1
|
Jain S, Sahu U, Kumar A, Khare P. Metabolic Pathways of Leishmania Parasite: Source of Pertinent Drug Targets and Potent Drug Candidates. Pharmaceutics 2022; 14:pharmaceutics14081590. [PMID: 36015216 PMCID: PMC9416627 DOI: 10.3390/pharmaceutics14081590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a tropical disease caused by a protozoan parasite Leishmania that is transmitted via infected female sandflies. At present, leishmaniasis treatment mainly counts on chemotherapy. The currently available drugs against leishmaniasis are costly, toxic, with multiple side effects, and limitations in the administration route. The rapid emergence of drug resistance has severely reduced the potency of anti-leishmanial drugs. As a result, there is a pressing need for the development of novel anti-leishmanial drugs with high potency, low cost, acceptable toxicity, and good pharmacokinetics features. Due to the availability of preclinical data, drug repurposing is a valuable approach for speeding up the development of effective anti-leishmanial through pointing to new drug targets in less time, having low costs and risk. Metabolic pathways of this parasite play a crucial role in the growth and proliferation of Leishmania species during the various stages of their life cycle. Based on available genomics/proteomics information, known pathways-based (sterol biosynthetic pathway, purine salvage pathway, glycolysis, GPI biosynthesis, hypusine, polyamine biosynthesis) Leishmania-specific proteins could be targeted with known drugs that were used in other diseases, resulting in finding new promising anti-leishmanial therapeutics. The present review discusses various metabolic pathways of the Leishmania parasite and some drug candidates targeting these pathways effectively that could be potent drugs against leishmaniasis in the future.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
- Correspondence: or (A.K.); (P.K.)
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
- Correspondence: or (A.K.); (P.K.)
| |
Collapse
|
2
|
Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA, Balius TE, Carlsson J, Irwin JJ, Shoichet BK. A practical guide to large-scale docking. Nat Protoc 2021; 16:4799-4832. [PMID: 34561691 PMCID: PMC8522653 DOI: 10.1038/s41596-021-00597-z] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Structure-based docking screens of large compound libraries have become common in early drug and probe discovery. As computer efficiency has improved and compound libraries have grown, the ability to screen hundreds of millions, and even billions, of compounds has become feasible for modest-sized computer clusters. This allows the rapid and cost-effective exploration and categorization of vast chemical space into a subset enriched with potential hits for a given target. To accomplish this goal at speed, approximations are used that result in undersampling of possible configurations and inaccurate predictions of absolute binding energies. Accordingly, it is important to establish controls, as are common in other fields, to enhance the likelihood of success in spite of these challenges. Here we outline best practices and control docking calculations that help evaluate docking parameters for a given target prior to undertaking a large-scale prospective screen, with exemplification in one particular target, the melatonin receptor, where following this procedure led to direct docking hits with activities in the subnanomolar range. Additional controls are suggested to ensure specific activity for experimentally validated hit compounds. These guidelines should be useful regardless of the docking software used. Docking software described in the outlined protocol (DOCK3.7) is made freely available for academic research to explore new hits for a range of targets.
Collapse
Affiliation(s)
- Brian J Bender
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Andreas Luttens
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Chase M Webb
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Reed M Stein
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Elissa A Fink
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Pereira CA, Sayé M, Reigada C, Silber AM, Labadie GR, Miranda MR, Valera-Vera E. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 2020; 147:611-633. [PMID: 32046803 PMCID: PMC10317681 DOI: 10.1017/s0031182020000207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.
