship (SAR). The results suggested the great potential of TSTs as a novel class of NNRTIs with antiviral efficacy and a good resistance profile.
Collapse
Affiliation(s)
- Zhongliang Xu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mingyu Ba
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hua Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yingli Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chaojun Tang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ricai He
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yu Liang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xuemei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhenzhong Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lihong Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Changbin Guo
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
21
|
Gupta MK, Misra K. Atom-based 3D-QSAR, molecular docking and molecular dynamics simulation assessment of inhibitors for thyroid hormone receptor α and β. J Mol Model 2014; 20:2286. [DOI: 10.1007/s00894-014-2286-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/01/2014] [Indexed: 12/27/2022]
|
22
|
Liu Y, Lu X, Xue T, Hu S, Zhang H. Receptor and ligand-based 3D-QSAR study on a series of pyrazines/pyrrolidylquinazolines as inhibitors of PDE10A enzyme. Med Chem Res 2014; 23:775-789. [DOI: 10.1007/s00044-013-0619-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Yu H, Fang Y, Lu X, Liu Y, Zhang H. Combined 3D-QSAR, molecular docking, molecular dynamics simulation, and binding free energy calculation studies on the 5-hydroxy-2H-pyridazin-3-one derivatives as HCV NS5B polymerase inhibitors. Chem Biol Drug Des 2013; 83:89-105. [PMID: 23941500 DOI: 10.1111/cbdd.12203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 06/08/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
Abstract
The NS5B RNA-dependent RNA polymerase (RdRP) is a promising therapeutic target for developing novel anti-hepatitis C virus (HCV) drugs. In this work, a combined molecular modeling study was performed on a series of 193 5-hydroxy-2H-pyridazin-3-one derivatives as inhibitors of HCV NS5B Polymerase. The best 3D-QSAR models, including CoMFA and CoMSIA, are based on receptor (or docking). Furthermore, a 40-ns molecular dynamics (MD) simulation and binding free energy calculations using docked structures of NS5B with ten compounds, which have diverse structures and pIC50 values, were employed to determine the detailed binding process and to compare the binding modes of the inhibitors with different activities. On one side, the stability and rationality of molecular docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM-PBSA method gave a good correlation with the experimental biological activity. On the other side, by analyzing some differences between the molecular docking and the MD simulation results, we can find that the MD simulation could also remedy the defects of molecular docking. The analyses of the combined molecular modeling results have identified that Tyr448, Ser556, and Asp318 are the key amino acid residues in the NS5B binding pocket. The results from this study can provide some insights into the development of novel potent NS5B inhibitors.
Collapse
Affiliation(s)
- Haijing Yu
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | |
Collapse
|
24
|
Li X, Fu J, Shi W, Luo Y, Zhang X, Zhu H, Yu H. 3D-QSAR and Molecular Docking Studies on Benzotriazoles as Antiproliferative Agents and Histone Deacetylase Inhibitors. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Li X, Ye L, Wang X, Shi W, Liu H, Qian X, Zhu Y, Yu H. In silico investigations of anti-androgen activity of polychlorinated biphenyls. CHEMOSPHERE 2013; 92:795-802. [PMID: 23664479 DOI: 10.1016/j.chemosphere.2013.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 04/11/2013] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
Polychlorinated biphenyls (PCBs) have attracted great concern as global environmental pollutants and representative endocrine disruptors. In this work, a molecular model study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, and molecular dynamics (MD) simulations was performed to explore the structural requirement for the anti-androgen activities of PCBs and to reveal the binding mode between the PCBs and androgen receptor (AR). The best comparative molecular similarity indices analysis (CoMSIA) model, obtained from receptor-based alignment, shows leave-one-out cross-validated correlation coefficient (q(2)) of 0.665 and conventional correlation coefficient (R(2)) of 0.945. The developed model has a highly predictive ability in both internal and external validation. Furthermore, the interaction mechanisms of PCBs to AR were analyzed by molecular docking and MD simulation. Molecular docking indicated that all the PCBs in the data set docked in a hydrophobic pocket. The Binding free energies calculated by Molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) not only exhibited a good correlation with the experimental activity, but also could explain the activity difference of the studied compounds. The binding free energy decomposition analysis indicates that the van der Waals interaction is the major driving force for the binding process.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yuan J, Pu Y, Yin L. Docking-based three-dimensional quantitative structure-activity relationship (3D-QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1453-1458. [PMID: 23424013 DOI: 10.1002/etc.2191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/14/2013] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
Polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) cause toxic effects after binding to an intracellular cytosolic receptor called the aryl hydrocarbon receptor (AhR). Thymic atrophy, weight loss, immunotoxicity, acute lethality, and induction of cytochrome P4501A1 have all been correlated with the binding affinity to AhR. To study the key molecular features for determining binding affinity to AhR, a homology model of AhR ligand-binding domains was developed, a molecular docking approach was employed to obtain docking-based conformations of all molecules in the whole set, and 3-dimensional quantitative structure-activity relationship (3D-QSAR) methodology, namely, comparative molecular field analysis (CoMFA), was applied. A partial least square analysis was performed, and QSAR models were generated for a training set of 59 compounds. The generated QSAR model showed good internal and external statistical reliability, and in a comparison with other reported CoMFA models using different alignment methods, the docking-based CoMFA model showed some advantages.