Collapse
Affiliation(s)
- Claudio A. Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps – LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guillermo R. Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana R. Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
4
|
Varshney K, Gupta AK, Sonkar R, Varshney S, Mishra A, Bhatia G, Gaikwad A, Srivastava AK, Saxena M, Jain S, Saxena AK. Lipid Lowering Oxopropanylindole Hydrazone Derivatives with Antioxidant and Anti-hyperglycemic Activity. Curr Top Med Chem 2019; 18:2256-2265. [DOI: 10.2174/1568026619666181220112903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
A series of substituted oxopropanylindole hydrazone derivatives was synthesized and evaluated
for anti-oxidant and anti-dyslipidemic activity. Of the 12 tested, 3 compounds (6c, 7b and 7d)
showed good anti-oxidant activity, compound 6c attenuated LDL oxidation by 32%. The compounds 6c
and 7d also showed good anti-dyslipidemic activity by reducing serum levels of total cholesterol (TC),
phospholipids (PL) and triglycerides (TG). These two compounds were further evaluated for antiadipogenic
and anti-hyperglycemic activity, where 6c showed 44% reduction in lipid accumulation and
20.5% and 24.3% reduction in blood glucose at 5h and 24h respectively, as compared to standard drug
metformin. Thus, compounds 6c and 7d with balanced anti-oxidant and anti-dyslipidimic activities may
be excellent candidates for lead optimization and drug development for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Kanika Varshney
- Medicinal & Process Chemistry Division, Central Drug Research Institute, Lucknow, 226031, India
| | - Amit K. Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Ravi Sonkar
- Biochemistry Division, Central Drug Research Institute, Lucknow, 226031, India
| | - Salil Varshney
- Pharmacology Division, Central Drug Research Institute, Lucknow, 226031, India
| | - Akanksha Mishra
- Biochemistry Division, Central Drug Research Institute, Lucknow, 226031, India
| | - Geetika Bhatia
- Biochemistry Division, Central Drug Research Institute, Lucknow, 226031, India
| | - Anil Gaikwad
- Pharmacology Division, Central Drug Research Institute, Lucknow, 226031, India
| | | | - Mridula Saxena
- Department of Chemistry, Amity University, Lucknow, India
| | - Sudha Jain
- Department of Chemistry, Lucknow University, Lucknow, 226007, India
| | - Anil K. Saxena
- Medicinal & Process Chemistry Division, Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
5
|
Gupta AK. Meet Our Executive Guest Editor. Curr Top Med Chem 2019. [DOI: 10.2174/156802661826190124115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Amit K. Gupta
- Department of Integrative Biology and Pharmacology The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States
| |
Collapse
|
6
|
Das D, Khan HPA, Shivahare R, Gupta S, Sarkar J, Siddiqui MI, Ampapathi RS, Chakraborty TK. Synthesis, SAR and biological studies of sugar amino acid-based almiramide analogues: N-methylation leads the way. Org Biomol Chem 2018; 15:3337-3352. [PMID: 28368065 DOI: 10.1039/c6ob02610a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leishmaniasis, caused by the protozoan parasites of the genus Leishmania, is one of the most neglected diseases endemic in many continents posing enormous global health threats and therefore the discovery of new antileishmanial compounds is of utmost urgency. The antileishmanial activities of a library of sugar amino acid-based linear lipopeptide analogues were examined with the aim to identify potential drug candidates to treat visceral leishmaniasis. It was found that among the synthesized analogues, most of the permethylated compounds exhibited more activity in in vitro studies against intra-macrophagic amastigotes than the non-methylated analogues. SAR and NMR studies revealed that introduction of the N-methyl groups inhibited the formation of any turn structure in these molecules, which led to their improved activities.
Collapse
Affiliation(s)
- Dipendu Das
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Khare P, Jaiswal AK, Tripathi CDP, Sundar S, Dube A. Immunoprotective responses of T helper type 1 stimulatory protein-S-adenosyl-L-homocysteine hydrolase against experimental visceral leishmaniasis. Clin Exp Immunol 2016; 185:165-79. [PMID: 26898994 DOI: 10.1111/cei.12780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/29/2022] Open
Abstract
It is well known that a patient in clinical remission of visceral leishmaniasis (VL) remains immune to reinfection, which provides a rationale for the feasibility of a vaccine against this deadly disease. In earlier studies, observation of significant cellular responses in treated Leishmania patients as well as in hamsters against leishmanial antigens from different fractions led to its further proteomic characterization, wherein S-adenosyl-L-homocysteine hydrolase (AdoHcy) was identified as a helper type 1 (Th1) stimulatory protein. The present study includes immunological characterization of this protein, its cellular responses [lymphoproliferation, nitric oxide (NO) production and cytokine responses] in treated Leishmania-infected hamsters and patients as well as prophylactic efficacy against Leishmania challenge in hamsters and the immune responses generated thereof. Significantly higher cellular responses were noticed against recombinant L. donovani S-adenosyl-L-homocysteine hydrolase (rLdAdoHcy) compared to soluble L. donovani antigen in treated samples. Moreover, stimulation of peripheral blood mononuclear cells with rLdAdoHcy up-regulated the levels of interferon (IFN)-γ, interleukin (IL)-12 and down-regulated IL-10. Furthermore, vaccination with rLdAdoHcy generated perceptible delayed-type hypersensitivity response and exerted considerably good prophylactic efficacy (∼70% inhibition) against L. donovani challenge. The efficacy was confirmed by the increased expression levels of inducible NO synthase and Th1-type cytokines, IFN-γ and IL-12 and down-regulation of IL-4, IL-10 and transforming growth factor (TGF)-β. The results indicate the potentiality of rLdAdoHcy protein as a suitable vaccine candidate against VL.