Collapse
Affiliation(s)
- Jintao Yuan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | | |
Collapse
|
27
|
Li X, Ye L, Shi W, Liu H, Liu C, Qian X, Zhu Y, Yu H. In silico study on hydroxylated polychlorinated biphenyls as androgen receptor antagonists. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:258-264. [PMID: 23582771 DOI: 10.1016/j.ecoenv.2013.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Hydroxylated polychlorinated biphenyls (HO-PCBs), major metabolites of PCBs, may have the potential to disrupt androgen hormone homeostasis. However, there is a lack of systematic investigation into the intermolecular interaction mechanism between HO-PCBs and the androgen receptor (AR). In this study, the combination of three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, and molecular dynamics (MD) simulations was performed to elucidate structural characteristics that influence the anti-androgen activity of HO-PCBs, and to provide a better understanding of the binding modes between HO-PCBs and AR. A predictive comparative molecular field analysis (CoMFA) model was developed with good robustness and predictive ability. Graphical interpretation of the model provided some insights into the structural features that affect the anti-androgen activity of HO-PCBs. The hydrogen bond interaction with Gln711, and hydrophobic interactions with residues in the hydrophobic pocket played important roles in the binding of ligand with receptor. These results are expected to be beneficial to predict anti-androgen activities of other HO-PCBs and provided possible clues for further elucidation of the binding mechanism of HO-PCBs with AR.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang X, Li X, Shi W, Wei S, Giesy JP, Yu H, Wang Y. Docking and CoMSIA studies on steroids and non-steroidal chemicals as androgen receptor ligands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:143-9. [PMID: 23260236 DOI: 10.1016/j.ecoenv.2012.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 05/23/2023]
Abstract
While some synthetic chemicals have been demonstrated to disrupt normal endocrine function by binding to the androgen receptor (AR), the mechanism by which ligands bind to the ligand binding domain (LBD) remained unclear. In this study, docking and comparative molecular similarity index analysis (CoMSIA) were performed to study the AR ligand binding mechanism of steroids and non-steroidal chemicals. The obtained docking conformations and predictive CoMSIA models (r(pred)(2)values as 0.842 and 0.554) indicated the primary interaction site and key residues in the binding process. The major factors influence the binding affinity of steroids and non-steroidal chemicals were electrostatic and hydrophobic interactions, respectively. The results indicated that besides amino-acid residues Gln711, Arg752 and Thr877 which have previously been reported to be important in binding ligands, Leu701 and Leu704 are also important. Residues Val746, Met749 and Phe764 are crucial only for steroids, while Met742 and Met787 are important only for non-steroidal chemicals. This knowledge of key interactions and important amino-acid residues governing ligands to the AR allow better prediction of potency of AR agonists so that their potential to disrupt AR-mediated pathways and to design less potent alternatives.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Palacios-Bejarano B, Cerruela García G, Luque Ruiz I, Gómez-Nieto MÁ. QSAR model based on weighted MCS trees approach for the representation of molecule data sets. J Comput Aided Mol Des 2013; 27:185-201. [DOI: 10.1007/s10822-013-9637-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
|
30
|
Chakraborty A, Pan S, Chattaraj PK. Biological Activity and Toxicity: A Conceptual DFT Approach. STRUCTURE AND BONDING 2013. [DOI: 10.1007/978-3-642-32750-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Li X, Wang X, Shi W, Liu H, Yu H. Analysis of Ah receptor binding affinities of polybrominated diphenyl ethers via in silico molecular docking and 3D-QSAR. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:75-87. [PMID: 23121134 DOI: 10.1080/1062936x.2012.729225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have become ubiquitous contaminations due to their use as flame retardants. The structural similarity of PBDE to some dioxin-like compounds suggested that they may share similar toxicological effects: they might activate the aryl hydrocarbon receptor (AhR) signal transduction pathway and thus might have adverse effects on wildlife and humans. In this study, in silico computational workflow combining molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) was performed to investigate the binding interactions between PBDEs and AhR and the structural features affecting the AhR binding affinity of PBDE. The molecular docking showed that hydrogen-bond and hydrophobic interactions were the major driving forces for the binding of ligands to AhR, and several key amino acid residues were also identified. The CoMSIA model was developed from the conformations obtained from molecular docking and exhibited satisfactory results as q (2) of 0.605 and r (2) of 0.996. Furthermore, the derived model had good robustness and statistical significance in both internal and external validations. The 3D contour maps generated from CoMSIA provided important structural features influence the binding affinity. The obtained results were beneficial to better understand the toxicological mechanism of PBDEs.
Collapse
Affiliation(s)
- X Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, P.R. China
| | | | | | | | | |
Collapse
|
32
|
Li X, Ye L, Wang X, Wang X, Liu H, Qian X, Zhu Y, Yu H. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on estrogenic activity of hydroxylated polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 441:230-238. [PMID: 23137989 DOI: 10.1016/j.scitotenv.2012.08.072] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
Hydroxylated polychlorinated biphenyls (HO-PCBs), major metabolites of PCBs, have been reported to present agonist or antagonist interactions with estrogen receptor α (ERα) and induce ER-mediated responses. In this work, a multistep framework combining molecular docking, molecular dynamics (MD) simulations, and structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed to explore the influence of structural features on the estrogenic activities of HO-PCBs, and to investigate the molecular mechanism of ERα-ligand interactions. The CoMSIA (comparative molecular similarity indices analysis) model was developed from the conformations obtained from molecular docking. The model exhibited statistically significant results as the cross-validated correlation coefficient q² was 0.648, the non-cross-validated correlation coefficient r² was 0.968, and the external predictive correlation coefficient r(pred)² was 0.625. The key amino acid residues were identified by molecular docking, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies correlated well with the experimental activity. An energetic analysis, MM-GBSA energy decomposition, revealed that the van der Waals interaction was the major driving force for the binding of compounds to ERα. The hydrogen bond interactions between the ligands and residue His524 help to stabilize the conformation of ligands at the binding pocket. These results are expected to be beneficial to predict estrogenic activities of other HO-PCB congeners and helpful for understanding the binding mechanism of HO-PCBs and ERα.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zech G, Hessler G, Evers A, Weiss T, Florian P, Just M, Czech J, Czechtizky W, Görlitzer J, Ruf S, Kohlmann M, Nazaré M. Identification of High-Affinity P2Y12 Antagonists Based on a Phenylpyrazole Glutamic Acid Piperazine Backbone. J Med Chem 2012; 55:8615-29. [DOI: 10.1021/jm300771j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gernot Zech
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Gerhard Hessler
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Andreas Evers
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Tilo Weiss
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Peter Florian
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Melitta Just
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Jörg Czech
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Werngard Czechtizky
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Jochen Görlitzer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Sven Ruf
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Markus Kohlmann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| | - Marc Nazaré
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building
G878, D-65926 Frankfurt am
Main, Germany
| |
Collapse
|
34
|
Li X, Ye L, Wang X, Wang X, Liu H, Zhu Y, Yu H. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β. Toxicol Appl Pharmacol 2012; 265:300-7. [PMID: 22982074 DOI: 10.1016/j.taap.2012.08.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q²) was 0.571 and non-cross-validation correlation coefficient (r²) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen H, Zhang Y, Li L, Han JG. Probing Ligand-Binding Modes and Binding Mechanisms of Benzoxazole-Based Amide Inhibitors with Soluble Epoxide Hydrolase by Molecular Docking and Molecular Dynamics Simulation. J Phys Chem B 2012; 116:10219-33. [DOI: 10.1021/jp304736e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei
230029, People’s Republic of China
| | - Ying Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei
230029, People’s Republic of China
| | - Liang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei
230029, People’s Republic of China
| | - Ju-Guang Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei
230029, People’s Republic of China
| |
Collapse
|
36
|
Hao M, Zhang S, Qiu J. Toward the prediction of FBPase inhibitory activity using chemoinformatic methods. Int J Mol Sci 2012; 13:7015-7037. [PMID: 22837677 PMCID: PMC3397509 DOI: 10.3390/ijms13067015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/18/2012] [Accepted: 05/31/2012] [Indexed: 01/08/2023] Open
Abstract
Currently, Chemoinformatic methods are used to perform the prediction for FBPase inhibitory activity. A genetic algorithm-random forest coupled method (GA-RF) was proposed to predict fructose 1,6-bisphosphatase (FBPase) inhibitors to treat type 2 diabetes mellitus using the Mold2 molecular descriptors. A data set of 126 oxazole and thiazole analogs was used to derive the GA-RF model, yielding the significant non-cross-validated correlation coefficient r2ncv and cross-validated r2cv values of 0.96 and 0.67 for the training set, respectively. The statistically significant model was validated by a test set of 64 compounds, producing the prediction correlation coefficient r2pred of 0.90. More importantly, the building GA-RF model also passed through various criteria suggested by Tropsha and Roy with r2o and r2m values of 0.90 and 0.83, respectively. In order to compare with the GA-RF model, a pure RF model developed based on the full descriptors was performed as well for the same data set. The resulting GA-RF model with significantly internal and external prediction capacities is beneficial to the prediction of potential oxazole and thiazole series of FBPase inhibitors prior to chemical synthesis in drug discovery programs.
Collapse
Affiliation(s)
| | | | - Jieshan Qiu
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-411-84986024; Fax: +86-411-84986080
| |
Collapse
|
37
|
Berhanu WM, Pillai GG, Oliferenko AA, Katritzky AR. Quantitative Structure-Activity/Property Relationships: The Ubiquitous Links between Cause and Effect. Chempluschem 2012. [DOI: 10.1002/cplu.201200038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|