Collapse
Affiliation(s)
- P Khare
- Division of Parasitology, CSIR - Central Drug Research Institute, Lucknow
| | - A K Jaiswal
- Division of Parasitology, CSIR - Central Drug Research Institute, Lucknow
| | - C D P Tripathi
- Division of Parasitology, CSIR - Central Drug Research Institute, Lucknow
| | - S Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - A Dube
- Division of Parasitology, CSIR - Central Drug Research Institute, Lucknow
| |
Collapse
|
8
|
Kiss R, Jójárt B, Schmidt É, Kiss B, Keserű GM. Identification of Novel Histamine H4 Ligands by Virtual Screening on Molecular Dynamics Ensembles. Mol Inform 2014; 33:264-8. [PMID: 27485772 DOI: 10.1002/minf.201300072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023]
Abstract
We report the identification of novel histamine H4 receptor ligands by ensemble docking on homology model conformers derived from molecular dynamics simulations. Selected receptor models from the trajectories demonstrated superior virtual screening performance compared to the initial models. The ensemble of the best models was able to retrieve a diverse set of known H4 ligands. Prospective virtual screening against these models and subsequent in vitro experimental validation identified novel H4 ligands. Compound 3 showing highest affinity and ligand efficiency represents an interesting scaffold for further medicinal chemistry exploration.
Collapse
Affiliation(s)
- Róbert Kiss
- mcule.com Ltd. Vendel utca 15-17, B/2/6, H-1096 Budapest, Hungary
| | - Balázs Jójárt
- Department of Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6., H-6725, Szeged, Hungary
| | - Éva Schmidt
- Gedeon Richter Plc, Gyömrői út 19-21., H-1103, Budapest, Hungary
| | - Béla Kiss
- Gedeon Richter Plc, Gyömrői út 19-21., H-1103, Budapest, Hungary
| | - György M Keserű
- Gedeon Richter Plc, Gyömrői út 19-21., H-1103, Budapest, Hungary. .,Department of General and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4., H-1111, Budapest, Hungary. .,Present address: Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri út 59-67., H-1025 Budapest, Hungary.
| |
Collapse
|
9
|
Gupta AK, Varshney K, Singh N, Mishra V, Saxena M, Palit G, Saxena AK. Identification of novel amino acid derived CCK-2R antagonists as potential antiulcer agent: homology modeling, design, synthesis, and pharmacology. J Chem Inf Model 2013; 53:176-87. [PMID: 23240656 DOI: 10.1021/ci3003655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study revisited the three-dimensional (3D) homology model of CCK-2R using human A(2a) adenosine receptor and the resolved NMR based structure of the third extracellular loop of the CCK-2R as templates. Further in order to identify novel antiulcer agents, rational designing have been performed utilizing the substructure of a well-known CCK-2R antagonist benzotript as a lead molecule and submitted to the combined docking and simulation studies. This led to the understanding of the essential structure requirement as well as variation of binding mode among conformational isomers of small molecule CCK-2R antagonists. In the next step, preparation of each configurational isomer of these molecules was carried out and submitted for their in vitro activity followed by in vivo screening into antiulcer rat model. The biological screening of these compounds has not only validated the developed homology model of CCK-2R but also led to the identification of highly potent CCK-2R antagonist 6a as an orally active and safe candidate molecule having better antiulcer properties than the well-known drug benzotript.
Collapse
Affiliation(s)
- Amit K Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | | | | | | | | | | | | |
Collapse
|
10
|
Varshney K, Gupta S, Rahuja N, Rawat AK, Singh N, Tamarkar AK, Srivastava AK, Saxena AK. Synthesis, Structure-Activity Relationship and Docking Studies of Substituted Aryl Thiazolyl Phenylsulfonamides as Potential Protein Tyrosine Phosphatase 1B Inhibitors. ChemMedChem 2012; 7:1185-90. [DOI: 10.1002/cmdc.201200197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Indexed: 11/09/2022]
|